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Abstract. Satellite-based models have been widely used to simulate vegetation gross primary production (GPP)

at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations

in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study,

we generated a long-term global GPP dataset at 0.05◦ latitude by 0.05◦ longitude and 8 d interval by revising

a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regula-

tions of several major environmental variables: atmospheric CO2 concentration, radiation components, and at-

mospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes,

which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers

from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to cali-

brate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial,

seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could

explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correla-

tion coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than

0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual

variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44

over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original

EC-LUE model (R2 = 0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of

0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-

based biophysical models shows substantial differences in magnitude and interannual variations. The revised

EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2 ± 2.9 Pg C yr−1 with the trend

0.15 Pg C yr−1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to
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atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect

on the global GPP (0.22 ± 0.07 Pg C yr−1) could be partly offset by increased VPD (−0.17 ± 0.06 Pg C yr−1).

The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised

EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at

https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).

1 Introduction

Vegetation gross primary production (GPP) is the largest

carbon flux component within terrestrial ecosystems and

plays an essential role in regulating the global carbon cycle

(Canadell et al., 2007; Zhao et al., 2010). As a primary vari-

able of the terrestrial ecosystem cycle, GPP estimates will

substantially determine other variables of the carbon cycle

(Yuan et al., 2011). Satellite-based GPP models have been

developed based on the light use efficiency (LUE) principle

(Monteith, 1972; Potter et al., 1993; Running et al., 2004;

Xiao et al., 2005; Yuan et al., 2007). Thus far, LUE models

have been a major tool for investigating the spatiotemporal

changes in GPP and the environmental regulations, either in-

dependently or by combining with other ecosystem models

(Keenan et al., 2016; Smith et al., 2016).

However, current LUE models exhibit poor performance

in reproducing the interannual variations in GPP. A previ-

ous study indicated that seven LUE models could only ex-

plain 6 %–36 % of the interannual variations in GPP at 51

eddy covariance (EC) towers (Yuan et al., 2014). Similarly,

a model comparison showed that none of the examined 16

process-based biophysical models or the three remote sens-

ing products (BESS, MODIS C5, and MODIS C5.1) could

consistently reproduce the observed interannual variations in

GPP at 11 forest sites in North America (Keenan et al., 2012).

Seven LUE models simulated the long-term trends in global

GPP that varied from −0.15 to 1.09 Pg C yr−1 over the pe-

riod 2000–2010 (Cai et al., 2014). An important reason for

the poor performance in modeling the interannual variability

is that the effect of environmental regulations on vegetation

production is not completely integrated into the LUE models

(Stocker et al., 2019). In particular, the long-term changes in

several environmental variables are very important for accu-

rately simulating the GPP series at the decadal scale.

Several environmental variables should be included in

GPP models. Firstly, as we all know, the rising atmospheric

CO2 concentration in the past few decades substantially stim-

ulated global vegetation growth (Zhu et al., 2016; Liu et

al., 2017). Field experiments using greenhouses or open-top

chambers showed that an increase of approximately 300 ppm

in CO2 concentration can increase the photosynthesis of C3

plants on the order of 60 % (Norby et al., 1999). Free-air CO2

enrichment (FACE) experiments generally confirmed the en-

hancement in net primary production (NPP) with the rising

CO2 concentration (Ainsworth and Long, 2005). For exam-

ple, four FACE experiments indicated that the forest NPP

consistently increased at the median of 23 ± 2 % when the

ambient CO2 concentration was elevated to approximately

550 ppm (Norby et al., 2005). According to observations,

the atmospheric CO2 concentration has risen by approxi-

mately 20 % from 340 ppm (1982) to 410 ppm (2018) (https:

//www.esrl.noaa.gov/, last access: 25 June 2019). However,

the effects of CO2 fertilization on GPP have not been inte-

grated in most current satellite-based LUE models.

Secondly, solar radiation, or more specifically the photo-

synthetic active radiation (PAR) substantially influences the

vegetation production of the terrestrial ecosystem (Alton et

al., 2007; Kanniah et al., 2012; Krupkova et al., 2017). A

study indicated that the solar radiation incident at the earth

surface underwent significant decadal variations (Wild et al.,

2005). A comprehensive analysis based on the datasets of

worldwide distributed sites indicated significant decreases in

solar radiation (2 % per decade) from the late 1950s to 1990

in the regions of Asia, Europe, North America, and Africa

(Gilgen et al., 1998). A later assessment by Wild et al. (2005)

showed that the radiation has increased at widespread loca-

tions since the mid-1980s.

However, not only the total amount of solar radiation or

PAR incident at the earth surface but more importantly also

their partitioning into direct and diffuse radiations impact the

vegetation productivity (Urban et al., 2007; Kanniah et al.,

2012). An increased proportion of diffuse radiation enhances

vegetation photosynthesis, because a higher blue / red light

ratio within the diffuse radiation may lead to higher light use

efficiency (Gu et al., 2002; Alton et al., 2007). For example,

the sharply increased diffuse radiation induced by the 1991

Mount Pinatubo eruption enhanced the noontime vegetation

productivity of a deciduous forest for the following 2 years

(Gu et al., 2003). Besides volcanic aerosols, clouds could

also reduce the total and direct radiation, while increasing the

proportion of diffuse radiation. Yuan et al. (2010) found that

the higher LUE at European forests than North America was

because of the higher ratio of cloudy days in Europe. Yuan

et al. (2014) further proved that the significantly underesti-

mated GPP during cloudy days by six LUE models was be-

cause the effects of diffuse radiation on LUE were neglected

in these models.

Thirdly, atmospheric vapor pressure deficit (VPD) is an-

other factor that should be included in GPP models. As an

important driver of atmospheric water demand for plants,

VPD influences terrestrial ecosystem function and photosyn-
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thesis (Rawson et al., 1977; Yuan, et al., 2019). Rising air

temperature increases the saturated vapor pressure at a rate

of ∼ 7 % K−1 according to the Clausius–Clapeyron relation-

ship, and therefore, VPD will increase if the atmospheric

water vapor content does not increase by exactly the same

amount as the saturated vapor pressure. Numerous studies

indicated significant changes in the relative humidity (ra-

tio of actual water vapor pressure to saturated water vapor

pressure) in both humid areas and continental areas located

far from oceanic humidity (Van Wijngaarden and Vincent,

2004; Pierce et al., 2013). In particular, the global averaged

land surface relative humidity decreased sharply after the late

1990s (Simmons et al., 2010; Willett et al., 2014), and the

global averaged land surface VPD increased sharply after the

late 1990s (Yuan et al., 2019). The leaf and canopy photo-

synthetic rate declines when the atmospheric VPD increases

due to stomatal closure (Fletcher et al., 2007). A recent study

highlighted that increases in VPD rather than changes in pre-

cipitation would be a dominant influence on vegetation pro-

ductivity (Konings et al., 2017). However, currently the in-

fluence of long-term VPD variations is not well expressed in

many LUE models.

We have developed a LUE model, namely the EC-LUE

model, by integrating remote sensing data and eddy covari-

ance data to simulate daily GPP (Yuan et al., 2007, 2010).

The model has been evaluated using the observations at EC

towers located in Europe, North America, China, and East

Asia, covering various ecosystem types (Yuan et al., 2007,

2010; Li et al., 2013). In this study, we revised the EC-

LUE model by integrating the impacts of several environ-

mental variables (i.e., atmospheric CO2 concentration, radia-

tion components, and atmospheric VPD) across a long-term

temporal scale. Firstly, we evaluated the effectiveness of the

revised EC-LUE model in determining the spatial, seasonal,

and interannual variations in GPP from multiple eddy covari-

ance sites. Secondly, a global GPP dataset at 0.05◦ spatial

resolution was generated based on the optimized model. Fi-

nally, we analyzed the contributions of the aforementioned

environmental variables to the global GPP and discussed

the spatial and interannual variations in GPP from different

datasets.

2 Data and methods

2.1 Data from the eddy covariance towers

The FLUXNET2015 dataset (http://www.fluxdata.org, last

access: 2 March 2018) includes over 200 variables of car-

bon fluxes, energy fluxes, and meteorological variables col-

lected and processed at sites by the FLUXNET community.

In our study, 95 EC sites in the FLUXNET2015 dataset

were utilized to optimize the parameters and evaluate the

performance of the revised EC-LUE model, including nine

major terrestrial ecosystem vegetation types (Table 1): ev-

ergreen broadleaf forest (EBF), evergreen needleleaf for-

Table 1. Information on the eddy covariance (EC) sites used in this

study.

Site Vegetation Study

name Latitude Longitude type period

∗DE-Kli 50.89◦ N 13.52◦ E CRO 2004–2012

DE-RuS 50.87◦ N 6.45◦ E CRO 2011–2012

FI-Jok 60.90◦ N 23.51◦ E CRO 2001–2003
∗FR-Gri 48.84◦ N 1.95◦ E CRO 2005–2012
∗US-ARM 36.61◦ N 97.49◦ W CRO 2003–2012
∗US-Ne1 41.16◦ N 96.47◦ W CRO 2001–2012
∗US-Ne2 41.16◦ N 96.47◦ W CRO 2001–2012
∗US-Ne3 41.17◦ N 96.43◦ W CRO 2001–2012

CA-TPD 42.64◦ N 80.56◦ W DBF 2012
∗DE-Hai 51.08◦ N 10.45◦ E DBF 2000–2012
∗DK-Sor 55.49◦ N 11.64◦ E DBF 2001–2012
∗FR-Fon 48.48◦ N 2.78◦ E DBF 2005–2012

IT-PT1 45.20◦ N 9.06◦ E DBF 2002–2004
∗IT-Ro2 42.39◦ N 11.92◦ E DBF 2002–2008;

2010–2012

JP-MBF 44.39◦ N 142.32◦ E DBF 2004–2005
∗US-Ha1 42.54◦ N 72.17◦ W DBF 1992–2012
∗US-MMS 39.32◦ N 86.41◦ W DBF 1999–2012
∗US-Oho 41.55◦ N 83.84◦ W DBF 2004–2012
∗US-UMB 45.56◦ N 84.71◦ W DBF 2000–2012
∗US-UMd 45.56◦ N 84.70◦ W DBF 2008–2012
∗US-WCr 45.81◦ N 90.08◦ W DBF 1999–2006;

2011–2012
∗BR-Sa1 2.86◦ S 54.96◦ W EBF 2002–2005;

2008–2011

BR-Sa3 3.02◦ S 54.97◦ W EBF 2001–2003

CN-Din 23.17◦ N 112.54◦ E EBF 2003–2005
∗FR-Pue 43.74◦ N 3.60◦ E EBF 2000–2012
∗GF-Guy 5.28◦ N 52.92◦ W EBF 2004–2012
∗MY-PSO 2.97◦ N 102.31◦ E EBF 2003–2009

CA-NS1 55.88◦ N 98.48◦ W ENF 2002–2005
∗CA-NS2 55.91◦ N 98.52◦ W ENF 2001–2005

CA-NS3 55.91◦ N 98.38◦ W ENF 2002–2005

CA-NS4 55.91◦ N 98.38◦ W ENF 2003–2005
∗CA-NS5 55.86◦ N 98.49◦ W ENF 2001–2005
∗CA-Qfo 49.69◦ N 74.34◦ W ENF 2003–2010

CA-SF1 54.49◦ N 105.82◦ W ENF 2003–2006
∗CA-SF2 54.25◦ N 105.88◦ W ENF 2001–2005
∗CA-TP1 42.66◦ N 80.56◦ W ENF 2003–2012
∗CA-TP2 42.77◦ N 80.46◦ W ENF 2003–2007
∗CA-TP3 42.71◦ N 80.35◦ W ENF 2003–2012

CN-Qia 26.74◦ N 115.06◦ E ENF 2003–2005
∗CZ-BK1 49.50◦ N 18.54◦ E ENF 2004–2012

DE-Lkb 49.10◦ N 13.30◦ E ENF 2009–2012
∗DE-Obe 50.78◦ N 13.72◦ E ENF 2008–2012
∗DE-Tha 50.96◦ N 13.57◦ E ENF 1996–2012
∗FI-Hyy 61.85◦ N 24.30◦ E ENF 1996–2012

IT-La2 45.95◦ N 11.29◦ E ENF 2001
∗IT-Lav 45.96◦ N 11.28◦ E ENF 2003–2012
∗IT-Ren 46.59◦ N 11.43◦ E ENF 1999–2012
∗IT-SRo 43.73◦ N 10.28◦ E ENF 2001–2012
∗NL-Loo 52.17◦ N 5.74◦ E ENF 1996–2012
∗RU-Fyo 56.46◦ N 32.92◦ E ENF 1998–2012
∗US-Blo 38.90◦ N 120.63◦ W ENF 1997–2007
∗US-Me2 44.45◦ N 121.56◦ W ENF 2002–2012

US-Me6 44.32◦ N 121.61◦ W ENF 2011–2012
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Table 1. Continued.

Site Vegetation Study

name Latitude Longitude type period

∗US-NR1 40.03◦ N 105.55◦ W ENF 1999–2012
∗CH-Cha 47.21◦ N 8.41◦ E GRA 2006–2008;

2010–2012
∗CH-Fru 47.12◦ N 8.54◦ E GRA 2006–2008;

2010–2012
∗CH-Oe1 47.29◦ N 7.73◦ E GRA 2002–2008

CN-Cng 44.59◦ N 123.51◦ E GRA 2007–2010

CN-Du2 42.05◦ N 116.28◦ E GRA 2007–2008

CN-HaM 37.37◦ N 101.18◦ E GRA 2002–2003
∗CZ-BK2 49.49◦ N 18.54◦ E GRA 2006–2011
∗NL-Hor 52.24◦ N 5.07◦ E GRA 2004-2011

RU-Ha1 54.73◦ N 90.00◦ E GRA 2002–2004

US-AR1 36.43◦ N 99.42◦ W GRA 2009–2012

US-AR2 36.64◦ N 99.60◦ W GRA 2009–2012
∗US-Goo 34.25◦ N 89.87◦ W GRA 2002-2006
∗US-IB2 41.84◦ N 88.24◦ W GRA 2005; 2007–

2011
∗BE-Bra 51.31◦ N 4.52◦ E MF 1999–2002;

2004–2012
∗BE-Vie 50.31◦ N 6.00◦ E MF 1997–2012
∗CA-Gro 48.22◦ N 82.16◦ W MF 2004–2012

CN-Cha 42.40◦ N 128.10◦ E MF 2003–2005

JP-SMF 35.26◦ N 137.08◦ E MF 2003–2006
∗US-PFa 45.95◦ N 90.27◦ W MF 1996–2012
∗US-Syv 46.24◦ N 89.35◦ W MF 2001–2006;

2012

AU-Ade 13.08◦ S 131.12◦ E SAV 2007–2009

AU-Cpr 34.00◦ S 140.59◦ E SAV 2011–2012
∗AU-DaS 14.16◦ S 131.39◦ E SAV 2008–2012

AU-Dry 15.26◦ S 132.37◦ E SAV 2009–2012

AU-RDF 14.56◦ S 132.48◦ E SAV 2011–2012

SD-Dem 13.28◦ N 30.48◦ E SAV 2007–2009
∗US-Ton 38.43◦ N 120.97◦ W SAV 2001–2012

ZA-Kru 25.02◦ S 31.50◦ E SAV 2009–2012

CA-NS6 55.92◦ N 98.96◦ W SRH 2002–2005

CA-NS7 56.64◦ N 99.95◦ W SRH 2003–2005
∗CA-SF3 54.09◦ N 106.01◦ W SRH 2002–2006

ES-LgS 37.10◦ N 2.97◦ W SRH 2007–2009

US-KS2 28.61◦ N 80.67◦ W SRH 2003–2006

CN-Ha2 37.61◦ N 101.33◦ E WET 2003–2005

DE-Akm 53.87◦ N 13.68◦ E WET 2010–2012

DE-SfN 47.81◦ N 11.33◦ E WET 2012

DE-Spw 51.89◦ N 14.03◦ E WET 2010–2012

RU-Che 68.61◦ N 161.34◦ E WET 2002–2004

US-Ivo 68.49◦ N 155.75◦ W WET 2004–2007
∗US-Los 46.08◦ N 89.98◦ W WET 2001–2008;

2010

US-WPT 41.46◦ N 83.00◦ W WET 2011–2012
∗ The site used to investigate the interannual variations in GPP with observations greater
than 5 years.

est (ENF), deciduous broadleaf forest (DBF), mixed forest

(MF), grassland (GRA), savanna (SAV), shrubland (SHR),

wetland (WET), and cropland (CRO). More information

about the characteristics of these sites can be found at the

FLUXNET website. For each site, the daily GPP, PAR, air

temperature (Ta), and VPD were used in our study. The GPP

variable (GPP_NT_ VUT_REF) used in this study was es-

timated from the nighttime partitioning method. The corre-

sponding net ecosystem exchange (NEE) was generated us-

ing the variable friction velocity (USTAR) threshold for each

year (VUT), in which 40 versions of NEE were created by

using different percentiles of USTAR thresholds. The model

efficiency between each version and the other 39 versions

was calculated to test their similarities, and the reference

(REF) NEE was selected as the one with the higher model

efficiency sum (the most similar to the other 39). The 120

daily meteorological variables were gap-filled or downscaled

from the ERA-Interim reanalysis dataset in both space and

time (Vuichard and Papale, 2015). The gap-filling technique

of the carbon flux measurements and meteorological vari-

ables is the marginal distribution sampling (MDS) method

described in Reichstein et al. (2005). In the FLUXNET 2015

dataset, the quality flags ranged from 0 to 1 to indicate per-

centage of measured and good-quality gap-filled data. For

each variable, we used the daily/monthly values with more

than 80 % of good-quality data (quality flag > 0.8). We ag-

gregated the daily values to an 8 d time step. And only the 8 d

measurements with more than 5 d valid values were used.

2.2 Data at the global scale

The global-scale datasets used in this study are shown in

Table 2. The meteorological reanalysis dataset was derived

from the second Modern-Era Retrospective analysis for Re-

search and Applications (MERRA-2) dataset. It was pro-

duced by NASA’s Global Modeling and Assimilation Office

that used an upgraded version of GEOS-5 (Rienecker et al.,

2011). It has been validated carefully using surface meteo-

rological datasets and an enhanced assimilation system to

reduce the uncertainty in various meteorological variables

globally. In our study, we obtained the daily mean air tem-

perature (Ta, ◦C), mean dew point temperature (Td, ◦C), to-

tal direct PAR (PARdr, MJ m−2 d−1), and total diffuse PAR

(PARdf, MJ m−2 d−1) at 0.625◦ in longitude by 0.5◦ in lati-

tude from 1982 to 2017. VPD was calculated from air tem-

perature and dew point temperature:

SVP = 0.6112 × e
17.67Ta

Ta+243.5 , (1)

RH = e
17.625Td

Td+243.04 − 17.625Ta
Ta+243.04 , (2)

VPD = SVP × (1 − RH), (3)

where SVP is the saturated vapor pressure (kPa), and RH is

the relative humidity. We aggregated the daily variables (air

temperature, dew point temperature, VPD, direct PAR, and

diffuse PAR) to 8 d interval temporal resolution. And these

variables were resampled to the spatial resolution of 0.05◦

latitude by 0.05◦ longitude using the bilinear interpolation

method.

The 8 d Global LAnd Surface Satellite Leaf Area Index

(GLASS LAI) dataset at 0.05◦ latitude by 0.05◦ longitude

Earth Syst. Sci. Data, 12, 2725–2746, 2020 https://doi.org/10.5194/essd-12-2725-2020
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Table 2. Input datasets used to drive the revised EC-LUE model.

Variable Dataset/provider Source

Air temperature MERRA-2

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (last access: 1 March 2018)Dew point temperature MERRA-2

Direct PAR MERRA-2

Diffuse PAR MERRA-2

LAI GLASS http://www.glass.umd.edu/Download.html (last access: 25 June 2018)

Land cover map MCD12Q1 https://lpdaac.usgs.gov/products/mcd12q1v006/ (last access: 25 June 2018)

C4 crop percentage ISLSCP II C4 vegetation

percentage

https://doi.org/10.3334/ORNLDAAC/932

CO2 concentration NOAA’s Earth System

Research Laboratory

https://www.esrl.noaa.gov/gmd/ccgg/trends/ (last access: 1 March 2018)

was adopted to indicate vegetation growth from 1982 to

2017. It was produced using the general regression neu-

ral networks (GRNNs) trained with the fused MOD15 LAI

and CYCLOPES LAI and the preprocessed MODIS and

AVHRR reflectance data over the BELMANIP sites (Xiao

et al., 2016). Product validation and comparison showed that

the GLASS LAI product was spatially complete and tempo-

rally continuous with lower uncertainty (Xu et al., 2018).

Additionally, the MCD12Q1 product with the IGBP clas-

sification scheme was used as the input land cover map. The

ISLSCP II C4 vegetation percentage map was used to sepa-

rate the C3 and C4 crop. The NOAA Earth System Research

Laboratory (ESRL) CO2 concentration dataset was used to

express the CO2 fertilization effect.

2.3 The revised EC-LUE model

The terrestrial vegetation GPP can be expressed as follows in

the revised EC-LUE model:

GPP =
(εmsu × APARsu + εmsh × APARsh) × Cs × min(Ts,Ws),

(4)

where εmsu is the maximum LUE of sunlit leaves; APARsu

is the PAR absorbed by sunlit leaves; εmsh is the maxi-

mum LUE of shaded leaves; APARsh is the PAR absorbed

by shaded leaves; and Cs, Ts, and Ws represent the down-

ward regulation scalars of atmospheric CO2 concentration

([CO2]), air temperature, and VPD on LUE ranging from 0

to 1; min represents the minimum value.

The effect of atmospheric CO2 concentration on GPP is

determined by the following equations (Farquhar et al., 1980;

Collatz et al., 1991):

Cs =
Ci − ϕ

Ci + 2ϕ
, (5)

Ci = Ca × χ, (6)

where ϕ is the CO2 compensation point in the absence of

dark respiration (ppm), Ci is the leaf internal CO2 concentra-

tion, Ca is the atmospheric CO2 concentration, and χ is the

ratio of leaf internal to atmospheric CO2 concentration which

can be estimated as follows (Prentice et al., 2014; Keenan et

al., 2016):

χ =
ε

ε +
√

VPD
, (7)

ε =

√

356.51K

1.6η∗ , (8)

where ε is a parameter related to the “carbon cost of water”,

which means the sensitivity of VPD to χ ; K is the Michaelis–

Menten coefficient of Rubisco; and η∗ is the viscosity of wa-

ter relative to its value at 25 ◦C (Korson et al., 1969).

K = Kc

(

1 +
Po

Ko

)

, (9)

where Po is the partial pressure of O2, and Kc and Ko are the

Michaelis–Menten constants for CO2 and O2 (Keenan et al.,

2016):

Kc = 39.97 × e
79.43×(Ta−298.15)

298.15×R×Ta , (10)

Ko = 27480 × e
36.38×(Ta−298.15)

298.15×R×Ta , (11)

where Ta is air temperature (unit: K) and R is the molar gas

constant (8.314 J mol−1 K−1).
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Table 3. Optimized parameters (εmsu, εmsh, ϕ, and VPD0) of the revised EC-LUE model for different vegetation types.

Vegetation types DBF ENF EBF MF GRA CRO-C3 CRO-C4 SAV SHR WET

εmsu (g C MJ−1) 1.28 ± 0.36 1.72 ± 0.42 1.67 ± 0.85 1.38 ± 0.21 1.16 ± 0.15 1.25 ± 0.42 2.46 ± 0.78 2.24 ± 0.68 1.21 ± 0.25 1.34 ± 0.26

εmsh (g C MJ−1) 3.59 ± 0.66 3.87 ± 0.58 4.35 ± 0.72 3.29 ± 0.63 1.91 ± 0.46 2.46 ± 0.52 5.64 ± 1.02 4.26 ± 0.95 2.71 ± 0.52 2.62 ± 0.49

ϕ (ppm) 32 ± 8.25 25 ± 7.59 20 ± 6.36 49 ± 11.25 57 ± 11.85 43 ± 9.56 54 ± 15.36 54 ± 12.23 34 ± 7.59 36 ± 10.32

VPD0 (k Pa) 1.15 ± 0.25 1.34 ± 0.26 0.57 ± 0.15 0.62 ± 0.14 1.69 ± 0.35 1.02 ± 0.19 1.53 ± 0.31 1.65 ± 0.26 1.34 ± 0.21 0.62 ± 0.12

Ts and Ws can be expressed as follows:

Ts =
(Ta − Tmin) × (Ta − Tmax)

(Ta − Tmin) × (Ta − Tmax) −
(

Ta − Topt

)

× (Ta − Topt)
,

(12)

Ws =
VPD0

VPD0 + VPD
, (13)

where Tmin, Topt, and Tmax are the minimum, optimum, and

maximum temperatures for vegetation photosynthesis, re-

spectively (Yuan et al., 2007); VPD0 is the half-saturation

coefficient of the VPD constraint equation (k Pa).

APARsu and APARsh can be expressed as follows (Chen

et al., 1999):

APARsu =
(

PARdir ×
cos(β)

cos(θ )
+

PARdif − PARdif,u

LAI
+ C

)

× LAIsu,

(14)

APARsh =
(

PARdif − PARdif,u

LAI
+ C

)

× LAIsh, (15)

PARdif,u = PARdif × exp

(

−0.5 × � × LAI

cos(θ )

)

, (16)

where PARdir is the direct PAR; PARdif is the diffuse PAR;

PARdif,u is the diffuse PAR under the canopy; C represents

the multiple scattering effects of direct radiation; � is the

clumping index, which is set according to vegetation types

(Tang et al., 2007); θ is the solar zenith angle; β is the mean

leaf–sun angle, which is set to 60◦; and θ is the representa-

tive zenith angle for diffuse radiation transmission and can

be expressed by LAI (Chen et al., 1999):

cos
(

θ
)

= 0.537 + 0.025 × LAI. (17)

The LAIs of shaded leaves (LAIsh) and sunlit leaves (LAIsu)

in Eqs. (14) and (15) are computed following Chen et

al. (1999):

LAIsu = 2 × cos(θ ) ×
(

1 − e
−0.5×�× LAI

cos(θ )

)

, (18)

LAIsh = LAI − LAIsu. (19)

2.4 Model calibration and validation

Cross-validation method was used to calibrate and validate

the revised EC-LUE model. About 50 % of the sites were

randomly selected to calibrate model parameters for each

vegetation type, and the remaining 50 % of the sites were

used to validate the model. This parameterization process

was repeated until all possible combinations of 50 % sites

were achieved for each vegetation type. The nonlinear re-

gression procedure (Proc NLIN) in the Statistical Analysis

System (SAS, SAS Institute Inc., Cary, NC, USA) was ap-

plied to optimize the model parameters (εmsu, εmsh, ϕ, and

VPD0) using 8 d estimated GPP based on EC measurements.

The mean GPP simulations of 8 d from all validation runs

only were used to model validation. At the global scale, mean

calibrated parameter values (Table 3) were used to produce a

GPP dataset at 0.05◦ × 0.05◦ spatial resolution and 8 d tem-

poral resolution over 1982–2017. In order to investigate the

uncertainties of the global GPP dataset, 10 000 sets of opti-

mized parameters were randomly selected to simulate global

GPP by assuming a normal distribution of these parameters

(Table 3). The uncertainty of global GPP simulations was

determined by the mean absolute deviation (MAD) of all the

10 000 simulations (Khair et al., 2017).

Three metrics, the coefficient of determination (R2),

RMSE, and bias (the difference between observations and

simulations) were adopted to evaluate the performance of

the revised EC-LUE model. Additionally, Kendall’s coeffi-

cient of rank correlation τ (Kanji, 1999) was used to quan-

tify the agreement of seasonal changes between the simu-

lated and tower-estimated GPP. The Kendall coefficient mea-

sured the tendency coherence between predicted and ob-

served GPP by comparing the ranks assigned to successive

pairs. If GPPsim,j − GPPsim,i and GPPobs,j − GPPobs,i have

the same sign (positive or negative), the pair would be con-

cordant, or discordant. With time series data with n obser-

vations, the Kendall coefficient of rank correlation τ can be

expressed as

τ =
C − D

n(n − 1)/2
, (20)

where n(n − 1)/2 is the total combination of pairs, C is the

number of concordant pairs, and D is the number of discor-

dant pairs. Kendall’s coefficient ranged from −1 (C = 0) to 1

(D = 0). The Kendall coefficient is much closer to 1, which

means a stronger positive relationship between the seasonal

patterns of the simulated and tower-estimated GPP.
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In addition, we compared the model performance of the re-

vised EC-LUE model with seven light use efficiency models,

three machine learning methods, and 10 process-based bio-

physical models at a monthly step. The participating light use

efficiency models include CASA (Potter et al., 1993), CFlux

(Turner et al., 2006; King et al., 2011), CFix (Veroustraete

et al., 2002), MODIS (Running et al., 2004), VPM (Xiao et

al., 2005), VPRM (Mahadevan et al., 2008), and EC-LUE

(Yuan et al., 2007). We calibrated the model parameters of all

seven light use efficiency models based on the eddy covari-

ance measurements using the same parameterization method

as the revised EC-LUE model (see the above method), and

then we compared the GPP simulations of seven LUE models

driven by EC tower-based meteorology data against the esti-

mated GPP based on EC measurements. For the comparison

with machine learning models and process-based biophys-

ical models, we collected their global monthly GPP prod-

ucts released by FLUXCOM (Jung et al., 2017) and the

TRENDY program (version 5) (Le Quéré et al., 2016), re-

spectively. The FLUXCOM program uses the artificial neural

network method (FLUXCOM ANN), the multivariate adap-

tive regression splines method (FLUXCOM MARS), and the

random forest method (FLUXCOM RF). The TRENDY pro-

gram includes the CSIRO Atmosphere and Biosphere Land

Exchange (CABLE) (Zhang et al., 2013), the coupled Cana-

dian Land Surface Scheme and Canadian Terrestrial Ecosys-

tem Model (CLASS-CTEM) (Melton and Arora, 2016), the

Community Land Model (CLM) (Oleson et al., 2013), the

Integrated Science Assessment Model (ISAM) (Jain et al.,

2013), the land component of the Max Planck Institute Earth

System Model (JSBACH) (Reick et al., 2013), the Joint UK

Land Environment Simulator (JULES) (Clark et al., 2011),

the Lund-Postdam-Jena General Ecosystem Simulator (LPJ-

GUESS) (Smith et al., 2014), the Land surface Processes and

eXchanges (LPX-Bern) (Stocker et al., 2014), the ORganiz-

ing Carbon and Hydrology In Dynamic EcosystEms (OR-

CHIDEE) (Krinner et al., 2005), and the Vegetation Inte-

grated Simulator for Trace Gases (VISIT) (Kato et al., 2013).

The monthly GPP simulations at all investigated EC sites

were derived from their global products, and equally we ob-

tained the monthly GPP simulations of the revised EC-LUE

model from its global dataset driven by the MERRA-2 re-

analysis dataset.

2.5 Environmental contributions to long-term changes in

GPP

To evaluate the contribution of the major environmental vari-

ables to GPP, including the atmospheric CO2 concentration

([CO2]), climate, and satellite-based LAI, two types of ex-

perimental simulations were performed. The first simulation

experiment (SALL) was a normal model run, with all the en-

vironmental drivers changing over time. In the second type

of simulation experiments (SCLI0, SLAI0, and SCO2 0), two

driving factors could be varied with time while maintaining

Figure 1. Comparisons between annual mean GPP estimated from

EC towers and annual mean GPP simulated by the revised EC-LUE

model. The modeled GPP values were simulated using (a) tower-

derived meteorology and (b) global reanalysis meteorology. The

black lines are the regression lines, and the red dashed lines are

the 1 : 1 lines. The equations at the bottom of each panel are the

regression equations derived from all the sites.

the third constant at an initial baseline level. For example,

the SCLI0 simulation experiment allowed the LAI and atmo-

spheric [CO2] to vary with time while the climate variables

were kept constant at 1982 values. The SLAI0 (SCO2 0) simu-

lation experiments kept LAI (atmospheric [CO2]) constant at

1982 values and varied the other two variables.

Considering the differences between the simulation results

of the first type (SALL) and the second type (SCO2 0 and SLAI0)

of experiments, the GPP sensitivities to atmospheric [CO2]

(βCO2 ) and LAI (βLAI) were estimated as follows:

1GPP(

SALL−SCO2 0

)

i = βCO2 × 1CO2
(

SALL−SCO2 0

)

i + ε, (21)

1GPP(SALL−SLAI0)i = βLAI × 1LAI(SALL−SLAII0)i + ε, (22)

where 1GPPi, 1CO2i, and 1LAIi denote the differences in

the GPP simulations, atmospheric [CO2], and LAI between

the two model experiments from 1982 to 2017, and ε is the

stochastic error term.

The GPP sensitivities to the three climate variables air

temperature (βTa ), VPD (βVPD), and PAR (βPAR) were cal-

culated using a multiple regression approach:

1GPP(SALL−SCLI0)i = βTa × 1Ta(SALL−SCLI0)i

+ βVPD × 1VPD(SALL−SCLI0)i

+ βPAR × 1PAR(SALL−SCLI0)i + ε, (23)

where 1Tai , 1VPDi, and 1PARi denote the differences in

Ta, VPD, and PAR time series between the two model exper-

iments (SALL and SCLI0), respectively. The regression coeffi-

cient β was estimated using the maximum likelihood analy-

sis.

https://doi.org/10.5194/essd-12-2725-2020 Earth Syst. Sci. Data, 12, 2725–2746, 2020



2732 Y. Zheng et al.: Improved estimate of global gross primary production

Figure 2. Comparisons of 8 d mean GPP between the model-simulated GPP and tower-estimated GPP. Solid and open dots indicate the

GPP simulations of the revised EC-LUE model derived from the tower-derived meteorology data and the meteorological reanalysis dataset,

respectively; solid and open squares indicate the GPP simulations of the original EC-LUE model derived from the tower-derived meteorology

data and the meteorological reanalysis dataset, respectively.
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3 Results

3.1 Model performance

In general, the revised EC-LUE model could effectively re-

produce the spatial, seasonal, and annual variations in the

tower-estimated GPP at most sites (Figs. 1–3). The revised

EC-LUE model explained 71 % and 64 % of the spatial varia-

tions in GPP across all the validation sites by using the tower-

derived meteorology data and the meteorological reanalysis

dataset, respectively (Fig. 1).

The revised EC-LUE model also showed a good perfor-

mance in reproducing the seasonal variations in GPP at most

EC sites (Fig. 2). In this study, we compared the modeled and

tower GPP at an 8 d step for each site to examine the model

capacity in reproducing the temporal variations in GPP. In

terms of GPP simulations driven by tower-derived meteorol-

ogy data, the coefficients of determination (R2) varied from

0.26 at the MY-PSO site to 0.96 at the DK-Sor site, with

most of them being statistically significant (p value < 0.05)

(Fig. 2a, e), and the mean R2 was 0.81 over all investi-

gated sites. The low R2 values (< 0.4) were found at three

tropical forest sites (i.e., MY-PSO, BR-Sa1, and BR-Sa3).

The averaged Kendall correlation coefficient (τ ) was 0.63

over all sites, indicating a strong seasonal coherence be-

tween simulated and tower-estimated GPP (Fig. 2d, h). Sim-

ilarly, τ at tropical forest sites was generally lower than at

other sites. According to the RMSE and absolute value of

bias, the revised EC-LUE model performed very well at

most sites. The averaged RMSE and absolute value of bias

over all the sites were 2.13 and 0.81 g C m−2 d−1, respec-

tively (Fig. 2b–c, f–g). In addition, there was no obvious dif-

ference between the seasonal GPP performances using the

tower-derived meteorology data and the meteorological re-

analysis dataset (Fig. 2). On average, the revised EC-LUE

model showed higher R2 and τ and lower RMSE and abso-

lute value of bias than the original EC-LUE model (Fig. 2).

Furthermore, we selected three sites with high R2 (US-UMB;

DBF; R2 = 0.93), median R2 (CN-Din; EBF; R2 = 0.71),

and low R2 (Br-Sa3; EBF; R2 = 0.39) to illustrate the time

series changes of observed and simulated GPP, LAI, and en-

vironmental factors (i.e., air temperature, VPD, and PAR)

(Figs. S1–S3). At the US-UMB site, the model captured

the GPP variations well year round with no obvious bias

(Fig. S1). At the CN-Din site, the model generally performed

well except for the underestimation at the end of the year

(November–December) with decreased LAI (Fig. S2). How-

ever, at the Br-Sa3 site, the model could not capture the varia-

tions in GPP for the vegetation greenness and environmental

factors varying slightly during the year (Fig. S3).

The ability of the LUE models to reproduce the interan-

nual variations in GPP was investigated at 55 EC towers with

observations greater than 5 years (Table 1; Fig. 3). We exam-

ined the relations between the mean annual GPP simulations

and observations at each site and used the coefficient correla-

tion (R2) and slope of the regression relationship to investi-

gate the model capability of simulating the interannual vari-

ations in GPP. The result showed that the revised EC-LUE

model could effectively determine the interannual variations

in GPP (Fig. 3). Approximately 42 % and 40 % of the sites

showed higher R2 values (> 0.5) by using the tower-derived

meteorology data and the meteorological reanalysis dataset

(Fig. 3a). The averaged R2 for the revised EC-LUE model

was 0.44 by using the tower-derived meteorology data, which

was significantly higher than the original EC-LUE model

(R2 = 0.36) and other LUE models (R2 ranged from 0.06

to 0.30 with an average value of 0.16) (Fig. 3c). The aver-

aged R2 for the revised EC-LUE model was 0.42 by using

the meteorological reanalysis dataset. The averaged slopes

of the revised EC-LUE model were 0.60 and 0.57 by using

the tower-derived meteorology data and the meteorological

reanalysis dataset (Fig. 3c).

Additionally, we examined the model performance of

the revised EC-LUE model, other LUE models, machine

learning models, and process-based biophysical models in

TRENDY at a monthly step by comparing against EC tower-

estimated GPP (Fig. 4). In comparison with seven LUE mod-

els driven by the EC tower-based meteorology dataset, the

overall R2 of the revised EC-LUE model was 0.71, higher

than the original EC-LUE model and other LUE models (R2

ranged from 0.55 to 0.61) (Fig. 4a). For each site, we com-

pared the R2, RMSE, and absolute value of bias of the in-

dividual model with the averaged value of all eight LUE

models (each site has an averaged R2, RMSE, and absolute

value of bias) (Fig. S4a1–c1). The revised EC-LUE model

had higher R2 than the mean R2 of the eight LUE models at

62 % of sites, which was comparable with the original EC-

LUE model (63 % of sites) and VPM model (60 % of sites)

(Fig. S4a1). Moreover, the revised EC-LUE model showed

the lower RMSE and absolute value of bias compared to

mean values of all eight LUE models at 68 % and 67 % of

sites, respectively, which indicated the better performance

compared to the other LUE models at most sites (Fig. S4b1–

c1). By using the global reanalysis meteorology data, we

compared the performance of the revised EC-LUE model

with three existing machine learning model products and

10 process-based biophysical model products in TRENDY

(Fig. 4b). The overall R2 of the revised EC-LUE model

(R2 = 0.57) was higher than that of other models (R2 ranged

from 0.02 to 0.54) (Fig. 4b). The revised EC-LUE model,

FLUXCOM ANN, and FLUXCOM MARS had more sites

(over 90 %) with higher R2 than the mean R2 (Fig. S4a2).

And the revised EC-LUE model, FLUXCOM MARS, and

FLUXCOM RF showed the lower RMSE at more than 90 %

of sites (Fig. S4b2). Compared to the other models, the re-

vised EC-LUE model had the highest site percentage (81 %)

with a lower absolute value of bias (Fig. S4c2). Furthermore,

the revised EC-LUE model had a higher R2, higher τ , lower

RMSE, and lower absolute value of bias at most of the sites

(Fig. S5).
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Figure 3. Site percentage of (a) correlation coefficients (R2) and (b) regression slopes between the model-simulated and tower-based

interannual variabilities in GPP. (c) Averaged values (error bars represent the standard deviations) of R2 and slope for various LUE models.

rEC-LUE(T ) and rEC-LUE(R) indicate the revised EC-LUE models derived from the tower-derived meteorology data and the meteorological

reanalysis dataset. The R2 and slopes of the other seven LUE models (i.e., EC-LUE, VPRM, VPM, MODIS, CFlux, CFix, and CASA) in

the figure were obtained from the study by Yuan et al. (2014). ∗∗ and ∗ indicate a significant difference in statistic variables (R2 and slope)

between the rEC-LUE(T ) and other LUE models (i.e., rEC-LUE(T ) and other seven LUE models) at p value < 0.01 and p value < 0.05,

respectively.

3.2 Spatial–temporal patterns of global GPP

A global GPP dataset at 0.05◦ latitude by 0.05◦ longitude

and an 8 d interval was generated from 1982 to 2017 based

on the revised EC-LUE model. The global GPP was 106.2±
2.9 Pg C yr−1 across the vegetated area averaged from 1982

to 2017. The GPP was high over the tropical forest areas,

such as the Amazon and Southeast Asia, where the mois-

ture and temperature conditions are sufficient for photosyn-

thesis (Fig. 5a). The GPP decreased with the decreasing gra-

dients of temperature and precipitation (Fig. 5b). The moder-

ate GPP was found in temperate and subhumid regions, and

the lowest GPP was located in arid or cold regions, where

either precipitation or temperature is limited (Fig. 5b).

The long-term trend of GPP over the period of 1982–2017

was determined using a linear regression analysis (Fig. 6).

In general, the revised EC-LUE model showed an increased

trend in the annual mean GPP from 1982 to 2017. Approxi-

mately 69.5 % of the vegetated areas, mainly located in tem-

perate and humid regions, showed increased trends. The spa-

tial pattern of the GPP trend along with the temperature

and precipitation gradients was substantially heterogeneous

(Fig. 6b). The decreased GPP was found in the tropic regions,

especially in the Amazon forest (Fig. 6a). The extremely cold

or arid areas exhibited fewer variations in GPP (Fig. 6b).

In addition, this study used the MAD of 10 000 simula-

tions to quantify the uncertainty of estimated GPP globally

(see methods). Over the globe, the mean uncertainty of esti-

mated GPP by the revised EC-LUE model is 19.33 Pg C yr−1.

The GPP uncertainties were found to be low in high and

middle latitudes but relatively high in tropical forests (about

600 g C m−2 yr−1) (Fig. 7).

3.3 Contributions of environmental variables to GPP

To quantify the contributions of the environmental variables

to long-term changes in GPP, we explored the sensitivity

of global summed GPP to climate variables (i.e., VPD, Ta,

and PAR), LAI, and atmospheric CO2 (Fig. 8). The global

summed GPP generated from different experimental simu-

lations (Sect. 2.5) appeared differently in terms of the an-

nual mean value, trend, and standard deviation (Fig. 8a).

The normal simulated GPP (SALL GPP, all the environmen-

tal drivers changing over time) significantly increased at the

rate of 0.15 Pg C yr−1, while the increasing rate of SCLI0

GPP (climate variables were kept constant at 1982 values)

was even greater (0.41 Pg C yr−1). On the contrary, the SLAI0

GPP (LAI was kept constant at 1982 values) and the SCO2 0

GPP (atmospheric [CO2] was kept constant at 1982 val-

ues) showed an insignificantly decreasing trend at the rate

of −0.04 and −0.07 Pg C yr−1 (Fig. 8a). The GPP sensi-

tivity analysis showed that the global GPP decreased by

6.67 ± 5.04 Pg C with a 0.1 kPa increase in VPD, which was

comparable to the increase in GPP with 0.1 unit greening

of LAI (i.e., βLAI = 4.78±0.72 Pg C 0.1 unit−1) or a 100 MJ

increase in PAR (i.e., βPAR = 5.73 ± 3.22 Pg C 100 MJ−1)

(Fig. 8b). The global GPP increased by 12.31 ± 0.61 Pg C

with a 100 ppm−1 rise of atmospheric [CO2] (i.e., βCO2 =
12.31 ± 0.61 Pg C 100 ppm−1). Over the period of 1982–

2017, the increased VPD resulted in global GPP decreases

of −0.17±0.06 Pg C yr−1, which could partly counteract the
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Figure 4. Comparisons between estimated GPP based on EC measurements and GPP simulations in growing season (defined as temperature

larger than 0◦) by the various models (including LUE models, machine learning models, and process-based biophysical models in TRENDY)

at a monthly scale. The comparison of GPP simulations was simulated using (a) tower-derived meteorology data and (b) global reanalysis

meteorology data, respectively (see Sect. 2.4). rEC-LUE(T ) and rEC-LUE(R) indicate the simulations of the revised EC-LUE model derived

from tower-derived meteorology data and global reanalysis meteorology data, respectively.

Figure 5. Spatial pattern of global GPP simulated by the revised EC-LUE model during 1982–2017: (a) averaged annual GPP; (b) averaged

annual GPP at different temperature and precipitation gradients.
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Figure 6. Spatial pattern of global GPP trend simulated by the revised EC-LUE models during 1982–2017: (a) trend of annual GPP; (b) trend

of annual GPP at different temperature and precipitation gradients.

Figure 7. Spatial pattern of the uncertainty in global GPP simulated

by the revised EC-LUE model.

fertilization effect of CO2 (0.22±0.07 Pg C yr−1). The global

GPP showed a decreasing trend after 2001 due to the joint

effect of increased VPD and decreased PAR (Fig. 8c). While

the increasing trend of GPP before 2000 was affected by the

rising atmospheric [CO2], greening of LAI, and increased

PAR (Fig. 8c).

4 Discussion

4.1 Model accuracy analysis

Numerous studies have shown that most GPP models can re-

produce the spatial changes in GPP but failed to reproduce

the temporal variations (Keenan et al., 2012; Yuan et al.,

2014). Therefore, the capacity to reproduce realistic interan-

nual variations for a GPP model is significantly important. In

our study, the revised EC-LUE model performed a higher ac-

curacy in reproducing the interannual variations in GPP than

did the original EC-LUE model and other LUE models. Yuan

et al. (2014) reported that the averaged slope of the regression

relation between the mean annual GPP simulated by seven

LUE models and the mean annual GPP estimated from the

EC towers ranged from 0.19 to 0.56 (Fig. 3c). In contrast, the

revised EC-LUE model showed a higher slope of regression

relation (0.60), which is much closer to 1 than that obtained

from other LUE models (Fig. 3c). The VPM GPP showed

fewer interannual variations across most biomes (R2 < 0.5),

probably because of the insensitivity of the environmental

stress factors at the interannual scale (Zhang et al., 2017). In

contrast, 42 % of the sites showed higher R2 values (> 0.5)

for the revised EC-LUE model. The improvements of the re-

vised EC-LUE model in reproducing interannual variations

are owing to the integration of several important environmen-

tal drivers for vegetation production (i.e., atmospheric CO2

concentration, radiation components, and VPD), which ex-

hibited large variations and contributed significantly to vege-

tation production at an interannual scale.

By integrating the atmospheric CO2 concentration, the re-

vised EC-LUE model suggested a CO2 sensitivity (βCO2 ) of

12.31 ± 0.61 Pg C per 100 ppm (Fig. 8b), which indicates an

increase of 11.6 % in GPP with a rise of 100 ppm in atmo-

spheric [CO2]. Our estimate is comparable to the observed

response of NPP to the increased CO2 in the FACE exper-

iments (13 % per 100 ppm) and estimates of other ecosys-

tem models (5 %–20 % per 100 ppm) (Piao et al., 2013). The

elevated atmospheric CO2 concentration substantially con-

tributes to vegetation productivity.

The evaporation fraction (EF), namely the ratio of evapo-

transpiration (ET) to net radiation (Rn), was used to indicate

the water stress on vegetation growth in the original EC-LUE

model (Yuan et al., 2007, 2010). The atmospheric VPD was

used to indicate water stress to avoid the aggregated errors

from ET simulations in the revised EC-LUE model. Physi-

ologically, vegetation production is sensitive to both atmo-

spheric VPD and soil moisture availability to roots. Several

studies have reported highly consistent interannual variabil-

ity of VPD and soil moisture (Zhou et al., 2019a, b). In ad-

dition, recent studies highlighted that the increase in VPD

had a larger limitation to the surface conductance and evapo-

transpiration than soil moisture over short timescales in many

biomes (Novick et al., 2016; Sulman et al., 2016). Other stud-

ies have also suggested substantial impacts of VPD on vege-
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Figure 8. Long-term changes in global GPP and the environmental regulations: (a) global summed GPP derived from the four experimental

simulations in Sect. 2.5; (b) GPP sensitivity to climate variables (i.e., VPD, Ta, and PAR), LAI, and atmospheric CO2; (c) contributions of

climate variables (i.e., VPD, Ta, and PAR), LAI, and atmospheric CO2 to GPP changes over 1982–2017, 1982–2000, and 2001–2017. The

asterisk indicates the significant level at p value < 0.05.

tation growth (de Cárcer et al., 2018; Ding et al., 2018), forest

mortality (Williams et al., 2013), and crop yields (Lobell et

al., 2014). It is increasingly important to integrate the atmo-

spheric water constraint into carbon and water flux modeling.

4.2 Comparison of global GPP products

Global and regional GPP estimates remain highly uncertain

despite the substantial advances in remote sensing technol-

ogy, ground observations, and theory of carbon flux model-

ing (Zheng et al., 2018; Ryu et al., 2019). At a regional scale,

we compared the annual mean GPP between the revised EC-

LUE model and other models across the bioclimatic zones

in the Köppen–Geiger climate classification map (Beck et

al., 2018) (Fig. 9). The GPP of the revised EC-LUE model

was comparable to the mean value of other models for each

bioclimatic zone (Fig. 9a). The GPP of different models ex-

hibited large discrepancies in tropical regions (Af, Am, Aw)

(Fig. 9a). The correlations (R2) of GPP across all the biocli-

matic zones between the revised EC-LUE model and other

models ranged from 0.73 (LPX-Bern) to 0.95 (FLUXCOM

MARS, FLUXCOM RF) (Fig. 9b).

At a global scale, our study showed large differences in

the magnitude of global GPP estimated by various mod-

els varied from 92.7 to 168.7 Pg C yr−1 (Figs. 10–11). The

LUE models simulated the global GPP to range from 92.7

to 133.7 Pg C yr−1 (Fig. 11a1). Several machine learning ap-

proaches estimated the global GPP to range from 111.0 to

144.2 Pg C yr−1 (Fig. 11a2). A comparison of 10 biophysical

models in TRENDY showed that the global GPP ranged from

107.8 to 154.9 Pg C yr−1 (Fig. 11a3). The revised EC-LUE

model quantified the mean global GPP from 1982 to 2017 as

106.2±2.9 Pg C yr−1. Other studies also support the conclu-

sion that there are large uncertainties in the GPP estimates.

By comparing diverse GPP models and products, Anav et

al. (2015) reported that the global GPP ranged from 112 to

169 Pg C yr−1. Seven satellite-based LUE models estimated

the global GPP ranged from 95.1 to 139.7 Pg C yr−1 over the

period of 2000–2010 (Cai et al., 2014).

The interannual variability and trend in GPP also vary

substantially with different models. This study showed that

the interannual variability (standard deviation) ranged from

0.32 to 5.89 Pg C yr−1, with the trends varying from −0.05

to 0.84 Pg C yr−1 (Fig. 11). The biophysical models showed

large interannual variability, with the standard deviation

ranging from 1.38 to 5.89 Pg C yr−1. The LUE models

estimated the interannual variability varied from 1.30 to

3.13 Pg C yr−1. In contrast, the machine learning models ex-

hibited less interannual variability with a standard devia-

tion under 1.0 Pg C yr−1. The interannual variability of the

revised EC-LUE model was 2.9 Pg C yr−1 (Fig. 11b1–b3).

In general, the GPP interannual variability before the year
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Figure 9. Comparisons of long-term (1982 to 2010s) averaged GPP between the revised EC-LUE model and other models across bioclimatic

zones in the Köppen–Geiger climate classification map (Beck et al., 2018). (a) The regional averaged value (b) correlation coefficients (R2)

of GPP across all the bioclimatic zones between the revised EC-LUE model and other models. These models include three machine learning

models (FLUXCOM ANN, FLUXCOM MARS, FLUXCOM RF; Jung et al., 2017), the biophysical model BEPS (Ju et al., 2006; Liu et

al., 2018), and 10 biophysical models in TRENDY (CABLE, CLASS-CTEM, CLM, ISAM, JSBACH, JULES, LPJ-GUESS, LPX-Bern,

ORCHIDEE, and VISIT). The abbreviations for the bioclimatic zones are as follows: Af, tropical, rainforest; Am, tropical, monsoon; Aw,

tropical, savannah; BWh, arid, desert, hot; BWk, arid, desert, cold; BSh, arid, steppe, hot; BSk, arid, steppe, cold; Csa, temperate, dry

summer, hot summer; Csb, temperate, dry summer, warm summer; Csc, temperate, dry summer, cold summer; Cwa, temperate, dry winter,

hot summer; Cwb, temperate, dry winter, warm summer; Cwc, temperate, dry winter, cold summer; Cfa, temperate, no dry season, hot

summer; Cfb temperate, no dry season, warm summer; Cfc, temperate, no dry season, cold summer; Dsa, cold, dry summer, hot summer;

Dsb, cold, dry summer, warm summer; Dsc, cold, dry summer, cold summer; Dsd, cold, dry summer, very cold winter; Dwa, cold, dry winter,

hot summer; Dwb, cold, dry winter, warm summer; Dwc, cold, dry winter, cold summer; Dwd, cold, dry winter, very cold winter; Dfa, cold,

no dry season, hot summer; Dfb, cold, no dry season, warm summer; Dfc, cold, no dry season, cold summer; Dfd, cold, no dry season, very

cold winter; ET, polar, tundra; EF, polar, frost.

2000 was greater than that after the year 2001 for most of

the biophysical models and LUE models (Fig. 11b1–b3).

Most GPP models showed an increasing trend or insignifi-

cant trend during all valid years and before 2000. Similar to

the standard deviation, the trends of machine learning models

were less than other models. Compared with the other mod-

els, CLASS-CTEM and the revised EC-LUE model showed a

significant decreasing trend after 2001 (Fig. 11c1–c3), prob-

ably because of the joint effect of increased VPD and de-

creased PAR (Fig. 8c).

4.3 Model uncertainty

The uncertainties of our GPP dataset were low in high- and

middle-latitude areas but high in tropical areas (Fig. 7). This

is consistent with the validations at site level showing the re-

vised EC-LUE model showed the lowest accuracy over the

tropical evergreen broadleaf forest sites (Fig. 2). Similarly,

other satellite-based models exhibited a large uncertainty in

the GPP simulations over tropical forest areas (Ryu et al.,

2011; Yuan et al., 2014). For example, the MODIS GPP

product (MOD17) underestimated GPP at high-productivity

sites over the tropical evergreen forests (de Almeida et al.,

2018). Regarding the quality of satellite data, a high cloud

cover exists over tropical regions, introducing large uncer-
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Figure 10. Comparisons of annual global summed GPP estimates from various models. The datasets or model algorithms were obtained

from EC-LUE (Cai et al., 2014), MODIS (Smith et al., 2016), MOD17 C6 (Running et al., 2004), PR (Keenan et al., 2016), VPM (Zhang et

al., 2017), FLUXCOM (Jung et al., 2017), SVR (Kondo et al., 2015), BESS (Jiang and Ryu, 2016), BEPS (Ju et al., 2006; Liu et al., 2018),

and models in TRENDY (CABLE, CLASS-CTEM, CLM, ISAM, JSBACH, JULES, LPJ-GUESS, LPX-Bern, ORCHIDEE, and VISIT).

Figure 11. Comparison of (a1)–(a3) averaged annual GPP, (b1)–(b3) interannual variability in annual GPP represented by standard deviation

(SD), and (c1)–(c3) annual GPP trend among different GPP datasets or models. The references of these models are the same as in Fig. 9. The

asterisk indicates that the valid period of the dataset begins from 2000 or 2001.

tainties to fraction of absorbed photosynthetically active ra-

diation (FAPAR), LAI and other vegetation indices (e.g., nor-

malized difference vegetation index, NDVI, and enhanced

vegetation index, EVI). As suggested by de Almeida et

al. (2018), the lack of reliable MOD15 FAPAR data from

January to April as a result of the cloudiness contamination

could have substantially affected the seasonality of GPP esti-

mates. Besides, the quality of satellite data can even affect

the evaluation of the interannual variations in GPP. Using

MODIS EVI data, Saleska et al. (2007) reported a large-scale
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green-up in the Amazon evergreen forests during the drought

of 2005. However, an opposite conclusion was drawn when

the cloud-contaminated data were excluded from the analysis

(Samanta et al., 2010). In our study, a significant decrease in

GPP was found in the Amazon evergreen forests, which may

result from the sharp increase in VPD after the late 1990s

(Yuan et al., 2019). Studies using optical satellite data can be

influenced by the cloudiness contamination. Recently stud-

ies using cloud-free satellite-based microwave data also re-

ported a carbon loss in tropic forest (Liu et al., 2015; Fan et

al., 2019).

The latest study highlighted that the aggregate canopy

phenology rather than the climate changes is the main

cause of the seasonal changes in photosynthesis in evergreen

broadleaf forests (Wu et al., 2016). In particular, the new leaf

growing synchronously with dry season litterfall may shift

the old canopy to be younger, which can explain the signifi-

cant seasonal increase (∼ 27 %) in the ecosystem photosyn-

thesis. Therefore, the vertical changes in leaf age and pho-

tosynthesis ability with canopy depth are important to simu-

late the seasonal variations in carbon flux in tropical forests

(Wu et al., 2017). These leaf-trait-related parameters can be

simulated from the narrow-band spectra of leaves (Serbin et

al., 2012; Dechant et al., 2017). Nevertheless, because of the

limitation in obtaining the large-scale hyperspectral remote

sensing data, regional or global estimation of these parame-

ters is currently unavailable.

The revised EC-LUE model does not integrate the regu-

lation of soil nitrogen content on vegetation production. At-

mospheric nitrogen deposition has exhibited a large increas-

ing trend in the past few decades because of the excessive

fossil fuel combustion in the industrial and transportation

sectors and the abuse of nitrogenous fertilizer in agricul-

tural practices (Galloway et al., 2004). And the global land

atmospheric nitrogen deposition is expected to further in-

crease dramatically from 25 to 40 Tg N yr−1 in the 2000s to

60–100 Tg N yr−1 in 2100 (Lamarque et al., 2005). A meta-

analysis of worldwide nitrogen addition experiments found

that nitrogen addition could have a significantly positive ef-

fect on vegetation productivity (Liu and Greaver, 2009). As

most terrestrial ecosystems are nitrogen limited, quantifying

the spatiotemporal distributions of vegetation nitrogen con-

tent at large scales is essential to improve the accuracy of car-

bon flux estimation. Several studies quantified the leaf nitro-

gen content by detecting the nitrogen absorption spectra from

the narrow band of hyperspectral data (Cho, 2007). How-

ever, leaf water, starch, lignin, and cellulose overlap with

the absorption characters of nitrogen in the shortwave in-

frared bands, making it difficult to retrieve the nitrogen con-

tent (Kokaly and Clark, 1999). Additionally, canopy struc-

tures, background, and illumination/viewing geometry can

further decrease the capacity to detect leaf nitrogen (Yoder

and Pettigrew-Crosby, 1995; Knyazikhin et al., 2013). Ad-

vances in inversion and statistical models of leaf or canopy

nitrogen have emerged (Asner et al., 2011; Dechant et al.,

2017; Wang et al., 2018), but these methods require further

evaluation over large regions, and the global map of leaf or

canopy nitrogen is not available yet.

Additionally, the uncertainty of the revised EC-LUE

model may arise by scale mismatches between eddy covari-

ance flux footprint and input datasets. The eddy covariance

flux footprint is generally less than 3 km2 and varies de-

pending on the wind speed, wind direction, and atmospheric

stability (Tan et al., 2006). In our studies, the revised EC-

LUE model was run at 0.05◦ (∼ 5 km2) spatial resolution.

The uncertainty of simulated GPP introduced by the scale

effect is inevitable but smaller than that introduced by the

model structures, parameters, or input datasets (Sjostrom et

al., 2013; Zheng et al., 2018).

5 Data availability

The 0.05◦ × 0.05◦ global GPP dataset for 1982–2017 is

available at https://doi.org/10.6084/m9.figshare.8942336.v3

(Zheng et al., 2019). The dataset is provided in HDF format

at an 8 d interval. The valid value ranges from 0 to 3000, and

the background filled value is 65 535. The scale factor of the

data is 0.01. Each HDF file represents an 8 d GPP at a daily

value (unit: g C m−2 d−1). To obtain the summation of each

8 d (or 5 d or 6 d) period, please multiply the GPP value by

the corresponding days (8 for the first 45 values and 5 or 6

for the last value in a year).

6 Conclusion

In this study, we produced a long-term global GPP dataset

by integrating several major long-term environmental vari-

ables into a light use efficiency model, including atmospheric

CO2 concentration, radiation components, and atmospheric

water vapor pressure. These environmental variables showed

substantial long-term changes and contributed significantly

to vegetation production at an interannual scale. The revised

EC-LUE model performed well in simulating the spatial, sea-

sonal, and interannual variations in GPP across the globe. In

particular, it has a unique superiority in reproducing the in-

terannual variations in GPP (R2 = 0.44) compared with the

original EC-LUE model (R2 = 0.36) and other LUE models

(R2 ranged from 0.06 to 0.30 with an average value of 0.16).

The GPP dataset derived from the revised EC-LUE model

provides an alternative and reliable estimate of global GPP

at the long-term scale by integrating the important environ-

mental variables.
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