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Xy

Let Xi, Xz, - -+ be an i.i.d. sequence with EX, = 0, EX? = 1,Ee"' < »
(] t| < to), and partial sums S, = X; + - . - + X,. Starting from some analogous
results for the Wiener process, this paper studies the almost sure limiting
behaviour of maxo=n=n-ay@~'"/*(Sn+ay — Sn) as N — o under various conditions
on the integer sequence ay. Improvements of the Erdés-Rényi law of large
numbers for partial sums are obtained as well as strong invariance principle-
type versions via the Koml6s-Major-Tusnady approximation. An appearing
gap between these two results is also going to be closed.

1. Introduction and Results. Csorgé6 and Révész (1979) obtained the following
results for the increments of a standard Wiener process W(t) (0 < ¢t < x):

THEOREM A. Let ar(T = 0) be a nondecreasing function of T for which
W0<ar=T (T=0),

(i1) ar/T is nonincreasing,

(ifi) limr.., —lff; f;/g -
Then,
1) limz, oSUpPo=i=7-a, Wit + ar) = Wffz) = .p.1,
(2ar log(T/ar))
and
(2) lim7. «SUPo<:<T—a;, Wit + ) - Wie) = w.p.l.

SupOsssaT (2aT log( T/aT))l/2 =

Actually, Theorem A is more detailed in [4], but it will be used in the sequel only as
quoted here.

By the strong invariance principle of Komlés, Major and Tusnady (1976) Theorem A
immediately implies

THEOREM B. Let X, X, - - be a sequence of i.i.d. rv’s satisfying the conditions
i EX,=0, EXi=1,
X,

(ii) there exists a to > 0 such that $(t) = Ee ' < wif |t| <.
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INCREMENTS OF PARTIAL SUMS 989

Then for the sums S, = X, + - .. + X, it holds that
Sn+aN - Sn

3 limn_, o <n=N-a = .p.1,
® N A= G log(Njan )2~ © P
and
Sn+r — Sp
4) limp o MaXo<n=n-ay h 1 w.p.l,

oSk Gan 1og(Njam) "

provided that ay is an integer sequence satisfying conditions (i)-(iii) of Theorem A and
an/log N — o,

The case ay = [C log N], C > 0, which appears to be a critical one, cannot be treated
by invariance principles. Indeed the latter was the first one of these theorems, considered
by Erdés and Rényi (1970), who proved

THEOREM C. Let X;, X5, --- be as defined above. Then, for o € {¢'(t)/o(t):t € (0,
to)} and C = C(a) such that exp(—1/C) = inf; ¢(t)exp(—ta) = p(a), we have

. Sn o, - Sn
(5) Limpy_, 0 MaXo<r<N—(Clog N] E[(C;lf)g]N] =a w.p.1.

REMARK 1. a) In case of an/N% — 0 (V8 > 0) the normalizing constants (2ay log(N/
an))"? and (2an log N)/2 are equivalent. In particular, for ay = [Clog N1, (2an log N)'/?
~ (2/C)"*[Clog N]. Hence, in the standard normal case, (5) is analogous to the version of
(1) for ar = C log T. Simply use that p(a) = exp(—a?/2), a > 0, which implies a =
(2/C)"* for the one-to-one correspondence C = C(a) or a = « (C) in (5).

b) The statement
Sn+k - Sn _
[ClogN] ¢
which was not given by Erdés and Rényi (1970), can be obtained in a similar way (cf, e.g.,
Steinebach (1979)).

In a recent paper, Révész (1980) was able to improve also the assertions of Theorem A
in the following sense:

(6) limy_, . MaXo<n=N_[C 10g NyMAX0=<1<[C log N1 w.p.1,

THEOREM D. Let W(t)(0 <t < ») and ar(T = 0) be as in Theorem A, but instead of
(iil) let us assume the stronger condition

(iv) limr.... ——(l"lg(ngl{) ‘;T;) M
Then
(7) limr_ (supoS,sr_aT Wi+ 27;2— W) _ (2 log(T/ar))" 2) =0 wpl,
and
8) limr,. (sup05:sr-aT SUPo=s=a; e :;2_ e _ (2 log(T/ar))" 2) =0 wpl

If (iv) does not hold, then statements (7) and (8) also fail to hold.

From Révész’s (1980) paper it can also be seen that (7) and (8) which yield convergence
rates of order o((log (T/ar))™"/?) in (1) and (2), cannot be improved to getting better rates
like o((log(T/ar))~"/**?), say, for any & > 0.

Theorem D raises the question whether similar improvements of Theorems B and C
are also available for the partial sum sequence. Using the Komlés-Major-Tusnady (1976)
approximation again, the following consequence is immediate:
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THEOREM 1. Let S, be as in Theorem B and an satisfy conditions (i), (ii), (iv) of
Theorem D and the following condition:

(v) an/(log N)*> - o,

Then
. Sn+aN - Sn 1/2
9) lmn_, | maxo<n=n—a, prv- (2 log(N/an)) =0 w.p.1
N
and

+k

. Spsr — Sn
(10)  limpy,e <maX05nsN—aN MaXoskzay— 17— — (2 log(N/an))" 2) =0 wpl
N

But the cases an/(log N)* -4 o cannot be treated by strong invariance principles. We
therefore prove:

THEOREM 2. Under the assumptions of Theorem C we have

. Sr+{clog N1 — Sn
(11) llmN—»oo (maXOSnsN—[C log N][—EIBZIVT - [C log N]1/2a> =0 ‘ w.p.l
and
. Sn+k - Sn 1/2
(12) Limp_, o [ MAXo<n=N_[Clog N] MAXo=k=[Clog N]W —[Clog N1'*a | = 0 w.p.1.

Moreover, the gap between Theorems 1 and 2 can be closed by

THEOREM 3. Let S, be as in Theorem B and an satisfy conditions (i) and (ii) of
Theorem A and the following conditions:

(vi) an/(log N)? — 0 for some p > 2,
(vii) an/log N / .

For a € &, set p(a) = inf, ¢(¢)exp(— ta) (hence p is finite in a neighborhood of the
origin). Then, if ay > 0 is the unique positive solution of the equation

(viii) 'pa”(aNa,‘vl/ %) = an /N or, equivalently, that of
—an log p(anan'?) = log(N/an)
(N sufficiently large), we have

Sn ay Sn
(13) Limp_, e (maxoS,,sN_aN——)'"T - aN> =0 wpl
an
and
Spix — Sn
(14) lima_, o (maxos,.sN_aN maXOSkS“NZT - aN) =0 w.p.1.

REMARK 2. a) Let y(t) = log ¢(¢)(| t| > to) denote the cumulant-generating function.
Since EX; = ¢/(0) = 0, Var(X;) = ¢”(0) = 1, and ¢ is analytic in a neighborhood of the
origin, we have

V() =82/2+ O(), Y@)=t+0(?) (t—0).
Moreover, by use of convex analysis,

—log p(a) = a?/2 + O(a®) (a— 0).
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b) For N sufficiently large, the solution ay in (viii) exists by continuity of —log p(a) and
using the facts —log p(0) = 0, log(N/an) < —an log p(a)(p(a) < 1, N large). Furthermore,

ayan’?— 0 (N — ).
c) From equation (viii) and Remarks 2a) and 2b) we obtain
an ~ (2log(N/an))"?,
but, since
an — (21log(N/an))"? = ay — (— 2an log p(avan'’?))"? = O(ak an'/?) = Oog N/ak?),
in general,
ay — (2log(N/an))* >0 (N — )

only if an/(log N)? — .

The proof of the original Erdds-Rényi law of large numbers (Theorem C) can be based
already on Chernoff’s (1952) large deviation theorem instead of the Bahadur and Ranga
Rao (1960) refinement of the latter, which was used by Erdés and Rényi (1970) (cf. e.g., S.
Csorgd (1979), where further Erdés-Rényi laws are proved for such functions of moving
blocks of i.i.d. rv’s and those of empirical measures of these blocks, for which: functions a
first order large deviation theorem holds). The essential ingredients of the original proof
then are the monotonicity of p(a) and exponential bounds for the large deviation proba-
bilities, i.e.,

pY = P(Sy = Na) =< p?,

where p; < p(a) < p2 and N is sufficiently large.
The proofs of our Theorems 2 and 3 are similarly based on certain exponential bounds
which will be given in the following section.

2. Some auxiliary lemmas. Theorem 2 is based on

LeEMMA 1. Under the assumptions of Theorem 2, for any € > 0, there exist constants
8 =10(e) >0and A = A(e) > 0 such that

(15) P(maxo=k=x Sk = Ka + K"%) < KpX(a)e %",
(16) P(Sx > Ka — K"%) = Ap%(a)e’*"”
where K = [C log N] and N is sufficiently large.

PrOOF. a) Let ¢ = t(a) > 0 be such that y'(¢) = ¢’(2)/¢(¢) = a. Then
P(maxo<i<x Sk = Ka + K'%) < Y/, P(Sy = Ka + K"%) < YK, E (e" S Ka-K'%))

< (Zﬁ;l ¢k(t))e—Kla—K'/2te = K¢K(t)e—Ktae—K'/2ts = KpK(a)e—K'/zlz’

remembering that EX; = 0 implies ¢(¢) > 1 for ¢ > 0.

b) Using associated probability measures P, x, defined by

P.x(E) =j e /p%(t) dP,
E
we have
P(Skx > Ka — K'%) = ¢%(t) J e Sk dP,
{Sk—Ka>—K")

; ~H(Sk= 5 K" Sk — Ka €
= ¢"(t)e 2 Pt,K(_ e<—pm—=- ?),
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Noting that the probability on the right-hand side of this inequality tends to ¢(— €/2) —
¢(— €) > 0 (K — ) by the central limit theorem, the proof is complete.

The proof of Theorem 3 is similarly based on:

LeEMMA 2. Under the assumptions of Theorem 3, for any € > 0 there exist constants
8 =08(e) >0and A = A(e) > 0 such that

(17) P(maxo=r=kSk = K"*(an + €)) < KpX(anK /%) ew,
(18) P(Sx > K" (an — €)) = ApX(an K ?) €%,

where K = ay and N is sufficiently large.

PROOF. a) Setting ¢ = ty such that anK™'/* = ¢'(¢)/¢(t), we again have p(anK~"?) =
¢(t)e " ™"’ Remembering that, by Remark 2, ¢ty ~ anK " %(N — o), the same estima-
tions used to prove (15) will yield (17) too.

b) Following the lines of Lemma 1, we also have P(Sx > K" *(an — €)) = pX(ax K%
eKl/z,E/z PI,K(_ e< SKI;VIZ{(IN
function of (Sx — Kan)/K'"? shows that asymptotic normality still holds, which renders
the proof complete.

=- g) Taylor series expansion of the cumulant-generating

3. Proofs of Theorems 2 and 3. Let us introduce the notations
DI(N, K) = maxo<n=n-x (Snsr — Sn)a

Dy(N, K) = maXo=n=n—xMaXo<k=<k (Sp+r — Sn).

PrOOF oF THEOREM 2. a) For any € > 0, we first prove

DZ(N, [Clog N])
[Clog N]?

(19) limsupN_.m< —[Clog N]l/za) <e wpl

From Lemma 1, (15), we have
P(Dy(N, K) = Ka + K"%) < NKp*(a)e™¢"",

Now, let N; be the greatest integer such that [C log N,] =j. Then, remembering exp(— 1/
C) = p(a), we get

P(DZ(IVJ» [ClOg Iv/]) = [ClOg ]Vj]a + [ClOg Ivj]l/ze)
= jN;o(a) ClogN,~1,—4"/? _ P_l(a)je_ajl/z,
By integral test, Y';; je ™" < w. Hence, using the Borel-Cantelli lemma,

D;(N;, [Clog N;])
[Clog N;1*

Since, by definition, for N;; < N < N;,
[Clog N]=j and D:(N,[Clog N])=< D:(N;,[Clog N,]),

limsup;_,m( — [Clog N;1 201) =e wpl

assertion (19) is proved.
b) To prove

Di(N, [Clog NJ))
[Clog NT7*

we estimate, using Lemma 1, (16),

(20) limian_.m( — [Clog N1 2oz) =—-€¢ wpl,
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P(Dl(N, K) = Ka - KI/2€) = P(maxi=1,...,(N/K](S,-K - S(,'_l)K) = Ka — K1/2€)
N

=(1- ApK(a)e‘*K'”)[K] = exp(— ApK(a)e‘SKW[-kIY]) .
Inserting K = [C log N] and remembering exp(— 1/C) = p(a), the right-hand side term
can further be bounded by
exp(— A/es[ClosN]W[Clog N]_l) =by

where 0 < A’ < A and N is sufficiently large. Again integral test shows that Y %-1 by < o.
Hence, by the Borel-Cantelli lemma, relation (20) is also proved.

Since D1(N, K) < D2(N, K), by combining (19) and (20) and letting € — 0, the proof of
Theorem 2 is complete.

The proof of Theorem 3 can be performed in a similar way, with only a few modifications
to be introduced.

Proor orF THEOREM 3. a) To prove
(21) limsupy_«(an/?D2(N, an) —an) <e  w.p.l,
we estimate, using Lemma 2, (17), and the definition of ay,
P(an’?D:(N, an) = an + €) = Nanp™ (anan'’?)e™ = ade ™,

for sufficiently large N. Since ax ~ (2log (N/an))*? and ay = o((log N)?), we get, for any
q,
dan = g log log N =< q log(a}”) = loga §/*,
if N is large enough. Choosing e.g. ¢ = 4p, we thus get
P(an'?Dy(N, an) = an + €) < ar’.
Defining N; to be the greatest integer such thatay, = j, it follows that
Y P(a;_\;ll/2 Dx(Nj, an,) = an, + €) < x,
and, by Borel-Cantelli lemma,
(22) limsup; .- (ax}*’Dy(N;, an;) —an) <€  wp.l
Now, by definition of N; and an, for Ny < N =< N; we have ay = j, an’/?Ds(N, an) <

a2 Dy(N;, an,), an < an, and, moreover,

N; N . _ _
log — — log — = j(—logp(an,j /%) — (—logp(anj %))
an an

J

> 8 (“_;/g - %) = 8(log N)*(an, — an)
J J J

for some 0 < § < 8’ < 1, making use of convexity of —log p(a) and (— log p(a))’ ~ a(a— 0).

Hence

(23) OS(XNI—(INS

Since an/log N / o« or, more precisely, ay = [dn], where dn/log N / © (N — «), we
further obtain

lslogN"slVlsj—.——fl
log N = dn J

and
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_ 1/2
SlogN, logN< (logIY) - logN_)

2 — b
(24) d(log N)'/2 8j San 0
for N,y < N=N,andj— .

Combining (22)-(24) we have (21).
b) The proof of
(25) liminfy_..(an/?Di(N, an) —an) = —€  w.p.l

follows in the same vein as part b of Theorem 2. We estimate
N
P(K'’D\(N,K)<any—¢€) = exp(—ApK(aNK‘l/Z)e'S"”[—E]>

, 1/2,
< exp(—A’e” M) = py

for some 0 < A’ < A, 0 < §’ < §, since
N

K N
K=an, p*(anK™'?) = N (2log(N/an))* ~ (2log N)** and [—E} ~%

Checking out that }¥-; b% < o, Borel-Cantelli lemma again yields the desired result, i.e.
(25), which completes the proof.

4. Some further results. Csorgé and Révész (1979) pointed out that, using their
methods of proof, further results on the increments of the Wiener process are available,

e.g.

THEOREM E. Let ar satisfy conditions (i) and (ii) of Theorem A. Then
W(T + ar) — W(T) _
(2ar[log(T/ar) + loglog T])'/*
W(T + s) — W(T) -
log(T/ar) + loglog T])**

(26) limsupr_.« 1 w.p.1,

27) Limsupz._,«SuPo=s=a, Carl w.p.1.

This theorem and the Komlés-Major-Tusnady (1976) approximation again imply similar
results for partial sums in the case an/log N — . The version of the Erdés-Rényi law, as
given by Rényi (1970) for the coin-tossing situation, indicates that such results are also
available for the critical case ay ~ Clog N(C > 0).

Now, using Révész’s (1980, Theorem 2) arguments and Feller’s (1968, page 175) bounds
for the normal distribution, Theorem E can be improved in the following way.

THEOREM F. Under the assumptions of Theorem D we have

(28) limsupT_,m(W(T + ‘ZT;[ WD) _ 5 log(T/aT))1/2> =0  wpl,
(29) limsupr_.. (supoSssaT wT +2;(2_ Wi _ 2 log(T/ar))Y 2) =0 wp.l

Via the quoted strong invariance principle, from this we have immediately

THEOREM 4. Let S, and ay be as in Theorem 1. Then

(30) limsupy-... (% -2 log(N/aN))‘/z) =0 wpl,
N

ek — S
(31) limsupy_... (maXOSkS,,N S—T;m—” — (2 log( N/aN))‘/Z) =0 wpl
N
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In the same vein our Lemmas 1 and 2 can be used to prove

THEOREM 5. Let S,, C and o be as in Theorem 2. Then

S, g N1 — S ;
(32) limsup . (%;L]:,-]W—N— [Clog N1V la) =0 wpl,
. Sn+x — Sy 12
(33) llmsupN.m maXo<k=<[Clog N]TW - [C log N] al=0 W.p.l.

THEOREM 6. Let S,, ay and ax be as in Theorem 3. Then

ay — S,
(34) limsupn_.. (SM—"'”—N - aN) =0 wpl,
ay
Sp+r — S,
(35) limsupy_. (maxoiksaN % - aN) =0 w.p.l

OUTLINE OF PROOFs. Note that inequalities (15) and (17) of Lemmas 1 and 2 imply

log N e
P (maXosi=iciopn1(Sn+x — Sv) = [C log Nla + [C log N1"%) = 0<% ePoaM) )
2p ”
P(maxOsksaN aA_/l/Z(Srwk _ SN) =>ay + 5) = O(L()glév_) e—s(logN)l/)

for any € > 0 and some § = 8(¢) > 0, making also use of ay = o((log N)?) and ay ~ (2 log
N)'? in the last line. This, by Borel-Cantelli lemma, yields a.s. upper bounds € for the left-
hand side terms in (33) and (35). On the other hand, relations (16) and (18) imply
Clog N
P(Sn+iciogn1 — Sv > [C log N]a — [C log N1Y%€) = A[—(I)\%_] ,

P(an"*(Sn+ay — Sn) > an — €) = A %V

for N sufficiently large and A = A(e) > 0. Defining an integer sequence N, by N; = 2, N, ,
= N, + an, for the case ay = [C log N] as well as an/log N — «, we have

N, N, 1
<YV 4, and /P - (a > 0).
aNJ+I aN/ N’ a +']

Hence from the second part of the Borel-Cantelli lemma, we also get a.s. lower bounds
—e in (32) and (34). This renders the proofs complete.

Acknowledgments. The idea of proving results along the lines of Theorems 2 and
3 was born in a number of stimulating conversations with Pal Révész.

Note added in proof. S. A. Book has informed us that James D. Lynch of Pennsylvania
State University has discovered a 1964 article by L. A. Shepp (A limit theorem concerning
moving averages. Ann. Math. Statist. 35 424-428), which anticipates the Erdés-Rényi
(1970) law. However, it seems to have been overlooked by all of us writing on this subject.
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