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Improved estimates of ocean heat content
from 1960 to 2015
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Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical
record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge,
mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of
minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-
rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a
new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time
scales (signal) that can be reliably distinguished fromsampling error (noise)with signal-to-noise ratios higher than 3.
The inferred integrated EEI is greater than that reported in previous assessments and is consistentwith a reconstruc-
tion of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are rela-
tively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly
involved deeper layers of the ocean. In addition, OHC changes in sixmajor oceans are reliable on decadal time scales.
All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the
southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look
at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced
are a valuable resource for further study.

INTRODUCTION

Global warming is driven by Earth’s energy imbalance (EEI). The EEI is
likely forced to first order by a combination of greenhouse gas and aerosol
forcing, which shapes the timing andmagnitude of global warming (1). It
is also linked to the internal variations of the climate system and episodic
volcanic eruptions; the latter may provide episodic strong radiative
forcing to the Earth system (2, 3). By definition, radiative forcing is the
change in the net radiative flux due to a change in an external driver of
climate change, such as greenhouse gas concentrations.More than90%of
EEI is stored in theocean, increasingoceanheat content (OHC),while the
residualheat ismanifest inmeltingofboth landandsea ice, and inwarming
of the atmosphere and land surface (1, 4, 5). It is therefore essential to pro-
vide estimates ofOHC changes over timewith high confidence to improve
our knowledge of EEI and its variability (4).

How much has Earth really warmed in recent decades? The magni-
tude and location of the ocean warming have become an area of active
research, because of the large historical uncertainty in estimated OHC
changes (3, 6–10). For instance, tracking Earth’s heat and ocean heat is
one of the key topics of the so-called “global warming hiatus” research
surge (11–20). There are several sources of uncertainty in OHC esti-
mates. A detailed discussion of uncertainty can be found in section
S1, supplementing the brief overview here. A key source of uncertainty
is instrumental in nature, relating to the measurement process; another
originates from methodological choices, for example, in dealing with
gaps in sampling (6, 8, 21–27). The community has made progress in
detecting the systematic errors in expendable bathythermograph
(XBT) data andhas provided recommendations to correct the associated
errors (25). These recommendations have markedly reduced the impact
of XBTbiases onmultidecadalOHCestimation (26). Anothermajor un-

certainty arises from insufficient data coverage, mainly during the pre-
Argo era (before 2005), that has led to spatial sampling errors in global
and regional OHC estimation (28–30).

There have been many efforts to improve estimates of historical
OHC changes including reduction of sampling errors using various
methodologies (3, 6, 8, 28, 29, 31–37). One group is referred to as map-
ping methods, which statistically infill data gaps by using available ob-
servations, a prior guess, and an adjustment term based on nearby
observations and covariance characteristics, because grid points within
the ocean are often mutually correlated (38). For example, a widely ref-
erenced method used by the National Centers for Environmental
Information (NCEI) (34, 35, 39) objectively analyzed gridded tempera-
ture anomalies on the basis of the distances between analysis grid boxes
and nearby observations, with zero anomalies used as a first guess.
Domingues et al. (36) presented the main ocean spatial variability by
means of an empirical orthogonal function analysis. Recently, Cheng
and Zhu (40) used an ensemble optimal interpolation method
(CZ16) combined with covariances from Coupled Model Inter-
comparison Project phase 5 (CMIP5) multimodel simulations to pro-
vide an improved prior guess (section S2). The other group of gap-filling
techniques is referred to as dynamic gap filling, which constrains an
ocean/climate model by observations via a data assimilation method,
for instance, Ocean Reanalysis System 4 (ORAS4) (3). In this case,
the prior guess is produced by bringing forward past information using
a model. The accuracy of this method can be limited by model error,
which varies frommodel to model (9), although this limitation may be
partly mitigated by model bias corrections (for example, based on as-
sessed bias during the Argo era). This study will focus on the first
group—that is, mappingmethods—because these have been the main
method used for historical OHC estimation.

The estimates obtained on the basis of all of thesemethods can reveal
substantial differences in OHC changes on monthly, interannual, and
interdecadal time scales (9, 10, 21, 41), although all of them still indicate
a robust oceanwarming in recent decades. Therefore, designing the best
way to infill the data gaps in both space and time while minimizing
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sampling error is a key task in global OHC assessment that demands a
comprehensive analysis. Quantification of the reliability of obtained
OHC estimates across temporal and spatial scales is also essential.

The success of amappingmethod can be judged by how accurately it
reconstructs the full ocean temperature domain.When the global ocean
is divided into a monthly 1°-by-1° grid, the monthly data coverage is
<10% before 1960, <20% from 1960 to 2003, and <30% from 2004
to 2015 (see Materials and Methods for data information and Fig. 1).
Coverage is still <30% during the Argo period for a 1°-by-1° grid be-
cause the original design specification of the Argo network was to
achieve 3°-by-3° near-global coverage (42). However, we typically use
temporal persistence from 1 month to the next as well as spatial co-
variance (as carried out using all the mapping methods cited above). Be-
cause the early observations weremainly carried out on commercial and
scientific research vessels, their locations are limited to the regions around
developed countries and along shipping routes (6, 28, 43). From 1990 to
1997, the World Ocean Circulation Experiment (44, 45) extended the in
situ data to a mostly one-time global network. Since late 1992, altimetry
from space has provided essential complementary information on sea
surface height. This century (mainly since 2005), the deployment of the
Argo floats into a global ocean network markedly increased data cover-
age (46, 47), with the exception of coastal, marginal sea, and ice-covered
regions (4, 48). Now, the Argo community is extending the Argo float
deployment under sea ice and into marginal seas (49).

In this paper, we extend and improve a recently proposed mapping
strategy (CZ16) to provide a complete gridded temperature field for 0- to
2000-m depths from 1960 to 2015. We carefully evaluate the estimate by
comparing the fully analyzed temperature signals with those based on a
“subsample test,” in which subsamples of data in the Argo era are colo-
catedwith historical ocean observations and used to assess sampling error.
The time scales for which reliable estimates are obtained are quantified.
Using this improved reconstruction, we derived an updated historical

(1960–2015) ocean energy budget and contributions to Earth’s total
energy budget.

RESULTS

The efficiency of a mapping method
We first address the fractional coverage of monthly ocean temperature
data achieved with reconstructed signals, which is defined as the frac-
tion of total ocean area obtained by themappingmethod (50). The large
fractional coverage helps to ensure that a near-complete global recon-
struction can be reached.Amappingmethod uses the data only near the
analyzed grid within an assumed area to perform the reconstruction at
individual grid cells, with the size of the area defined by the influencing
radius or spatial correlation length scales. The choice of influencing radius
mainly governs the extent of fractional coverage.

When the present method (CZ16; see Materials and Methods and
section S2) is applied, the analyzed fractional coverage is larger than
90% from the late 1950s to 2015 from the sea surface to 2000 m (Fig.
1). For comparison, the NCEImethod has a fractional coverage of 60 to
90% for its pentadal estimate (compositing 5 years of data) before 1990
and 90% in the upper ocean after 1990 (0 to 700 m). Below 700 m, the
coverage for the NCEI method increases from 50 to 80% from 1960 to
1990 for its pentadal estimate and sharply increases from 30 to 90% dur-
ing the 2000–2005 period for its yearly estimate. The present method has
larger fractional coverage than NCEI and most of the other published
methods (21) mainly owing to the difference in the assumed influencing
radius. For example, the NCEImethod (39) uses an 888-km (~8°) radius,
andmanyothermethods adopt a similar radius (31–33, 37). Thesemethods
take account of the spectrum of ocean spatial variability and are effective
owing to the large spatial correlations within 8° (>0.6; Fig. 2). Instead,
CZ16 uses 20° for an influencing radius within 0 to 700 m (25° for 700
to 2000 m) by using the relatively weak correlations (0.0 to 0.6; Fig. 2)

A B

C D

Fig. 1. Fractional coverage of the mapping method used in this study. (A) Averaged fraction (0 to 700 m) of the global ocean considered sampled for temperature data in

eachmonth for this study. (B) Sameas (A) but for 700 to 2000m. Themean fractional coverageof observations is shown inblue if theglobal ocean is divided into 1°-by-1° grids, and

fractional coverage for NCEI yearly and the 5-yearmethod is shown in green and orange, respectively. This figure starts from 1940. (C) Fractional coverage of the global ocean for

layers within 0 to 700 m. (D) Same as (C) but for 700 to 2000 m.
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for longer spatial distances (see section S3.1 for the choice of influencing
radius in theCZ16method).The applicationof a large influencing radius
helps to ensure a high fractional coverage and also filters out the smaller-
scale signals (that is, smaller than 20°), resulting in a smooth spatial
pattern (an example is shown in fig. S2). However, the ocean shows spa-
tial variability atmultiple length scales (33, 38). To improvemethods for
assessing this variability, we adopted an iterative strategy similar to that
adopted byNCEI (39). Three iterative scans were performed successively
using 20° (25° below 700 m), 8°, and 4° to effectively include ocean var-
iability across those spatial scales. Quantitative assessment of the iterative
strategy (section S3) shows a significant reduction of analysis error. How-
ever, because this fractional coverage does not give information regarding
how well a mapping method can reconstruct temperature signals, quan-
tificative assessment of the accuracy of the reconstruction is also needed.

Quantification of the global mean sampling error
The first step in quantifying the global mean sampling error is to inves-
tigate its contribution to both global temperature andOHC changes. The
sampling error is assessed on the basis of a subsample test, which is de-
fined as the difference between the reconstructed fields and “truth fields.”
The truth field is taken to be a set of the gridded averaged temperature anom-
alies during the Argo era, where the anomalies are relative to 1997–2005

climatology (see Materials and Methods). Each truth field is subsampled
according to the locations of historical observations andmapped to obtain
the reconstructed fields. The sampling error is estimated from thedifference
between the reconstructed and truth fields (see Materials and Methods).

Figure 3A presents the global averaged sampling errors since the late
1950s for different choices of truth fields, with the uncertainty estimated
as 2 SDs (2s). The global mean error due to the historical sampling is
around 0°C from the late 1950s to 2014, which is significantly different
from the temperature signals of the truth field (Fig. 3A, stars). This in-
dicates that no significant sampling bias exists despite the marked evo-
lution of the observation system over the past 56 years.

Comparison between the sampling errors and ocean temporal var-
iability on different time scales provides an indication of whether the var-
iability from sampling error is detectable. The temperature time series
(Fig. 3A, gray lines) for decadal andmultidecadal scales exhibit variability
that ismuch larger than the uncertainties induced by sampling error (Fig.
3A, green dots and 2s error bars). The decadal/multidecadal variability,
which is defined as 2s of the time series after applying a 7-year low-pass
filter (see Materials and Methods), is 0.076°C, at least two times larger
than the 2s sampling error, with a signal-to-noise (S/N) ratio larger than
3 (Fig. 3H). This indicates a robust reconstruction of ocean decadal/
multidecadal variability.

C
D

A B

Fig. 2. Observational correlations with distance. (A and C) Zonal-mean (Z) and (B and D) meridional-mean (M) correlation as a function of distance calculated using the

ORAS4 reanalysis data. A linear trend and the mean seasonal cycle have been removed when calculating the correlation. The ORAS4 1° by 1° and monthly data were used.
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The temporal variability of ocean temperature change on interannual
scales is 0.008°C after 1990, comparablewith the sampling error (S/N ratio
between 0.5:1 and 3:1; Fig. 3I). Errors in the signals in both the truth and
reconstructed fields are unavoidable because of the imperfect removal of
sampling error, imperfect quality control processes, the impact of meso-
scale signals, and the residuals of instrumental biases. The year 1990 is
chosen as a boundaryhere to better represent interannual variability, because
associated errors in the reconstructed field are reduced (but not removed)
in themost recent periods owing to improvements in data quality andden-
sity.On the other hand, the estimated sampling error also reveals uncertainty
from other error sources in recent decades. Therefore, the comparable S/N
ratio between sampling error and interannual variability implies that the
reconstructionsof year-to-year global temperature changes remainuncertain
andcaneasilybeaffectedbyobservational error.Arecent study(10)basedon
a comparison of month-to-month variations of global OHC for the upper
2000 m with radiative observations at the top of atmosphere (TOA) noted
that short-term fluctuations in OHC contain large noise.

An analysis of these temperature reconstructions across different
layers (section S3.2) addresses uncertainty in interannual variability es-
timates for all ocean layers. In the upper ocean (that is, 20 m in fig. S7),

the interannual variability is significant and larger than the sampling
error (S/N ratio >2) because the upper ocean experiences strong inter-
annual variability mostly dominated by El Niño–Southern Oscillation
(ENSO) (3). However, the S/N ratio decreases markedly below 300 m
(shown in figs. S8 to S10), and interannual variability is of comparable
magnitude to sampling error in the deep ocean, simply because there is
much weaker variability (signal) than in the upper 300 m.

Furthermore, the S/N ratio of both decadal and interannual variability
increases with time, starting in the 1960s, and the interannual variability
becomes slightly stronger than the sampling error during theArgo era (S/
N ratio between 2:1 and 5:1), suggesting the need to maintain and ex-
tend the integrated ocean observation system. The latter includes the cur-
rent Argo network in the open ocean, a ship-based observation system,
glider and coastal moorings, the coastal regions, the moored array in the
tropics, instrumented pinnipeds in polar regions, and modified Argo
floats and ice-tethered profilers in ice-covered regions.

Quantification of the regional sampling error
It is also worthwhile examining the sampling error of basin-scale
averages because different mechanisms may be responsible for OHC

A B C

D E F

G H I

Fig. 3. Global andbasin-averaged sampling error comparedwith reconstructed temperature change. (A toG) The sampling errors for different truth fields subsampled by

historical observation locations are shown as green dots, with the green solid line and the error bar for the mean and ±2s, respectively. Blue stars denote the 16 different truth

fields. The gray line is the reconstructedmonthly temperature anomaly time series from1960 to 2015with ±2s interval in gray shading, and the dark line is the time series after

a 7-year low-pass filter (seeMaterials andMethods). The orange curve is theNCEI result, alongwith a 1-SE bar (dashed orange). (A) Global, (B) tropical/subtropical Pacific, (C) North Pacific,

(D) Indian, (E) tropical/subtropical Atlantic, (F) North Atlantic, and (G) southern oceans. (H and I) S/N ratio of the temporal variability of our reconstruction on (H) decadal scales (solid lines)

and (I) interannual scales (triangle lines) compared to the sampling error.
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changes in different ocean basins.Moreover, ocean heat transport with-
in and between the basins is of great interest in understanding Earth’s
key energy flows. Here, we divide the oceans into the North Pacific
Ocean (30° to 65°N), theNorthAtlanticOcean (30° to 65°N), the tropical
and subtropical PacificOcean (30°S to 30°N), the tropical and subtropical
Atlantic Ocean (30°S to 30°N), the Indian Ocean (30°S to 20°N), and the
southern oceans (south of 30°S). There are continual observations for the
North Atlantic and North Pacific oceans in middle latitudes from
mechanical bathythermographs (1940s to 1960s) and XBTs (late 1960s
to 2000), mainly distributed along cruise ship lines. In the tropics, the
Tropical Atmosphere Ocean moorings started in 1979, although they
were only fully deployed by about 1992. The least sampled area is south
of 30°S, especially in the winter half-year. Even in themost recent decade,
there are minimal data in the ice-covered regions.

In the six ocean basins, the mean sampling error is approximately
zero (Fig. 3), indicating a robust reconstruction of temperature signals.
Five ocean basins (not including the Indian Ocean) have experienced
significant decadal-scale temperature changes, which are all larger than
the 2s sampling error (S/N ratio is larger than 2), confirming that long-
termbasin-averaged temperature changes are robust and insignificantly
affected by sampling error. In the IndianOcean (where there is evidently
low signal), decadal variability is not significant before 1970, with an S/N
ratio between 1.6:1 and 2:1. In particular, the southern oceans and the
Atlantic Ocean have experienced the most marked decadal variations,
with larger S/N ratios than the other basins. Themagnitude of interannual
variability in all six basins is comparable to the 2s sampling error (S/N
ratio between 0.3:1 and 5:1; Fig. 3I), as was found for the global ocean.

In addition, a geographical analysis of sampling error is presented in
section S3.3. The sampling error for each 1°-by-1° grid has mean errors
centered mostly about zero (fig. S11), suggesting that no significant re-
gional bias in the reconstructed field exists overmost ocean regions (see
also fig. S12 for the 20- and 1600-m layers). However, in boundary cur-
rent systems, Antarctic Circumpolar Current regions, and the Southern
Hemisphere midlatitudes, there are larger 2s sampling errors than in
other regions (fig. S11B).

Global OHC change for the upper 2000 m
On the basis of reconstructed temperature fields and associated error bars,
monthly OHC changes within 0 to 700 and 700 to 2000 m (Fig. 4A)
show significantwarming in the past 56 years. A stronger oceanwarming
trendhas existed since the late 1980s forboth0- to700- and700- to2000-m
depths compared with the 1960s to the 1980s. The linear trend of OHC at
0- to 700-mdepth is 0.15 ± 0.08 × 1022 J/year (0.09 ± 0.05W/m2) during
1960–1991and0.61±0.04×1022 J/year (0.38±0.03W/m2) during 1992–
2015, a warming trend four times stronger than the 1960–1991 pe-
riod. The linear trend of OHC at 700- to 2000-m depth is 0.04 ± 0.08 ×
1022 J/year (0.02 ± 0.05W/m2) in the period 1960–1991 and 0.37 ± 0.02 ×
1022 J/year (0.23 ± 0.02 W/m2) from 1992 to 2015 (nine times stronger
than that from 1960–1991) (table S1). This indicates an accelerating heat
input intoboth the0- to700-mand700- to2000-m layers.Theacceleration
ismost probably linked to the increasingEEIwith time. Inparticular, a new
study(51) shows that therecentacceleration is partly due to recovery from the
volcanic eruption in1992 (Mt. Pinatubo),which led to strongoceancooling.

The new estimates for OHC 700 to 2000 m show a stronger long-
term trend before 2005 than NCEI estimates, with 10 to 20% differ-
ences, although the two estimates are not distinguishable within the
margin of error (Fig. 4B). For both the upper 700-m and 700- to
2000-m layers, our current OHC estimates show larger long-term
changes in the period 2005–2010 than NCEI estimates. To see where
the “extra heat” is coming from, we include the NCEI estimates in Fig.
3 (A to G, orange lines) for comparison. The major differences appear
in the southern oceans and the tropical/subtropical Pacific Ocean: The
current OHC estimate shows quicker warming since 1960 than do
NCEI estimates, albeit with sparse data coverage before the Argo
era. This is probably due to the prior assumption of zero anomalies
used in NCEI, which biases the reconstructed field toward zero in
data-sparse regions. Rapid warming in the southern oceans has been
observed in all Argo-based data sets since 2004 (10) and in the altim-
etry sea level (ASL) change since 1993 (fig. S18).

Observational estimates (both NCEI and this study) show a very
weak (insignificant) deep (700 to 2000 m) ocean warming before 1980,

A B

Fig. 4. Global OHC change time series. (A) OHC from 0 to 700m (blue), 700 to 2000m (red), and 0 to 2000m (dark gray) from 1955 to 2015 as obtained by this study, with the

uncertainty of the ±2s interval shown in shading. All time series of the new analysis are smoothed by a 12-month runningmean filter, relative to the 1997–2005 base period.

(B) The newestimate is comparedwith an independent estimate fromNCEIwith its SE as dashed lines. BothOHC0 to 700mandOHC700 to 2000mare shown from1957 to 2014.

The baseline of the time series from NCEI is adjusted to the values of the current analysis within 2005–2014.
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in apparent contradiction to the strong radiative forcing since the 1960s
and many model simulations (1). There are several hypotheses for this
moderate deep ocean warming that require a more careful analysis in
the future: (i) The warming signal is small during the 1960s and can be
influenced by sampling error (note that the S/N ratios during the 1960s
are small onglobal and regional scales inFig. 3); (ii) there is a robust ocean
warming in the upper 700 m, but the warming does not penetrate to the
deep oceanbelow700m.By contrast, climatemodelsmaybe toodiffusive
and thus may prematurely warm the deep ocean (51–53).

Regional OHC change in recent decades
Regional OHC changes are of great interest to the broad climate com-
munity because they provide a basis for understanding themechanisms
of ocean energy flow, especially since 1998 (the so-called “hiatus” period),
as previous studies have sometimes shown contradictory results based on
different data sets (14, 16, 17, 54, 55).Our studies show that there has been
no slowdown in global OHC change since 1998 compared with the pre-
vious decade (Fig. 5): There is an acceleration of oceanwarming (for both
OHC0 to 700mandOHC0 to 2000m), consistentwith a previous study
based onmodel-based data assimilation (3). Moreover, the percentage of
700- to 2000-moceanheating relative to 0- to 2000-mOHC is 32% (32%)
for 1960–1998 (1960–2005), but 38% (49%) for 1998–2015 (2005–2015),
indicating that the deep ocean has played an increasingly important role
in the ocean energy budget since 1998. The totalOHC increase from1998
to 2015 is 15.2 × 1022 J in the upper 2000m,with 17%stored in the Pacific
Ocean, 24% in the Indian Ocean (30°S northward), 31% in the Atlantic
Ocean, and 28% in the southern oceans (south of 30°S). Again, the total
OHC change calculated here is not well characterized by a linear trend
because of the relatively short time period considered and the presence of
strong decadal variability. It is evident that all six ocean basins have
experienced significant warming since 1998 but that heat was mainly
stored in the southern oceans, the tropical/subtropical Pacific Ocean,
and the tropical/subtropical Atlantic Ocean from 1960 to 1998 (Fig. 5).
Understanding how this heat has been transported or redistributed in the
ocean continues to be an important research topic.

Atlantic Oceanwarming shows the largest OHC 0 to 2000m increase
(about 3.5 times larger than the Pacific Ocean), despite having an area
only 47% as large as that of the Pacific (Figs. 3 and 5). The OHC change
in the North Atlantic Ocean shows strong decadal variability and is likely
linked to the strengthening ofAtlanticmeridional overturning circulation
up to the middle 1990s and a subsequent weakening during the 2000s
(Fig. 3) (56, 57), although the reasons for these changes are still debated.

Other regions with significant decadal variability are the North Pacific
Ocean and the tropical/subtropical Pacific Ocean. However, these
changes are mainly limited to the upper 700 m (with very weak changes
below 700m; Fig. 5C and figs. S7 to S10), showing the importance of the
shallow subtropical circulation (11, 58). The southern oceans and the
tropical/subtropical Atlantic Ocean have experienced continuous and
monotonic long-term warming since the 1960s, revealing a robust
footprint of global warming (59). The Atlantic Ocean and the south-
ern oceans are themajor new heat reservoirs (59%) even though their
total area is just 48% that of the global ocean. This implies that the
meridional overturning circulation is a keymechanism involved in the
sequestering of heat in the deeper (below 700 m) ocean.

For the upper ocean (0 to 700 m), the OHC increase from 1998 to
2015 is 10.11 × 1022 J, with 21% occurring in the Pacific Ocean, 21% in
the Indian Ocean, 28% in the Atlantic Ocean, and 30% in the southern
oceans, generally consistent with the OHC 0 to 2000m. Our data reveal
significant heat input into each basin in the upper ocean in the recent
decade (Figs. 3 and 5), including the Indian Ocean (10).

Implications for the planetary energy imbalance
This updated OHC estimate offers the opportunity to revisit the plan-
etary energy imbalance over the historical period, since more than 90%
of EEI is stored in the ocean. The revised ocean energy budget (Fig. 6)
based on OHC in the upper 0 to 2000 m from this study is combined
with OHC below 2000m adapted from Purkey and Johnson (60) (0.11 ±
0.10×1022 J/year), whichhas beenupdatedbyDesbruyères et al. (61). It is
extended to 1960 by assuming a zero heating rate before 1990 below
2000 m, because OHC changes are found to be very small for 700 to
2000m before 1990 (with large uncertainty), consistent with the assump-
tion adopted in previous sea level analyses (62). The OHC 700 to 2000m
in this study (NCEI) indicates a one-ninth (one-third) smaller warming
rate for the 1960–1991 versus the 1992–2015 period. Therefore, themax-
imum temperature change below 2000 m before 1991 should be one-
third of its change after 1991 (that is, 0.04×1022 J/year). Tobe conservative,
the uncertainty of the OHC change below 2000 m is set to ±0.04 ×
1022 J/year.

The new result (Fig. 6) suggests a total full-depth ocean warming of
33.5 ± 7.0 × 1022 J (equal to a net heating of 0.37 ± 0.08 W/m2 over the
global surface and over the 56-year period) from 1960 to 2015, with
36.5, 20.4, 30.3, and 12.8% contributions from the 0- to 300-m, 300-
to 700-m, 700- to 2000-m, and below 2000-m layers, respectively. Here,
we prefer to use the total energy change in the budget analyses rather

A B C

Fig. 5. OHC changes from1960 to 2015 for different oceanbasins. (A) For 0 to 2000m, (B) 0 to 700m, and (C) 700 to 2000m. All the time series are relative to the 1997–1999

base period and smoothed by a 12-month running filter. The curves are additive, and the OHC changes in different ocean basins are shaded in different colors.
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than the linear trend because the change is not linear owing to the gen-
eral increase in radiative forcing with time. The new reconstruction
confirms the previous finding that the upper ocean experiences the
most statistically significant warming, while the 0- to 2000-m layer
contributes to the vast majority of the ocean warming since 1960 (1). By
comparison, the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (1) reported an ocean heat gain of 25.5 ± 6.1 × 1022 J
from 1971 to 2010, whereas the results of the current study are somewhat
greater at 28.8 ± 4.4 × 1022 J for the same period, at the upper end of their
uncertainty range (table S1). Furthermore, the full-depth OHC for 1970–
2005 (26.5 ± 4.8 × 1022 J) agrees with a recent analysis (63) based on
adjusted observation-based estimates, a simple transparent gap-filling
method, and ORAS4 reanalyses (data assimilation method) (28.3 ± 1.8 ×
1022 J); it also agrees with the ensemble mean of CMIP5 simulations
(26.6 ± 4.4 × 1022 J) (table S1) (63). The consistency among these in-
dependent studies indicates the strength of the assessment of the ocean
energy budget since 1960.

In addition to warming the oceans, the energy imbalance of the
Earth system has also melted ice and warmed the atmosphere and land
(4, 5, 64). These events account for ~7% of the EEI (1, 5, 64) but may be
slightly smaller in the earlier years (64). Therefore, the total planetary
energy imbalance incorporating all appreciable thermal reservoirs since
1960 is 36.0 ± 7.5×1022 J (equal to a net heating of 0.40 ± 0.09 W/m2

over the global surface during the 56-year period).
Although the EEI can best be estimated by OHC changes, the radia-

tionmeasurements from space provide an important complement (4, 5).
Tracking changes in the energy inventory of the planet gives an estimate
of the energy imbalance. Figure 6 incorporates the accumulated net
downward radiative flux imbalance at the TOA reconstructed by Allan
et al. (65) since 1985. Because 7% of EEI is absorbed into other energy
reservoirs, we multiply the TOA net radiation by 0.93 to estimate the
ocean component in Fig. 6. The EEI based on OHC and TOA radiation
shows consistent long-term changes since the late 1980s, further con-
firming the robustness of this new assessment of Earth’s energy inventory

(tables S1 and S2). The inconsistency of the interannual variations of EEI
based on TOA andOHC reveals the impacts of sampling errors inOHC,
deeperOHCchange below2000m, interannual variations in atmosphere/
land/ice heat change, and errors in TOA radiation observations (66).
Although there are errors in the various observation systems, compar-
ison and reconciliation among independent observations (that is, OHC,
TOA radiation, sea level, and also surface flux data) and models (that
is, CMIP) will promote amore complete understanding of climate var-
iability change and provide an opportunity for independent validation
(1). Improving the existing integrated observation system, including
the ocean and TOA observations, is therefore deemed essential for
future progress.

DISCUSSION

Documentation of a detailed and reliable structure of ocean tempera-
ture changes is highly valuable in understanding the mechanisms of
ocean heat variability driven by both internal processes and external
forcing. This study provides a new reconstruction of the ocean tempera-
ture field (0 to 2000 m) and a quantification of its uncertainty on global
and regional scales and interannual/decadal time scales based on sub-
sample tests. These tests suggest a small sampling error related to tem-
perature signals on decadal time scales. This new reconstruction provides
a basis for accurately detecting and quantifying both regional and global
variability across recent decades while minimizing error due to irregular
ocean sampling by in situ observations.

This study aims to provide reconstructions on larger spatial and longer
time scales (than mesoscale signals, eddies, and internal tides). Small-
scale signals have been taken into account by smoothing in twoways: (i)
collecting datawithin a timewindow for estimates in a givenmonth and
(ii) collecting data within the influencing radius, as carried out by most
mappingmethods (that is, the currentmethod andNCEI), which acts as
a spatial smoother. However, the small-scale signals could become errors
in the reconstruction if they are spuriously mapped onto the large scale.
This iswhere quality control becomes crucial. It is inherently subjective and
based on knowledge of the ocean circulation and temperature/salinity
patterns, but it remains the primary means to removing aliased mesoscale
signals.Mesoscale eddies can be important inmoving heat and freshwater
around but do not show up inmean fields. The subsample test used in this
study partly takes account of this error because gridded averaged data
are used as truth without applying a spatial smoothing. One deficiency
of thismethod is that thehistorical sampling error canbeunderestimated.
We have tested for this effect and have shown that it does not affect the
key conclusions of this study (section S4). It is difficult to fully address this
issue because theArgonetworkdoes not fully capturemesoscale signals and
lacks observations in coastal areas. High-resolution data, such as output
from eddy-resolving oceanmodels, sea surface temperature, ocean color,
and high-resolution ASL data (but only after 1993), will be helpful in
further investigations of the impact of mesoscale signals, although the
instrumental error of in situ profile observations may not be fully repre-
sented by these data.

Note that the newOHCanalysis indicates only a weak ocean cooling
after theMt. Pinatubo eruption event in 1992 (Figs. 3 and 4), in contrast
to the imbalance suggested by satellite data. Our subsample test suggests
that interannual variations during the pre-Argo era are of comparable
magnitude to sampling errors, but the current Argo system begins to allow
for a resolution of interannual OHC variability. Therefore, if this volcanic
eruption event were to occur with today’s observing network, we expect
to be able to resolve its impact onOHCwith greater confidence. Further
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reduction in the error in OHC estimates on interannual scales likely re-
quires international coordination, including extending the current
integrated observation system and understanding the influence of qual-
ity control processes, instrumental bias corrections, and ocean sampling.
In addition, the improvement ofmethods that synthesize all available ob-
servations, such as reanalyses, will continue to be essential.

MATERIALS AND METHODS

Data
In situ temperature data from 1960 to 2015were from theWorldOcean
Database (WOD) from the NCEI (67) and were prepared following
CZ16. The quality flags provided by WOD were used to remove erro-
neous profiles and measurements. There are 41 standard depths in the
upper 2000m: 1m, 5m, 10 to 100m in 10-m intervals, 120 to 200m in
20-m intervals, 250 to 900 m in 50-m intervals, and 1000 to 2000 m
in 100-m intervals. In the upper 700 m, we used data collected over a
3-month window to calculate monthlymeans, which helped to increase
the data coverage without losing interannual signals, such as ENSO
variations. To achieve improved spatial coverage before 2005 below
700 m, the data within 4-, 8-, 12-, and 18-month bins around the
selected month were averaged together for the 750- to 1000-m, 1100-
to 1500-m, 1600- to 1900-m, and 2000-m ocean layers, respectively,
using moving averages. This choice was based on the amount of data
available before 2005 in these layers. For models, we assembled 40 out-
puts of historical runs from 1940 to 2005 and 31 outputs using the Rep-
resentative Concentration Pathways 4.5 scenario from 2006 to 2015
(68). Here, we examined the temperature reconstruction for 70°S to
65°N. For both observations andmodels, we constructed the climatology
by using the data for the 1997–2005period (see section S1 for a discussion
of climatology).

Mapping
The mapping method adopted in this study was proposed by Cheng
and Zhu (40) and is called the ensemble optimal interpolation method
with dynamic ensemble (EnOI-DE) provided by CMIP5 historical sim-
ulations. We modified this method to better represent the ocean varia-
bility on various spatial scales by using iterative strategies. Three
iterative runs were carried out, where the analysis fields of the previous
scan provided the prior estimate for the next scan (a thorough descrip-
tion can be found in section S2). Different influencing radii were set in
each iterative run, that is, 20° in scan 1 (25° for 700- to 2000-m layers),
8° in scan 2, and 4° in scan 3. Furthermore, the present study extended
the method to ocean depths below 700 m, where the observations were
sparser than the upper 700 m. The temporal variations of deep ocean
temperatures were much smaller relative to the upper ocean (37, 39).
Therefore, to obtain a reliable assessment of the decadal and multide-
cadal variations of ocean temperature below 700m, it is desirable to use
the data within adjacent months to increase the spatial data coverage.

Subsample test
The subsample test was designed as follows. The 1°-by-1° gridded aver-
aged temperature anomalies during the Argo period were used for each
selectedmonth (January and August from 2007 to 2014) as truth values
(for a total of 16 truth fields). Each truth field was then subsampled
according to the history of the observational locations (every 5 years from
1955 to 2014 for January and 1957 to 2014 for August). Thus, 24 sub-
sampled fields were generated and thenmapped using the CZ16method
and comparedwith the truth fields. Thedata during theArgo era not only

observed ocean variability in the real world in each ocean layer but also
contained instrumental errors in observations and insufficient coverage
in coastal areas. However, because one could never repeat ocean observa-
tions made before 2000, the data during the Argo era were the best for
examining the performance of the reconstruction for the historical period.
One study (50) has subsampledASLdata to examine the sampling error in
the OHC estimate. Using ASL has benefits for its complete global ocean
coverage, and provides an important insight into the sampling error.
However, ASL is a combination of full-depth thermal expansion and
ocean mass change and is not directly representative of OHC change.
Further, ASL is a two-dimensional metric without depth information,
but the ocean sampling changes markedly with depth.

Statistical analysis
The S/N ratio for the ocean temporal variability compared to the
sampling error is defined as

S=N ¼ 2σðThistoricalÞ=2σðsampling errorÞ

where the signal is defined as twice the SD of the filtered temperature
time series (Thistorical), which represents themagnitude of theOHC tem-
poral variation. The noise is also twice the SD of the sampling errors.
When S/N > 2, it indicates a significant signal given the sampling error;
this is similar to a t test estimate of the >95% confidence level.When the
ocean decadal/multidecadal variation was examined, a 7-year low-pass
filter was applied to remove the ocean variability with frequencies high-
er than 1/7 per year. The method filtered a time series via the Lanczos
method (cosine filter) (69). When the interannual variations were
examined, the 7-year high-pass filter was applied to remove the ocean
variability with frequencies lower than 1/7 per year.

Error bars of the OHC estimates (in Figs. 3, 4, and 6) are given as the
±2s range, two SDs of the ensemblemembers obtained by themapping
method. ±2s is equal to an approximate 95% confidence interval when
assuming a Gaussian distribution, which means that there is only a 5%
chance that the OHC falls outside the given interval. The distribution of
ensemble anomalies at 20 and 1200m is shown in fig. S19; although not
strictly Gaussian, ±2s captures more than 95% of this distribution.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/3/3/e1601545/DC1

Supplementary Materials and Methods

fig. S1. Illustration of the iterative EnOI-DE/CMIP5 method used in the current study.

fig. S2. An example of the reconstructed fields after three iterative scans.

fig. S3. Reconstruction of temperature field at 1200 m in August 2011 for the historical

sampling (in February).

fig. S4. Reconstruction of temperature field at 1200 m in August 2011 for the historical

sampling (in September).

fig. S5. Mean temperature error as a function of different choices of the influencing radii

between the reconstructed and truth fields.

fig. S6. Six major ocean basins defined in this study.

fig. S7. Global and basin-averaged sampling error compared with reconstructed temperature

change at 20 m.

fig. S8. Global and basin-averaged sampling error compared with reconstructed temperature

change at 300 m.

fig. S9. Global and basin-averaged sampling error compared with reconstructed temperature

change at 800 m.

fig. S10. Global and basin-averaged sampling error compared with reconstructed temperature

change at 1200 m.

fig. S11. Geographical distribution of mean and 2s sampling error for 0- to 2000-m average.

fig. S12. Geographical distribution of mean and 2s sampling error in 1°-by-1° grid at 20 and

1600 m.
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fig. S13. 2s sampling error for different scans at different depths.

fig. S14. Global OHC time series for the reconstructions after scan 1, scan 2, and scan 3.

fig. S15. Frequency distribution of temperature anomalies for the years 1986 and 2015.

fig. S16. Sampling error as calculated by two subsample methods.

fig. S17. S/N ratio analysis for two methods of subsample test.

fig. S18. Comparison between OHC and sea level change since 1993.

fig. S19. Distribution of the ensemble anomalies.

table S1. OHC trends obtained in this study for the 1960–1991 and 1992–2015 periods.

table S2. Net OHC and EEI changes obtained in the current study compared with some

independent estimates.
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