
Improved estimation of parameters of the 
homodyned K distribution 

 
David Hruska, Roberto Lavarello, William D. O’Brien Jr., and Michael L. Oelze 

Bioacoustics Research Laboratory 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801 

Email: oelze@illinois.edu 
 
Abstract— The amplitude distribution of the envelope of 
backscattered ultrasound depends on tissue microstructure. By 
fitting measured envelope data to a model, parameters can be 
estimated to describe properties of underlying tissue. The 
homodyned K distribution is a general model that 
encompasses the scattering situations modeled by the Rice, 
Rayleigh, and K distributions. However, parameter estimation 
for the homodyned K distribution is not straightforward 
because the model is analytically complex. Furthermore, 
effects of frequency-dependent attenuation on parameter 
estimates need to be assessed. An improved parameter 
estimation algorithm was developed to quickly and accurately 
estimate parameters of the homodyned K distribution, i.e., the 
μ (effective number of scatterers per resolution cell) and k 
(ratio of coherent to diffuse energy) parameters. Parameter 
estimates were found by fitting estimates of SNR, skewness, 
and kurtosis of fractional-order moments of the envelope with 
theoretical values predicted by the homodyned K distribution. 
The effects of frequency dependent attenuation were 
approximated by assuming a Gaussian pulse to determine the 
shift in center frequency of the pulse and hence change in 
volume of the resolution cell. Computational phantoms were 
created with varying attenuation coefficients and scanned 
using a simulated f/4 transducer with a center frequency of 10 
MHz. An average of two scatterers per resolution cell (based 
on the phantoms with no attenuation) was used. The new 
estimation algorithm was tested and compared with an existing 
algorithm (based on the even moments of the homodyned K 
distribution). The new estimation algorithm was found to 
produce estimates with lower bias and variance. For example, 
for μ = 2 and k ranging from 0 to 2 in steps of 0.1, the average 
variance in the μ parameter estimates was 0.067 for the new 
algorithm and 0.42 for existing algorithm. For the k parameter 
estimates, the average variance was 0.0069 for the new 
algorithm and 0.048 for the old algorithm. In the simulations 
with no attenuation, the μ parameter estimate was 2.53±0.18. 
In the phantoms with a linear attenuation coefficient of 0.5 
dB·MHz-1·cm-1, the estimate was 4.64±0.54. This compared 
well with the predicted μ value of 4.98.  
 

Backscatter; Envelope Statistic;Tissue Characterization 

I.  INTRODUCTION  
Statistical analysis of the envelope of backscattered 

ultrasound has been used to characterize tissues and may be 
useful for improving the diagnostic capabilities of ultrasound. 
Shankar et al. [1] demonstrated the potential efficacy of 
envelope-based statistics in distinguishing benign and 
malignant breast masses. Hao et al. [2] used the homodyned K 
distribution to differentiate normal and abnormal myocardium. 
Sommer et al. [3] observed statistically significant differences 
in the mean and variance of the amplitude distribution of the 
envelope signal from normal and cirrhotic livers. 

A number of different models for the amplitude distribution 
of the envelope signal have been proposed over the past few 
decades. The homodyned K distribution is a particularly 
versatile but analytically complex model. Because of this 
complexity, its use has been somewhat limited and other, more 
analytically tractable models such as the Nakagami 
distribution, Weibull distribution, Rician, and generalized 
gamma distribution have been used instead. However, by 
applying an improved parameter estimation algorithm, 
estimates of parameters of the homodyned K distribution can 
be obtained in a relatively simple way. 

Until recently, parameter estimation based on fractional 
order moments was rarely used with the homodyned K 
distribution but more often with the more tractable K 
distribution. Martín-Fernández et al. [4] originally developed a 
mathematically tractable implementation of a parameter 
estimation algorithm for the homodyned K distribution based 
on arbitrary fractional order moments. The estimation 
algorithm presented here is an extension of this original idea. 

II. METHODS  

A. Homodyned K Distribution  
The homodyned K distribution was first introduced by 

Jakeman [5]. Besides incorporating the capability of the K 
distribution to model situations with low effective scatterer 
number densities, the homodyned K distribution can also 
model situations where a coherent signal component exists due 
to periodically located scatterers [6]. This makes the 
homodyned K distribution a versatile option, but also 
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complicated. The pdf of the homodyned K distribution does 
not have a closed-form expression; however, it can be 
expressed in terms of an improper integral as [7] 
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where J0(·) is the zeroth order Bessel function of the first kind, 
s2 is the coherent signal energy, σ2 is the diffuse signal energy, 
and µ is the same parameter as defined in the K distribution. 
The derived parameter k = s/σ is the ratio of the coherent to 
diffuse signal and can be used to describe the level of structure 
or periodicity in scatterer locations. 

B. Parameter Estimation 
Martín-Fernández et al. [4] observed that the SNR of 

arbitrary moments of the echo envelope predicted by the 
homodyned K distribution was a function of only the two 
independent parameters (the k and µ parameters). This allowed 
an estimator to be implemented based on crossing level curves 
derived using different fractional-order moments in the 
Cartesian plane of the parameters (k, µ). By first calculating 
theoretical values for the SNR for a range of parameter values, 
an efficient estimator was developed.  

Moments of arbitrary order ν of the homodyned K 
distribution can be expressed as [4] 
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where 1F1(a;b;x) is the confluent hypergeometric function of 
the first kind. By substituting k = s/σ in the argument of the 
hypergeometric function, defining the improper integral as a 
function of three variables, 
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and pulling constants out of the integral, (2) can be written as 

 ( )
2 22 , ,E A I k

ν

ν σ μ ν
μ

⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦

⎝ ⎠
. (4) 

Performing the integration in (3) and simplifying, 
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where 1F2(a;b,c;x) is a hypergeometric function and, for 
convenience, the definition 
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is used. Thus, moments of the homodyned K distribution of 
arbitrary order can be evaluated numerically in a relatively 
simple way using (3) and (4).  

This original idea was extended to calculate the SNR 

algebraically. Furthermore, the skewness and kurtosis 
functions have been included in the proposed algorithm to 
increase the sensitivity to larger scatterer number densities 
(i.e., up to 10 scatterers per resolution cell). The SNR, 
skewness, and kurtosis of samples of the echo envelope of 
order ν can be expressed as [8], [9] 
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Following [4], the subscript ν indicates the dependence on 
the moment order ν. By relating to (6), these three equations 
are functions of the μ and k parameters only. Parameter 
estimation is performed by equating estimates of SNR, 
skewness, and kurtosis from the envelope signal with 
theoretical values predicted by the homodyned K distribution. 
By using these functions, parameter estimates can be obtained 
from level curves in the two-dimensional parameter space [4]. 

Parameter estimates were obtained by finding the point in 
(k, µ) space where the L2-norm of the distances from the level 
curves was minimized. Fig. 1 shows an example using three 
level curves. The generally vertical orientation in the curves 
derived from skewness and kurtosis suggests that the algorithm 
is more sensitive to changes in the µ parameter than the 
algorithm based on SNR alone and will result in improved 
variance of estimates over SNR curves alone. 

 
Although true optimal moment orders may not exist, the 

choice of moment order may affect the performance of the 
estimation algorithm. Therefore, an effort was made to select 
moments that were in some sense optimal. The SNR, 
skewness, and kurtosis were sampled on a 501 × 501 point 
grid with k uniformly spaced on the interval [0, 5] and log10(µ) 
uniformly spaced on the interval [-3, 2]. These functions were 
sampled for moments ν∈{0.02, 0.04, …, 1.00}. 

The goal of the optimization was to select two moment 
orders such that the six intersecting level curves (SNR, 
skewness, and kurtosis for each of the two moment orders) 
would represent a system as well-conditioned as possible for 
the largest possible range of parameter values. Geometrically, 
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Fig. 1. Level curves based on moment order ν = 1.  Intended parameters: 

k = 3, log10(µ) = 1. 
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when level curves are nearly parallel at the point of 
intersection, the system is ill-conditioned as the intersection 
point is sensitive to small perturbations in the input data. 
Conversely, level curves that intersect perpendicularly 
correspond to a well-conditioned system. Based on these 
observations, moment orders were selected to produce the best 
possible conditioning. 

The gradients of the SNR, skewness, and kurtosis functions 
were evaluated numerically at each point where they were 
sampled. From the gradient, the angle of the level curve 
passing through each point (k1, µ1) was determined as 
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where gµ and gk are the components of the gradient in the µ and 
k directions, respectively. Considering two moments at a time, 
the sum of the angles between all pairs of level curves was 
calculated for each point where the functions were sampled. An 
average value was obtained over the entire (k, µ) space 
examined. The pair of moments that maximized this sum was 
selected for estimation, i.e., the pair of moments that resulted in 
level curves less likely to be parallel at their intersection over 
the range of µ and k parameters examined. The “optimal” pair 
of moments was found to be ν∈{0.72, 0.88}. These moments 
will be used throughout the rest of this work. 

The algorithm was tested by constructing computational 
phantoms with different number densities and with different 
ratios of randomly spaced scatterers versus periodically spaced 
scatterers. Estimates of the μ and k parameters were obtained 
using the new algorithm and an even moments method and 
compared. The bias and variance of estimates using both 
methods were calculated for comparison. 

C. Quantifying the Effects of Attenuation 
Assuming an attenuation coefficient that is linearly 

increasing with frequency, the frequency-dependent attenuation 
results in higher frequencies being attenuated more rapidly with 
depth than lower frequencies. This can produce a shift in the 
center frequency of the imaging pulse. Assuming a Gaussian 
pulse, the shift in center frequency, fΔ , is given by 
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where f ′ and 0f  are the center frequencies of the pulse with 
and without attenuation, respectively. 

Approximating the resolution cell as a cylinder and 
assuming that the fractional bandwidth is unchanged by 
attenuation, the ratio of the volume of the resolution cell in the 
presence of attenuation (V ′) to the volume of the resolution 
cell without attenuation (V ) is given by 
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Combining Eqs. (11) and (12) yields 
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The estimated scatterer number density (scatterers per 
resolution cell) should increase according to the increase in the 
volume of the resolution cell predicted by (13). 

Computational phantoms were used to verify the 
predictions from (13). Ten independent phantoms were 
generated for each attenuation coefficient value used. Each 
phantom was scanned using two imaging pulses with different 
fractional bandwidths. Each resulting image was analyzed 
using the new envelope statistics algorithm.  

III. RESULTS 

A. Algorithm Performance 
Figures 2 and 3 show the relative bias and variance of 

estimates using the traditional even moments method and the 
new algorithm, respectively. The new estimation algorithm was 
found to produce estimates with lower bias and variance. For 
example, for μ = 2 and k ranging from 0 to 2 in steps of 0.1, the 
average variance in the μ parameter estimates was 0.067 for the 
new algorithm and 0.42 for existing algorithm. For the k 
parameter estimates, the average variance was 0.0069 for the 
new algorithm and 0.048 for the old algorithm. 

B. Quantifying the Effects of Attenuation 
The results shown in Fig. 4 were obtained by averaging the 
estimated scatterer number density from the 10 independent 
phantoms used for each attenuation coefficient. Both the 
theoretical and estimated scatterer number densities varied 
substantially as the attenuation coefficient changed when the 
phantoms were imaged using a pulse with 50% fractional 
bandwidth (Fig. 4a). By reducing the fractional bandwidth to 
25%, this variation was reduced substantially (Fig. 4b). These 
results are consistent with previously reported measurements of 
physical phantoms [10]. In the simulations with no attenuation, 
the μ parameter estimate was 2.53±0.18. In the phantoms with 
a linear attenuation coefficient of 0.5 dB·MHz-1·cm-1, the 
estimate was 4.64±0.54. This compared well with the predicted 
μ value of 4.98.  

Note that the reduction in fractional bandwidth requires the 
use of a longer imaging pulse, reducing the axial resolution of 
the resulting image. Also, this increases the volume of the 
resolution cell in the absence of attenuation. When the scatterer 
number density is large, it is desirable to reduce the volume of 
the resolution cell to avoid exceeding the Rayleigh limit of 
about 10 scatterers per resolution cell beyond which scatterer 
number density estimation becomes unreliable.  

IV. CONCLUSIONS 
A new algorithm was developed to estimate scattering 

parameters based on the homodyned K distribution and the 
backscattered envelope. The new algorithm was based on 
calculating the SNR, skewness, and kurtosis using fractional 
order moments with optimal moments found to be 0.72 and 
0.88. The new algorithm was evaluated using simulated 
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phantoms and compared with estimates using an even moments 
method. Improved bias and variance of estimates was obtained 
using the new algorithm. The effects of frequency-dependent 
attenuation were evaluated and found to result in an increase in 
the estimated scatterers per resolution cell. Therefore, to make 
estimation of the μ parameter system independent, it is 
necessary to account for the frequency-dependent attenuation 
on the size of the resolution cell. 
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Fig. 4 Estimated scatterer number density for simulated phantoms versus 
attenuation coefficient using a pulse with (a) 50% fractional bandwidth 

and (b) 25% fractional bandwidth. The error bars are two standard 
deviations. Ideal estimates are the green dashed line.  
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Fig. 2. Relative bias and standard deviation (SD) of model parameter 
estimates versus the model parameters (even moments algorithm). 
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Fig. 3. Relative bias and normalized SD of model parameter estimates 
versus the model parameters (new algorithm). 

2271 2009 IEEE International Ultrasonics Symposium Proceedings


