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Abstract. The Expectation Maximization algorithm is a powerful prob-
abilistic tool for brain tissue segmentation. The framework is based on
the Gaussian mixture model in MRI, and employs a probabilistic brain
atlas as a prior to produce a segmentation of white matter, grey mat-
ter and cerebro-spinal fluid (CSF). However, several artifacts can alter
the segmentation process. For example, CSF is not a well defined class
because of the large quantity of voxels affected by the partial volume
effect which alters segmentation results and volume computation. In this
study, we show that ignoring vessel segmentation when handling par-
tial volume effect can also lead to false results, more specifically to an
over-estimation of the CSF variance in the intensity space. We also pro-
pose a more versatile method to improve tissue classification, without
a requirement of any outlier class, so that brain tissues, especially the
cerebro-spinal fluid, follows the Gaussian noise model in MRI correctly.

1 Introduction

The segmentation of pathological tissues in multi-spectral MRI is useful, for
example for diagnosis purpose. The intensity signature of healthy tissues is more
predictable than the one of potential lesions: having a good characterization and
segmentation of healthy tissues is the first step to separate them from lesions.

For this task, the Expectation Maximization (EM) framework [1] is a pop-
ular tool. It provides a segmentation of MRI into three classes: grey matter,
white matter, cerebro-spinal fluid (CSF). However, multiple artifacts affect the
segmentation results. As an example, voxels at the interface between two tissues
contain more than one tissue: this is called Partial Volume Effect (PVE) [2].
Furthermore, potential lesions are not handled here. Some solutions have been
proposed in the literature to overcome these problems.

Lesions can be separated from healthy tissues by adding an outlier class,
without any prior in the intensity space [3]. In [4], a tissue classification is per-
formed and PVE voxels are labeled in a post-processing step. Another way to

C. Barillot, D.R. Haynor, and P. Hellier (Eds.): MICCAI 2004, LNCS 3216, pp. 26–33, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Improved EM-Based Tissue Segmentation 27

take PVE into account is to segment PVE voxels in the EM framework as a
class, the parameters of which are constrained from other pure classes [5]. These
PVE models have only been tested on T1 MR images though. In this study, we
show that the CSF class is not well defined in the multi-spectral T2/PD MRI
intensity space. Even with a PVE model such as [5], the segmentation still suffers
from an over-estimation of the variance of each class, especially the CSF. We
propose a method to deal with this problem, which will lead to the segmentation
of vessels, in addition of other brain tissues. We validate our study on a database
of T2/PD MRI of 36 multiple sclerosis patients and 9 healthy subjects, showing
a significant decrease of the variance of pure classes.

2 EM-Based Segmentation of Brain Multi-spectral MR
Images

Before performing any segmentation, we apply a skull-stripping technique to the
images to keep brain tissues only. Many methods are available in the literature,
our method is closely related to the one described in [6]. We first generate a
primary EM-based segmentation that we refine with mathematical morphology.
More details can be found in [7].

2.1 Basic Algorithm

MRI noise is known to follow a Rician probability density function (PDF). Since
a Rician PDF, if mean value is greater than 0, can be reasonably approximated
by a Gaussian PDF, it is acceptable to say that noise in multi-spectral MR
images follows a Gaussian PDF. As a consequence, the segmentation is based on a
Gaussian mixture model within the intensity space. Each class k is represented by
the regular Gaussian parameters in the intensity space: mean µk and covariance
matrix Σk. The EM algorithm consists in iterating two steps: labeling of the
image – Expectation step – and estimation of the class parameters by maximizing
the likelihood of the whole image – Maximization step [1].

The labeling is the computation of the probability of a tissue class given the
image and the parameters. The application of Bayes’ rule gives the solution to
the problem, summarized in equation 1. lj and yj are respectively the label and
the multi-spectral intensity of the voxel j; Y is the whole image and Φ is the set
of parameters. Πlj=a is the a priori probability to get the label a for the voxel
j.

p(lj = a|Y, Φm−1) =
p(yj |lj = a, Φ(m−1))Πlj=a

∑
k p(yj |lj = k, Φ(m−1))Πlj=k

(1)

Πlj is different whether a probabilistic atlas is available or not. When no atlas is
used, the prior does not depend on the position j of the voxel (Πlj=a = Πa) and
needs to be re-estimated at each iteration (by Πa =

∑
j p(lj = a|Y, Φm−1)/

∑
j)

for convergence purposes. When the atlas is available, the spatially dependent
prior simply needs to be normalized: ∀j,

∑
k Πlj=k = 1.
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The estimators that maximize the likelihood are the MAP estimators cor-
responding to the mean and covariance matrix. As an approximation, we use
the parameters of the last iteration Φ(m−1) when computing the parameters at
iteration m. Both estimators are represented within equations 2 and 3:

µm
k =

∑
j p(lj = k|Y, Φ(m−1))yj

∑
j p(lj = k|Y, Φ(m−1))

(2)

Σm
k =

∑
j p(lj = k|Y, Φ(m−1))(yj − µm

k )(yj − µm
k )′

∑
j p(lj = k|Y, Φ(m−1))

(3)

2.2 Results of the Basic Algorithm

This method was applied on T2/PD (TE=8/104, TR=5000, ETL=16, voxel size:
0.937*0.937*2) MR images, from an acquisition protocol concerning 36 relapsing
remitting multiple sclerosis patients. Three classes were segmented: white mat-
ter, grey matter and CSF, with the corresponding atlas for each class, obtained
by affinely registering the MNI probabilistic atlases [8]. It takes less than 30
seconds for 256*256*64 images on a 3Ghz PC. The results are shown in figure 1.

Visual inspection of white matter segmentation seems satisfactory. The grey
matter Mahalanobis ellipse is deformed towards the CSF ellipse, mostly because
of the partial volume effect, and the CSF class has a tremendously high variance,
which seems quite hard to explain with these PVE voxels only, as shown next.

3 Improved Tissue Segmentation

3.1 Partial Volume Effect (PVE)

MR images have a limited resolution. Voxels at the interface between two classes,
e.g. grey matter and CSF, have an intermediate intensity depending on the
proportion of tissues in this voxel. Those “PVE voxels” will bias a segmentation
into pure class voxel since it invalidates the Gaussian mixture model for the
whole image.

Let there be two tissues a and b, their intensities ya and yb respectively, and
α the proportion of tissue a in the considered PVE voxel. Let N(µ, Σ) be the
Gaussian PDF with parameters µ and Σ. Both ya and yb follow a Gaussian
PDF, respectively N(µa, Σa) and N(µb, Σb). The intensity of this voxel yPVE is
a random variable that can be computed using yPVE = αya + (1 − α)yb.

If we consider PVE voxels only, α is uniformly distributed. Separating PVE
voxels from pure voxels is not trivial [2]. However, if α is fixed and known, yPVE
follows a Gaussian PDF with the following parameters:

yPVE ∼ N(αµa + (1 − α)µb, α
2Σa + (1 − α)2Σb) (4)

One solution is to emulate the partial volume effect by a fixing α to some
constant values, and computing the PVE classes within the regular EM. The
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Fig. 1. Joint histogram between T2 and PD MRI, representation of tissue classes us-
ing the Mahalanobis ellipse and the corresponding classification. Three classes are
segmented, corresponding to the three atlas classes (from left to right): grey matter
(grey dashed), white matter (white), and CSF (black dash-dotted).

algorithm will consist in iterating three steps: labeling of all classes (including
PVE classes), estimation of class parameters only for pure classes – white matter,
grey matter and CSF –, and computing PVE classes parameters using equation
4. This method is interesting as it remains easy to compute and respects the
original EM framework [9]. Some results are shown in figure 2.

As we can see, the grey matter class has a reasonable variance now, compa-
rable to the one of the white matter. Indeed, adding PVE classes (between the
grey matter and the CSF) allowed to decrease the variance along the T2 axis
where both classes are well separate. However, the variance of the CSF remains
at very high values, and the direction of the main axis shows that this prob-
lem cannot be solved solely by addressing the partial volume effect between the
former segmented tissues.

3.2 Introducing a Fourth Class

As demonstrated above, the PVE does not explain the huge variance of the CSF
class. A close look at the images (see figure 4.c, 4.i) shows that some dark struc-
tures (identified mainly as vessels) are also classified as CSF. Those structures
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Fig. 2. Joint histogram between T2 and PD MRI, with PVE between grey-matter and
CSF. 4 PVE classes were used (α ∈ {0.2, 0.4, 0.6, 0.8}). The variance of the grey matter
class has been reduced, but the CSF class is still oversized.

are not guaranteed to be labeled as outliers, if an outlier class is added as in [3].
Thus, we prefer to introduce explicitely a vessel class.

In the three class EM, vessels are classified as CSF. This CSF class has to
be splitted into two classes, vessels and CSF. To achieve this, we will define
an a priori probability for the vessels, πlj=vessel, as a fraction β of the CSF
probability given by the atlas, Πlj=CSF. With this new class, the prior for CSF
becomes πlj=CSF = (1 − β)Πlj=CSF.

The labeling can then be achieved into an EM framework. Since the relative
ratio of vessels with respect to CSF is not known, β has to be estimated at each
iteration for convergence purposes by

β =

∑
j p(lj = vessel|Y, Φ)

∑
j p(lj = vessel|Y, Φ) +

∑
j p(lj = CSF|Y, Φ)

(5)

By introducing this fourth class, the system becomes more flexible, and still
allows the adaptation of the algorithm to unforeseen tissues (e.g. with an outlier
class) without loosing the information from the atlas.

The final algorithm becomes the following:

1. compute a labeling for each class (Expectation Step);
2. estimate parameters for the following classes: white matter, grey matter,

CSF and vessels;
3. compute analytically PVE classes parameters using equations 4;
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4. recognize the CSF class by selecting the class with highest mean on T2 axis
(the CSF class has to be distinguished from the vessel class for the PVE
computation with the grey matter).

Results are presented in figures 3 and 4. The CSF class only includes pure
CSF (compare figure 4.i and 4.j). Its variance has decreased by a large amount,
and is now comparable to grey matter and white matter class variances, which
corroborates a Gaussian noise model for the MR signal.

Introducing the vessel class allows also a better recognition of PVE voxels
between CSF and grey matter: Mahalanobis ellipses of PVE voxels distributions
in figure 3 are now well separated.

It is important to point out that the simple usage of an outlier class may
fail to separate the CSF from vessels here. Indeed, both classes have a similar
number of voxels, and outlier detection assumes that the outlier class is less
represented than the main class.
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Fig. 3. Joint histogram between T2 and PD MRI, and representation of tissue classes
using the Mahalanobis ellipse. As one class, which prior is a fraction of CSF atlas, is
added, the CSF class does not include vessels anymore: the main three brain tissues –
grey matter, white matter and CSF – follow the Gaussian noise model properly.

4 Conclusion and Future Work

Our main finding is that introducing explicitely the vessel class into the EM
framework allows a significant improvement in the classification.

The system has been tested on 36 multiple sclerosis patients MRI and 9
healthy subjects, with a good estimation of the parameters, reflected by a clear
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Fig. 4. Final segmentation: grey matter (a), white matter (b), CSF without vessel class
(c), T2 MRI(d), Proton Density MRI (e), CSF (f), other class including vessels (g).
Zoom : Proton Density (h), CSF without vessel class (i), CSF (j), other class including
vessels (k).

Table 1. Estimation of T2 standard deviation for brain tissues, resulting on experi-
ments over 36 patients and 9 healthy subjects. Notice that CSF standard deviation has
been divided by 3 with the vessel class, without any intensity non-uniformity correction.

T2 std deviation Grey matter White matter CSF
no PVE 68.5 32.0 160.2
PVE without vessels 49.7 33.9 167.9
PVE + vessels 46.7 34.1 58.3

PD std deviation Grey matter White matter CSF
no PVE 53.3 41.8 145.2
PVE without vessels 49.9 41.2 159.6
PVE + vessels 49.7 40.4 60.5
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decrease of variance for CSF class, as shown in table 1. The T2 CSF standard
deviation has been divided by 3, and never exceeds 65 in all the images, although
it exceeds 150 with a simple PVE model. A closer look at the final segmentation
indicates that the new segmentation of CSF does not include neither vessels nor
partial volume effect, that are this time correctly extracted. The whole process is
still quite fast, since we simply added a few classes in the initial EM framework:
it takes around 4 minutes to run the system on a 3 Ghz PC.

One application of this method may be the computation of volumes (CSF
volume, or brain atrophy) since it allows a more accurate estimation of proba-
bilities for each tissue within each voxel. Brain atrophy is indeed a good disease
indicator, in Alzheimer disease or multiple sclerosis for example.

The segmentation of pathological tissues (multiple sclerosis lesions or tu-
mors), our primary motivation, is also an interesting derived application. We
argue that this may be facilitated with a good classification of healthy tissues,
as the one proposed in this study. This is left as future work.
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