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Abstract—There is a need to improve the delivery of energy
services, and utilizing distributed energy resources offers signifi-
cant potential. We propose an energy service modeling technique
that would capture temporal variations of its demand and value,
and differentiate it from the electric energy consumed by the
end-use equipment. We then use this technique with a novel
energy service simulation platform that aims to maximize the
net benefit derived from energy services. The simulation platform
creates a strategy for how available distributed resources should
be operated in order to provide the desired energy services
while minimizing the cost of consumption. The corresponding
optimization problem is solved using particle swarm optimization.
The simulation platform proved capable of creating an operation
schedule that maximizes net benefit under a range of challenging
conditions.

Index Terms—Energy services, distributed energy resources,
smart home, demand management, particle swarm optimization.

I. INTRODUCTION

ENERGY services are services, processes and commodi-
ties from where energy consumers ultimately derive and

appreciate the value of raw energy carriers like gas and
electricity. Energy services may be classified as either direct
or indirect [1]. Direct energy services are services where the
raw energy carriers are converted to alternate energy forms
that are directly consumed. Examples are illumination, space
and water heating, and motion. Indirect energy services are
services where the consumer puts value on the processes
and products resulting from the utilization of energy carriers
and raw materials, if needed. Examples are consumer and
manufactured goods, information processing, communications
and entertainment.

The value of an energy service originates from the comfort,
convenience, products and profits it brings to the consumer. It
is affected by several factors like time of the day, weather,
social externalities, and uncertainties, among others. In a
domestic context, for example, the value of air conditioning is
highest during summer but has low value at winter. The value
of watching television is certainly very high if an important
political or sporting event is in broadcast.

The traditional method of delivering energy services is
to generate and make available electricity, regardless of the
volume consumed, while ensuring the security of the power
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system. This approach has become increasingly unfavorable
due to growing demand and emissions, and worsening load
factors. With these problems facing the power system as a
whole, there is a need to improve the efficiency of delivering
energy services [1]. The potential of coupling distributed
energy resources with existing utility infrastructure to deliver
energy services in a more optimal way has been continuously
increasing [2].

Distributed energy resources (DER) are fine-grained equip-
ment and practices, usually co-located with or near the con-
sumer, that could augment, or even assume the role of the
utility in delivering energy services. In [3], Lovins discussed
more than 200 benefits that can be derived from DER and
listed a diverse range of its possible forms.

In this paper, we propose an energy service modeling
technique that works with a novel energy service simulation
platform that would maximize the potential of DER and the
utility in delivering energy services. The modeling technique
would capture and represent the temporal variations of demand
and value of services, and assigns monetary value to the energy
that realizes the energy service. The simulation platform aims
to improve the provision of energy services by maximizing
the net benefits. It would propose a strategy for how available
DER should be operated so that services with different values
to the consumer are provided while the cost of provision
is minimized. The creation of the operation schedule is a
challenging optimization problem due of the presence of active
and passive storage, and shiftable and curtailable demands.

We will illustrate the potential of the modeling technique
and the simulation platform using a smart home as a case
study. We will consider DER that are most appropriate in the
context of a smart home: renewable energy generation, demand
resources or flexible demand, and energy storage. The creation
of the strategy is a mathematical optimization problem, and we
used a hybrid of particle swarm optimization and its binary
version to find the solution.

Several similar works have recently presented techniques on
how to optimize the operation of DER. The household energy
consumption is minimized in [4] by planning the operation
of space heaters and shiftable loads using tabu search and
multi-agent systems. In [5], electricity and natural gas, and
co-generation technologies have been used to service heating
and electricity end-use loads.

The rest of the paper is outlined as follows: The proposed
energy service modeling technique and simulation platform are
discussed in Sections II and III. Particle swarm optimization is
described in Section IV. The case study is presented in Section
V. The conclusions are summarized in Section VI.
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II. MODELING ENERGY SERVICES

The demand for and the value of energy services change
with time. In a restaurant, for example, hot water is generally
in demand an hour or two before it opens, while it is open,
and an hour or two after it closes. Hot water is generally not
needed beyond those hours. Furthermore, the convenience of
having hot water flowing out of the taps is certainly higher
during those hours, than when no one is using it. It may be
argued that the restaurant owner is willing to pay more money
per 1 unit of thermal energy (MJ or Btu) needed to heat the
water when the restaurant is open than when it is closed.

In this illustration, the value of the hot water energy service
is assigned to the thermal energy content of water, instead
of assigning it to the energy consumption of the heater. The
workers benefiting from the hot water service are aware of the
convenience of using hot water, and would not care about the
number of kWh of electricity consumed by the heaters.

The value of a service is the monetary amount that the user
is willing to pay so that the service is provided. It could also
be the amount that the user would lose if the service is not
provided. The monetary value, therefore, is perceived or may
be computed by the user.

In the proposed modeling technique, the value of the service
is assigned to each unit of energy that realizes the service. By
doing so, we can make a distinction between that energy and
the electric energy consumed by the equipment that delivers
the service. The energy that realizes the energy service,
whether it is mechanical, thermal or luminous in nature, could
be referred to as the “energy equivalent” of the energy service.

Putting the value on the “energy equivalent” also enables
us to differentiate between different end-use equipment. To
illustrate, two different heaters may introduce the same amount
of thermal energy to water, but consume different amounts of
electric energy.

The demand for and the value of hot water service for the
restaurant example, therefore, may be modeled as a pair of
time-series values. The first series describes the hourly demand
for the hot water service. It may be the hourly consumption of
hot water specified in liters, or the required hourly heat content
of water (the “energy equivalent” of the hot water service,
UES(t)) in kWh. The second series, λES(t), describes the
hourly variation of the monetary value that the owner assigns
to the “energy equivalent” of the hot water service per unit of
thermal energy.

These temporal variations can be better visualized using
graphs instead of time-series. As an illustration, the demand
and value of the hot water service may be described by the
plots in Fig. 1. The plots show that the demand for hot water
during the opening hours is higher than outside of those hours,
and the value of hot water is also higher during those hours.
There could be hours when consumption is low but value
is high, and on some hours, the consumption can be high
yet the value is low. The amount of UES(t) depends on the
consumption habits of the user. Its monetary value, λES(t), is
perceived or may be computed by the user.

In some cases, it is not possible to depict the demand for
an energy service as an hourly variation of some variable

Fig. 1. Representation of energy service demand and value.

or of the “energy equivalent,” like what is shown in Fig.
1. Examples are shiftable services, like cooking or washing,
and interruptible services, like pool pumping. The timing of
delivery of these services are flexible, that is, the start times
and durations may be variable, and they may be interrupted
and the rest of the service may be postponed to a later time.
In such services, a narrative description of the demand may
be given, for example, “the washing service requires 1 kW of
electricity over a continuous two hour period, and may start
anytime between 9 AM and 3 PM.”

The relationship between the “energy equivalent” of a
service, UES(t), and the electric energy consumed by the end-
use equipment, Pe(t), should be determined for each service to
be provided. The relationship heavily depends on the physical
processes occurring within the equipment and the service
itself.

The determination of the “energy equivalent” is straight-
forward if the end-use equipment instantaneously converts
electricity to the end-use energy or process. Examples of such
equipment are light bulbs and appliances. If the efficiency of
the equipment in converting electricity to the energy service
is η, then,

UES(t) = η · Pe(t). (1)

In some types of energy services, the conversion from
electricity to energy service is not instantaneous, that is,
there is some form of storage involved. Therefore, there is a
temporal mismatch between the demand for a service and the
electricity consumption of the end-use equipment that delivers
the service. Examples of such services are space heating
and storage water heating. To illustrate, in storage-type water
heating, water is heated overnight but it is consumed over the
entire day. The relationship between the “energy equivalent”
of space heating service and the energy consumption of the
heater will be illustrated in the case study in Section V.

There is no perceptible “energy equivalent” or it is difficult
to quantify for indirect energy services. In this case, the actual
electric energy consumption may be assigned as the “energy
equivalent” of the service.

III. ENERGY SERVICE SIMULATION PLATFORM

The energy service simulation platform we propose aims to
maximize the net value of the energy services desired by the
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consumer. The net value is equal to the total benefits derived
from the availability of the services less the cost of electricity
consumption. The simulation platform takes advantage of the
following points:

1) Temporal variation of the cost of electricity, e.g. Time
of Use and Real-Time Tariffs.

2) Flexible delivery of some types of energy services.
3) Temporal mismatch between energy service demand and

electricity consumption of end-use equipment.
4) Availability of active storage DER like battery banks.

The platform would propose a strategy for how available
DER should be operated. The strategy aims to minimize the
cost of electricity consumption while delivering the required
services. The strategy will be in the form of a schedule, or a
set of recommended actions at each interval of the simulation
horizon. The platform will also quantify the savings incurred
by operating the DER using the strategy, and this result may
be used for making investment decisions.

The simulation platform is basically a mathematical opti-
mization problem expressed as

max

T∑
t=1

((
S∑

i=1

λES,i(t)UES,i(t, x)

)
− λe(t)Pe(t, x)

)
(2)

where
T number of hours in the simulation period,
S number of energy services,
λES,i value of the “energy equivalent” of the ith

service ($/kWh),
UES,i demand for the “energy equivalent” of the ith

service (kWh),
λe cost of electricity ($/kWh),
Pe total hourly electricity consumption (kWh),

subject to the operational constraints of the DER.
The optimization problem aims to find the schedule of

operation of the DER, x. The first term in (2) is the total
benefit derived from the availability of the services, computed
using the monetary values assigned to the “energy equivalent”
and demand for the services. The second term is the total cost
of electricity used to deliver the services.

The complexity introduced by passive storage to the rela-
tionship between the energy consumption and “energy equiv-
alent,” and the presence of complex DER operation models
and active storage options like battery banks suggest that the
objective function in (2) is non-linear, non-convex and non-
continuous. Simulation-based heuristic techniques, therefore,
offer great potential in finding the optimal or a near-optimal
solution. We used particle swarm optimization as the optimiza-
tion tool.

IV. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population-based
search technique that mimics how a group of simple par-
ticles could achieve complex collective behaviors [6]. Each
particle in a swarm represents a solution to the optimization
problem, and the particles search for the optimal solution
by flying around the solution space while communicating
with each other. The trajectory of a particle is affected by

the best performing particle and by the best position it has
visited. The movement of a particle is described by its speed
V (v1, v2, ..., vn) and position P (p1, p2, ..., pn). The ith coor-
dinate of speed and position are computed by

vt+1
i = ω · vt

i + c1 · rand() · (pt
Gbest,i − pt

i

)
+ c2 · rand() · (pt

Pbest,i − pt
i

)
,

(3)

pt+1
i = pt

i + vt+1
i . (4)

In (3), the subscripts Gbest and Pbest refer to the position of
the best performing particle (global best) and the best position
that the particle has visited (personal best). The first term is
the momentum, while the last two terms are the weighed pull
of the global and personal best positions. rand() is a uniform
random number generator from 0 to 1.

The particles are placed randomly in the solution space
in the initialization phase. The initial particles may be pre-
processed to accelerate convergence and increase the chances
of finding the optimal solution. The particles then fly around
the solution space, as determined by (3) and (4). The global
and personal bests are updated if needed, and the selection
is determined by evaluating the objective function. The sim-
ulation stops when a convergence criterion has been satisfied
or the maximum number of iterations has been reached. The
global best particle at the end of the simulation is taken as the
solution to the problem.

The binary version of PSO (BPSO) was proposed in [7]
to solve binary-valued optimization problems. In BPSO, a
coordinate of a particle position, pi, is either 0 or 1. The speed
is also computed using (3), however, it is restricted to be within
a range, [−Vmax, Vmax]. The position is computed by mapping
the velocity to a probability using a sigmoid function (5) and
the result is compared to a random number generator. That is,
if rand() < S(vt+1

i ), then pt+1
i = 1, otherwise, pt+1

i = 0.

S(vt+1
i ) =

1
1 + exp(−vt+1

i )
. (5)

PSO and BPSO and their variations have been shown to
be effective in generating near-optimal solutions to complex
optimization problems [8]–[10].

V. CASE STUDY

A. Energy Service Provision in a Smart Home

The energy service simulation platform was used to de-
termine how DER may be controlled in a smart home. The
available DER are:

1) Heater: for space heating service; maximum heating
power equal to 2.0 kW; resistive type.

2) Pool pump: for pool maintenance; rated 1.0 kW.
3) Battery storage: 2.4 kWh capacity; 400 W maximum

charging and discharging rates; 90% charging and dis-
charging efficiency; 0.1 % coulomb loss per hour; may
be discharged down to 20% of capacity.

4) PV array: 2.0 kWp.

All energy services aside from space heating and pool
pumping are lumped together into a must-run aggregate energy
service. The demand for the must-run service is shown in Fig.
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Fig. 2. Demand for must-run service.

Fig. 3. Demand for space heating service.

2. For the space heating service, the resident is comfortable
as long as the room temperature is within 1 C° of the desired
value. The desired and outdoor temperatures are shown in Fig.
3. The resident leaves the house at 9 AM and returns at 5 PM,
so there is no indicated desired value in that period. The pool
pump should be operated at most 6 hours a day. The pump
can be run in two shiftable 3-hour periods anytime between 8
AM and 10 PM.

The simulation platform will generate a strategy for how
the first three DER should be controlled. For each hour of a
24-hour period, it will determine (a) the heating power, (b)
whether a 3-hour pool pumping period should be started, and
(c) the charging or discharging rates of the battery.

Except for the baseline case, a strategy will be derived for
each of the scenarios summarized in Table I. In all cases,
the house is under Time-of-Use rates. The electricity rates are
summarized in Table II. These are the actual rates in Sydney,
Australia (ToU) [11] and South Australia (net feed-in) [12] as
of July 2008.

In the baseline case, the resident manually controls the DER.
He raises the thermostat to 21 °C at 6 AM so that by 7 AM, the
desired temperature is achieved. He also reduces the setting
from 21 °C to 18 °C at 10 PM, an hour before the desired
11 PM reduction. To ensure that the temperature is within
the desired range when he arrives at 5 PM, he programs the
heater to turn on at 3 PM with the thermostat set to 21 °C. He
programs the pool pump timer so it would run from 9 AM to 3
PM, during the period when the PV output is high. There are
no batteries installed, and any energy export is compensated
by the retailer at ToU rates.

To demonstrate the value of scheduling and to determine
if the installation of batteries would be a sound investment,
we used the simulation platform to create a DER operation
strategy for Cases 2 to 6. In Cases 2 and 4, only the heater and
pool pump are controlled, and net feed-in tariff is available in
Case 4. The value added by the battery storage is determined in

TABLE I
DESCRIPTION OF SCENARIOS

Case number Description
1 Baseline case. Manual control of DER. No battery

storage.
2 DER are scheduled. No battery storage.
3 DER are scheduled. With battery storage.
4 DER are scheduled. With net feed-in tariff. No battery

storage.
5 DER are scheduled. With net feed-in tariff and battery

storage.
6 DER are scheduled. No battery storage. Value of pool

pump service from 8AM to 10PM is reduced from
medium to low.

TABLE II
ELECTRICITY TARIFF

Tariff type Cost, λe ($/kWh)
Time of Use

Peak (2-8 PM) 0.3025
Shoulder (7AM-2PM, 8-10PM) 0.1089
Off-peak (10PM-7AM) 0.0605

Feed-in rate (net) 0.440

Cases 3 and 5. In Case 6, the value of the pool pumping service
is reduced from medium to low. This case will demonstrate
how a different perception to the value of a service could affect
its provision.

B. Energy Service Models

We must model the temporal variations of the demand for
and value of the three services to be provided (must-run,
space heating and pool pumping) before we can use (2) to
generate the schedule. For the must-run service, the actual
energy consumption shown in Fig. 2 is assigned as the “energy
equivalent” of that service, that is,

UES,must-run(t) = Pe,must-run(t). (6)

The demand for the space heating service is described by
the desired hourly temperature shown in Fig. 3. The “energy
equivalent” of the space heating service is the thermal energy
content of the indoor air when it is at the desired temperature.
This thermal energy is equal to the heating load of the building.
The heating load is equal to the heat losses through the
building enclosure and external air infiltration [13]. Infiltration
is ignored, so the heating load is equal to

Q(t) =
1
R

(θdes(t) − θout(t))

= UES,heat(t)
(7)

where
Q heating load = “energy equivalent” of space

heating service,
R thermal resistance of the building shell

= 16 C°/kW,
θdes desired temperature (°C),
θout outdoor temperature (°C).

We assumed that the heating service is delivered if the actual
temperature is within 1 C° from the desired temperature. The
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TABLE III
MONETARY VALUE EQUIVALENT OF THE PERCEIVED VALUE OF

SERVICES

Perceived value of service Monetary value ($/kWh)
High 0.60

Medium 0.20
Low 0.08

No value 0.00
Expense -0.50

actual indoor temperature, θin, may be solved by using θin

in (7) and combining the resulting equation with (8) to get
(9). (8) relates the heat introduced to the air to the change in
temperature.

C
dθin(t)

dt
= Pheat(t) − Q(t) (8)

C
dθin(t)

dt
= Pheat(t) − 1

R
(θin(t) − θout(t)) (9)

In (8) and (9), C is the heat capacity of indoor air = 0.525
kWh/C°, and Pheat is the heating power. The discrete-time
equivalent of (9) using 1-hour time-steps is

θin(t + 1) = θin(t)e−Δ/τ + RPheat(t)(1 − e−Δ/τ)

+ θout(t)(1 − e−Δ/τ)
(10)

where Δ = 1 hour and τ = RC.
We assumed that the heater energy consumption is entirely

converted to heat so

Pe,heat(t) = Pheat(t). (11)

The pool pump should run at most 6 hours a day, anytime
from 8 AM to 10 PM and may be run as two shiftable 3-
hour periods. The actual energy consumption of the pump
is assigned as the “energy equivalent” of the pool pumping
service, or

UES,pool(t) = Pe,pool(t). (12)

Value is assigned to the “energy equivalent” of all energy
services every hour. The possible values and their monetary
equivalents are listed in Table III. The monetary values as-
signed to each kWh of the “energy equivalent” are chosen
arbitrarily but are loosely based on the electricity tariffs shown
in Table II. That is, the value of important services is $0.60 per
kWh of the “energy equivalent,” higher than the peak cost of
electricity. For medium- and low-valued services, the monetary
values are between the peak and shoulder, and shoulder
and off-peak rates respectively. These assignments imply that
medium-valued services may not be delivered during peak
periods while low-valued services can only be delivered during
the off-peak.

The hourly values of the energy services are shown in Fig.
4. The must-run service should be delivered so it has a high
value at all times. From 9 AM to 5 PM, the resident does
not care about the temperature inside the house because he
is not present. Therefore, no value is assigned to the “energy
equivalent” of space heating during this period. He also puts
more value to having the room temperature near the desired
value during the waking hours than during the sleeping hours.

Fig. 4. Value of the “energy equivalent” of the services.

The pump could only run from 8 AM to 10 PM so medium
value is assigned during this period. In Case 6, the value of
the pool pumping service during this period is reduced to low.
To prevent the pump from running from 10 PM to 8 AM, an
expense value is assigned to the pumping service during that
period. This implies that actually running the pump during the
night is a negative benefit (or a cost).

C. Energy Service Provision Simulation

The objective of the simulation platform is to create a DER
strategy x that would maximize the net value of the must-
run, space heating and pool pumping services. The simulation
platform should find x that maximizes

T∑
t=1

⎛
⎜⎜⎜⎝

λES,must-run(t)UES,must-run(t)
+λES,heat(t)UES,heat(t, xheat)
+λES,pool(t)UES,pool(t, xpool)

−λe(t)Pe(t, x)

⎞
⎟⎟⎟⎠ (13)

where
x = [xbattery xheat xpool] ,
xbattery hourly battery charging/discharging rate,
xheat hourly heating power of heater,
xpool pool pump starting times and state

= [Starttime1 Starttime2 State1 State2] .

The mathematical optimization problem has the following
constraints:

1) The energy stored in the batteries should be within 20%
to 100% of the capacity.

2) The charging and discharging rates should not exceed
the maximum values.

3) The heating power should be non-negative and should
not exceed the maximum value.

4) The pumping periods should not overlap.
For the space heating service, the room temperature com-

puted using (10) should be within 1 C° from the desired
temperature. If the room temperature is not within that range
at time t, the value of λES,heat(t) in (13) is set to zero.

In the pool pumping schedule xpool, Statei = 1 if the
ith 3-hour pumping period will run starting at Starttimei,
otherwise, Statei = 0. The energy consumed by the pool
pump Pe,pool can be easily derived from xpool.

The total electricity imported from the grid Pe(t, x) is
computed by adding the battery charging or discharging power
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TABLE IV
SUMMARY OF RESULTS

Case number 1 2 3 4 5 6

Battery storage no no yes no yes no

Feed-in no no no yes yes no

Cost, $ 4.40 3.60 3.25 0.84 0.21 3.30

Net import, kWh 25.8 26.1 26.5 18.8 19.2 23.4

Total export, kWh 2.0 0.0 0.0 7.8 9.5 0.0

Peak demand, kW 2.6 2.6 3.0 2.6 2.7 2.6

Pump hours 6.00 6.00 6.00 0.00 0.00 3.00

to the energy required to deliver all services, less the output
power of the PV:

Pe(t, x) = Pe,battery(t, xbattery) + Pe,must-run(t)
+ Pe,pool(t, xpool) + Pe,heat(t, xheat)
− Pe,PV (t).

(14)

The DER operation strategy x is solved using hybrid PSO.
Real-valued PSO is used to solve for the battery charg-
ing/discharging schedule, heating power and starting times of
the pool pumping periods. The start times of the pumping
service are discretized by rounding them to the nearest hour.
Binary PSO is used to determine the state of the pool pump
(running or not) corresponding to the computed starting time.
The particles are randomly initialized and the constraints are
handled using a repair algorithm [14], that is, the coordinates
of particles violating the constraints are corrected.

For Cases 2 to 6, 10 simulations were executed and the
best solution was chosen. Each simulation used 100 particles
and 200 evolutions. The parameters used are ω = 0.7 and
c1 = c2 = 1.4 for PSO, and Vmax = 5.0, ω = 1.0, and
c1 = c2 = 7.5 for BPSO.

D. Simulation Results and Analysis

The simulation results are shown in Figs. 5 - 10 and
summarized in Table IV. The average simulation time is 7.4
seconds, using Matlab R2008b, on a 2.0 GHz Intel Pentium
Dual Core CPU.

In the baseline case (Case 1), the heater and pool pump
are manually controlled and it results in a total electricity cost
of $4.40 for the day under study. From 10 AM to 3 PM,
the PV output exceeds the demand so the excess is exported
to the grid. Since the total exported energy of 2.0 kWh is
compensated only at ToU rates, the credit is not enough to
significantly reduce the total cost.

The cost of consumption is reduced by 18% when the heater
and pump are scheduled (Case 2). The operation strategies
are to run the pool pump an hour earlier, and preheat the
house using grid and PV energy during the shoulder period
and PV energy only during the peak period. The house is
heated up to 24 °C and has cooled down to 22 °C by the time
the resident arrives. The consequences of these strategies are
the zero energy export over the entire period and the zero grid
import during the first 2 hours of the peak period.

The resident is comfortable as long as the indoor tempera-
ture is at most 1 C° from the desired value, therefore the heater
is operated such that the temperature is at the cooler level of

Fig. 5. Case 1: Manual control of DER, no battery storage.

Fig. 6. Case 2: DER are scheduled, no battery storage.

the comfortable range in some hours. This resulted in a lower
energy consumption of the heater. This heating strategy can
also be observed in the succeeding cases.

The operation of the heater in Case 3 is almost the same as
that in Case 2, causing a similar temperature profile. The pool
pump is also operated from 8 AM to 2 PM. The strategy for
the battery is to partially charge it during the morning off-peak,
and use some of the PV output to charge it fully. The stored
energy is then discharged during the peak period to displace
some grid energy. The result is zero grid import during the first
3 hours of the peak period. The value added by the battery is
not impressive, however, with the projected increase in retail
energy prices due to the implementation of emission reduction
schemes, costs associated with the achievement of renewable
energy targets, and increasing network costs [15], the resident
may consider installing battery storage after thorough analysis.
In Australia, for example, electricity retail prices are projected
to increase from $80/MWh in 2010 to $150/MWh in 2020 if
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Fig. 7. Case 3: DER are scheduled, with battery storage.

Fig. 8. Case 4: DER are scheduled, no battery storage, exported energy is
remunerated at higher rates.

the Carbon Pollution Reduction Scheme will start in 2010 [16].
If net feed-in tariff is available (Case 4), the strategy is

to maximize grid export while delivering only the important
services. Energy is exported from 9 AM to 3 PM, and the
heater is not operated during this period. The PV output in
this period is also exported to the grid. For the heating service,
the room is heated above the desired temperature at 9 AM
so that the energy needed to preheat the room from 3 to 5
PM is minimized. The pool pump is not operated because the
benefit derived from running it is smaller compared to the
compensation if the energy that would run it is exported. The
7.8 kWh of exported energy has reduced the electricity bill to
$0.84.

If battery storage is installed (Case 5), the operation strategy
is to charge it during the morning off-peak, and release the
stored energy during the energy export period. The energy
export increased to 9.5 kWh and the electricity bill is reduced
to $0.21. In this case, it is potentially more plausible to install
battery storage because the value it brings to the resident is
higher. The heating power is identical to that in Case 4, and
the pool pump is also not operated.

In Case 6, the reduced value of the pool pumping service
has resulted in the reduction of the number of hours of which

Fig. 9. Case 5: DER are scheduled, with battery storage, exported energy is
remunerated at higher rates.

Fig. 10. Case 6: DER are scheduled, no battery storage, value of pool
pumping service is reduced from medium to low.

it is run. Only 3 hours of the desired 6 hours of pool pumping
is scheduled. Because of the PV output, the resident was able
to benefit from the pumping service although its value is lower
than the prevailing electricity rate.

The case study was able to demonstrate that the net benefit
derived from energy services may be improved by scheduling
the operation of available DER. The simulation platform was
able to reduce the cost of consumption by taking advantage of
the heat storage capability of air: the house could be preheated
when energy rates are low so the space heating service required
at a later time could be provided. It was able to take advantage
of the net feed-in rates by maximizing the amount of energy
export. It was also able to determine if the pump should
operate and at what times based on the value assigned to the
pool pumping service and the potential cost of its provision.
The pumping service is entirely postponed when feed-in tariff
is available, and only part of it is delivered when its value is
reduced. In two cases, it was able to quantify the benefit if
battery storage is installed.

VI. CONCLUSION

The traditional method of delivering energy services may be
improved by recognizing that different energy services have
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different values to the user. The assignment of different levels
of benefit to different energy services has transformed energy
service provision from cost minimization to net benefit max-
imization. This approach tends to prioritize the provision of
important or high-valued services and opens up the possibility
of postponing or cancellation of low-valued services. We have
demonstrated that by using this approach, the provision of
services may be economically improved. This approach may
be adopted when implementing direct load control demand-
side management programs.

In this paper, we demonstrated that the proposed energy
service modeling technique can capture and represent temporal
variations of its demand and value. By putting value to
the energy that realizes an energy service, we were able to
differentiate it from the actual energy consumption of the
end-use equipment that delivers the service. The distinction
between the energy that realizes the service and the actual
energy consumption is important because the presence of
passive storage implies that there could be temporal mismatch
between them. That is, energy consumption could occur ahead
of the actual service utilization.

We used the modeling technique with a novel energy service
simulation platform to improve services delivery by maxi-
mizing the net benefit due to their provision. The simulation
platform was able to maximize the value of the required
services while minimizing the cost of energy consumption by
proposing a strategy, or a schedule, for how available DER
should be operated. The simulation platform takes advantage
of the temporal mismatch between energy consumption and
the energy that realizes a service, the availability of flexible
services and active storage options, and the temporal variation
of the cost of electricity. In the presented smart home case
study, it was able to suggest effective strategies under different
tariff schemes and different values assigned to services. It was
able to schedule the DER to reduce the cost of consumption,
and to maximize energy export when net feed-in tariff is
available. It was able to postpone low-valued services when the
cost of provision exceeds the benefit from having the service.

The creation of the strategy is a non-linear, non-convex
and non-continuous mathematical optimization problem. The
chosen optimization tool, particle swarm optimization, was
able to generate effective strategies within short computation
times.
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