
Improved Estimation of Proportions Using Inverse

Binomial Group Testing

Abstract

Inverse sampling for proportions is useful when there is a need to estimate the prevalence
of a disease without delay. This can be combined with group (pooled) testing, in which
individuals are pooled together and tested as a group for the disease. Pritchard and Tebbs
(2011a) introduced this combination to the statistical literature, and we have addressed
some of the key problems raised, for groups of equal size. Most point estimators of the
proportion are biased, especially the MLE, but by applying a suitable correction we have
developed an estimator which is almost unbiased in the region of interest. We propose
two interval estimators which improve on existing methods and have excellent coverage
properties. Our recommendation is a score-based method with a correction for skewness,
but a good alternative is an exact method with a mid-P correction.

Keywords: Bias correction; Coverage; Estimation of proportions; Group testing; Inverse
sampling; Mid-P ; Negative binomial distribution
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1 INTRODUCTION

Group testing (or pooled testing) occurs when individuals are pooled together and tested

as a group for the presence of an attribute. A positive test result indicates that at least one

individual in the group is positive. In most applications the attribute is a disease, whether

it affects humans (e.g. Chen, Tebbs, and Bilder 2009), animals (e.g. Durnez et al. 2008)

or plants and seeds (e.g. Schaarschmidt 2007). Group testing divides into two distinct

fields, with a small overlap between them — identification (or classification) of infected

individuals, and estimation of disease prevalence p, which is the focus of our interest. In

the statistical literature, Dorfman (1943) introduced group testing as a way of assisting

identification, and it grew strongly from there. Estimation took longer to develop, but has

grown rapidly in recent decades, with new areas of application appearing regularly, such

as estimation of the proportion of transgenic plants in a population (Montesinos-Lopez

et al. 2010). The benefits of group testing are clearly greatest when p is low, but they

can be substantial even for moderate prevalence. For example, Verstraeten et al. (1998)

achieved a reduction of 62% in costs for a marginal loss in accuracy when the estimated

prevalence was 7.3%.

In the estimation problem, a binomial model has usually been assumed, in which the

outcomes for the individuals in each group follow i.i.d. Bernoulli distributions with pa-

rameter p. Hepworth (2005) gave a full description of, and justification for, this model.

An extension of this is the use of the beta-binomial distribution, on which there have been

a series of studies in the plant disease literature (e.g. Hughes, Gottwald, and Levy 2002).

All binomial and beta-binomial models are based on the testing of a fixed total number

of groups. Another scenario is where the number of positive groups is fixed, and testing

continues until the required number is observed. This inverse sampling arrangement was

suggested by Katholi and Unnasch (2006) in the context of disease transmission by insect

vectors, an area in which group testing has a long and distinguished history. ‘Inverse

binomial group (pooled) testing’ — inverse sampling of groups with individuals assumed

to follow a Bernoulli distribution — was applied by Rodriguez-Perez et al. (2006) in an

assessment of transmission of the filarial parasite Onchocerciasis volvulus, which causes
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ocular and skin disease. Their study, based in Mexico, involved testing the disease vector

(black flies) in groups of 50. In some communities they tested all available pools (direct

sampling), and in others, inverse sampling was employed, with pools being tested until

the first positive occurred.

Inverse sampling is appealing in situations requiring a quick response, such as a natural

disaster or an outbreak of disease. Combining it with group testing creates even more

powerful options for authorities responding to such events. Even if detection is of primary

interest, it is often important to estimate pathogen prevalence as well. This is also the case

where data collection and monitoring are performed on a continuing basis. For example,

group testing of mosquitoes for West Nile Virus (WNV) is carried out regularly by the

United States Centers for Disease Control and Prevention. A high prevalence may precede

a significant human disease outbreak, and so prevalence estimation is an important aspect

of the investigation. An inverse sampling design, combined with group testing, emerges

as an excellent option.

Pritchard and Tebbs (2011a) examined inverse binomial group testing in depth, consid-

ering several point and interval estimators. They described situations where such testing

would be advantageous, using as examples the transmission of WNV by mosquitoes, and

the potential effect of an outbreak of foot and mouth disease on the meat industry. They

addressed many of the statistical problems arising from inverse sampling, and suggested

several avenues for further research. One of those was improved point estimation, neces-

sary because of the bias associated with the standard estimators. The other concerned

interval estimation, with potential improvements available for both exact and asymptotic

methods. In this paper we present improvements to both point and interval estimators of

p.

1.1 THE NEGATIVE BINOMIAL MODEL

In proposing inverse sampling in the context of group testing, Katholi and Unnasch (2006)

stressed the importance of the statistical model matching the sampling design. They

pointed out that in the case of equal group size s, the total number of groups required to
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obtain n positive groups has a negative binomial distribution rather than a binomial, and

so any inference should reflect this. Point and interval estimates will in general not be the

same for the two models, given the same number of positive groups and same total number

of groups. This result was reported by George and Elston (1993) for inverse sampling of

individuals which stops at the first occurrence of an event, i.e. for the special case s = 1

and n = 1. In this paper we consider s > 1 (otherwise it is not group testing), and

n ≥ 1. The case n = 1, used by Rodriguez-Perez et al. (2006), gives rise to a geometric

distribution. Stopping at the first positive group, as they did, is useful in signaling the

presence of a disease, though it does not in general result in precise estimation of p, due

to the limited information likely to be provided.

1.2 ASSUMPTIONS

We assume that the individuals’ outcomes follow i.i.d. Bernoulli distributions with pa-

rameter p, and that they are randomly pooled into groups of size s. Then a random

number T = t tests are performed until n positive groups are observed. Pritchard and

Tebbs (2011a) also considered unequal group sizes, but this makes the distribution of T

intractable, so they ended up giving most of their attention to the equal group size case.

Pritchard and Tebbs (2011b), in a Bayesian counterpart to their 2011a paper, considered

only equal group sizes. Katholi and Unnasch (2006) commented that the ‘negative bino-

mial model will not support the use of unequal pool sizes’. We recognize that unequal

group sizes can occur in practice, but give our attention to equal group sizes, thus setting

a foundation which will enable some of our results to be extended to unequal group sizes.

We also assume perfect testing, i.e. that sensitivity and specificity are both 1. This is not

always the best assumption, but it is reasonable in many situations, and it would not be

difficult to modify our methods later to incorporate imperfect testing. The perfect testing

assumption was also made by Pritchard and Tebbs (2011a), and Pritchard and Tebbs

(2011b) in their work. An important work on incorporating sensitivity and specificity

parameters for the binomial model was Tu, Litvak, and Pagano (1995); a more recent

treatment was given by Hanson, Johnson, and Gastwirth (2006).
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2 POINT ESTIMATION

2.1 MAXIMUM LIKELIHOOD AND ALTERNATIVES

The probability that a group tests positive is π = 1− (1− p)s. The number of tests per-

formed, T , has a negative binomial distribution with parameters n and π. The maximum

likelihood estimator (MLE) of p is

p̂ = 1−
(

1− n

T

)1/s
(1)

which has the same form as the MLE for the binomial model, whose positive bias has

been well known since the earliest work on group testing (Thompson 1962). However, the

bias is even greater for the negative binomial model, because in addition to the ‘group

testing bias’ caused by the non-linearity of (1), the MLE of the probability parameter of

a negative binomial distribution is already biased. For s = 1 (standard inverse sampling),

an unbiased estimator of p is (n− 1)/(T − 1) (Haldane 1945) compared to the positively

biased MLE n/T .

Pritchard and Tebbs (2011a) noted the severe positive bias of p̂, especially for small n.

Their simulations showed that bias and mean squared error converged to 0 much too slowly

for the MLE to be useful in practice. This led them to look for alternative estimators,

and they considered four: (i) a jackknife estimator, which was very biased negatively; (ii)

a ‘shrinkage’ estimator, in which n/T is replaced by α(n/T ) in (1); this provided some

improvement; (iii) a ‘shift’ estimator, defined as

1−
(

1− n+ 1

T + β

)1/s

and (iv) a ‘combined estimator’, defined as

1−
[
1− α

(
n+ 1

T + β

)]1/s
.

Estimators (iii) and (iv), though always negatively biased, provided the most reduction in

absolute bias and mean squared error, and were barely distinguishable from each other.

For p < 0.1, the absolute bias for both (iii) and (iv) was less than 0.015 for s = 5 or

10, less than 0.010 for s = 30 and less than 0.005 for s = 50. These two alternative
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estimators are in the same vein as the one proposed by Burrows (1987) for the binomial

model, which removes nearly all the bias of the MLE for values of p consistent with the

testing procedure (Hepworth and Watson, 2009). The effect of all of these estimators is

to shrink the proportion of negative groups towards 1, which in turn adjusts the MLE

downwards.

2.2 GART BIAS CORRECTION

A general bias correction to the MLE for a single unknown parameter was described by

Gart (1991). Hepworth and Watson (2009) applied this correction to binomial group

testing with two group sizes, and found it very effective in reducing the bias. In addition,

it was simple to apply, having a closed form. Gart’s correction to the MLE is now the

recommended estimator in the group testing software Pooled Infection Rate (Biggerstaff,

2006). We now apply it to inverse binomial group testing.

Gart (1991) showed that the bias (except for terms of O(n−2)) is

B(p) = −
2dI
dp

+ E
[
d3l
dp3

]
2[I(p)]2

(2)

where I(p) is the Fisher information and l(p) is the log likelihood. B(p) can be found

provided the information is tractable. When group sizes are unequal, T does not have a

negative binomial distribution, and the information is not tractable, but for equal group

sizes it is

I(p) =
ns2(1− p)s−2

(1− (1− p)s)2
(3)

(Pritchard and Tebbs, 2011a). It can be shown (see Appendix) that

dI

dp
= −ns2

(
(s− 2)(1− p)s−3 + (s+ 2)(1− p)2s−3

(1− (1− p)s)3

)
(4)

and

E

[
d3l

dp3

]
=

sn

(1− p)3

×
(
s(s+ 1)(1− p)s(1− (1− p)s) + 2(s(1− p)s + (1− p)s − 1)2

(1− (1− p)s)3
− 2

1− (1− p)s

)
. (5)
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Substituting p̂ into (4) and (5), and then into (2) , gives an estimate of the bias, which

can be subtracted from p̂ to give a bias-corrected estimate, which we label p̂G. (Note that

p̂ > 0 for this problem.)

Consider, for example, n = 5 and s = 20. Table 1 shows p̂ and p̂G for the first ten

outcomes. The large size of the correction is evident, this being necessary because of the

substantial bias of the MLE. In this example, the correction converges to around 20% of

the MLE as t increases; e.g. for t = 100,
p̂G
p̂

= 0.00205
0.00256 = 0.800.

Table 1: Gart bias correction applied to the MLE, n = 5 and s = 20

t 6 7 8 9 10 11 12 13 14 15

p̂ .0857 .0607 .0479 .0397 .0341 .0299 .0266 .0240 .0218 .0201

p̂G .0600 .0460 .0372 .0312 .0269 .0237 .0212 .0191 .0174 .0160

We have excluded the boundary outcome t = 5 (all positive groups), for which p̂ = 1, and

B(p̂) is undefined. It is a highly uninformative outcome, and one to avoid if possible in

group testing. If it occurred here it would suggest that the group size s = 20 is too large

for the underlying p. Hepworth and Watson (2009) discussed the problem of all positive

groups in the binomial setting, and imposed an upper bound ψ on p for the purpose of

evaluation, where ψ is the value of p at which the probability of all positive groups is

0.05, which is 1− (1− (0.05)1/n)1/s. This effectively restricts p to values consistent with

the design of the testing procedure, and is the approach that we adopt in this paper. For

the procedure reported in Table 1, ψ = 0.0391. In general, ψ increases as n increases or s

decreases, since either results in a smaller probability of all positive groups. ψ is also an

appropriate lower 95% confidence limit when p̂ = 1 (Hepworth, 2004).

2.3 BIAS OF CORRECTED ESTIMATOR

T has a negative binomial distribution, and so has an infinite number of outcomes. The

exact bias of the corrected estimator p̂G is therefore an infinite sum, which does not reduce

to anything tractable, as occurred with the estimators proposed by Pritchard and Tebbs
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(2011a). We approximated the bias by

t∗∑
t=n

(
p̂G

(
t− 1

n− 1

)
(1− (1− p)s)n (1− p)s(t−n)

)
− p (6)

where Pr(T > t∗) < 0.0001 for the smallest value of p considered, which we set to ψ/250.

For p larger than this, Pr(T > t∗) is even smaller than 0.0001, so the approximation is very

close to the true value of the bias. The number of outcomes over which the expectation

was computed was generally around 5000. If 0.0001 is replaced by a smaller number (we

tried 0.000001), it makes virtually no difference to the results.

We calculated the bias of p̂G for n = 1, 5, 10 × s = 5, 10, 20, 30, 50. These values were

chosen to represent realistic scenarios and to cover the values tested by Pritchard and

Tebbs (2011a). For the all positives outcome (t = n, p̂ = 1) the bias corrected estimate

proposed by Burrows was used. Table 2 shows the results for the example above, for

selected values of p. It is evident that the correction proposed by Gart is extremely

effective in removing the bias for p < ψ = 0.0391, and almost totally removes the bias for

small p. It overcorrects more as p increases, but the maximum overcorrection for p < ψ

is still less than 2%.

Table 2: Expected value, bias and percentage bias for the estimator corrected for bias
using the Gart correction, for n = 5 and s = 20 (ψ = 0.0391)

p .001 .003 .005 .01 .02 .03 .04 .05 .07 .1

E(p̂G) .0010 .0030 .0050 .0100 .0199 .0297 .0384 .0487 .0659 .0861

Bias(p̂G) .0000 .0000 .0000 −.0000 −.0001 −.0003 −.0006 −.0013 −.0041 −.0139

% Bias(p̂G) .005 .012 .006 −0.06 −0.38 −0.88 −1.59 −2.61 −5.92 −13.9

For the other combinations of n and s (except n = 1), the results are similar. The

correction produces an estimator which is virtually unbiased for values of p less than

about 3ψ/4. Close to p = ψ the bias is negative and is generally between 1% and 2%.

The absolute bias is less for smaller values of s, which is generally true for group testing.

For n = 1, the bias is small in absolute terms, though not trivial relative to p. For

example, with s = 20, E(p̂G) = 0.00106 when p = 0.001, and 0.00211 when p = 0.002,

which is a bias of 6.3% and 5.3% respectively. Because ψ = 0.0026 in this case, we
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need not look further at larger values of p. The larger relative bias for n = 1 is not of

major concern—firstly, because it is already a substantial improvement over the MLE; and

secondly, because a group testing procedure which stops at the first positive is unlikely to

be recommended in practice due to its poor precision, unless resources are very limited

or detection is of prime importance. An example of the very wide interval estimates for

n = 1 is shown in Table 2 of Rodriguez-Perez et al. (2006), where they quote a point

estimate of 2.6 infected flies/10,000 and a 95% confidence interval of (0.06, 9.7).

Figure 1 (top three rows) displays the bias of p̂G for n = 5, 10 × s = 5, 20, 50 and

p ≤ 1.1ψ. The vertical dashed line in each plot is at p = ψ. The plots confirm that the

Gart correction to the MLE has virtually eliminated the bias for p < ψ. The overcorrection

for p close to ψ is very small; even for the worst case of the six considered (n = 10 and

s = 5), the absolute bias is less than 0.001. Comparison with the estimators proposed

by Pritchard and Tebbs (2011a) is complicated by the need for their estimators to adopt

values of α and β that are optimal in some way, which in practice requires setting an upper

bound for p. But even with these parameters optimally chosen, our corrected estimator is a

vast improvement on both the shift estimator (iii) and the combined estimator (iv), whose

best result was to have an absolute bias of less than about 0.005 for n = 5 and s = 50.

Even if their results are restricted to p < ψ to make them more strictly comparable, the

absolute bias of the Gart corrected estimator is smaller by an order of magnitude.

2.4 MEAN SQUARED ERROR OF CORRECTED ESTIMATOR

We now briefly examine the mean squared error (MSE) of p̂G. We approximated the MSE

using the same method as for bias, with p̂G replaced by p̂2G in the summation shown in

(6) to calculate the expected value of the square of the estimator, and hence the variance.

For the same reasons described above, this method gives a very close approximation to

the true value of the MSE.

Figure 1 (bottom row) displays the MSE of p̂G for n = 5 or 10 and s = 20. We have shown

only these two plots because the other combinations of n and s have the same general

shape. For larger n the MSE is smaller for the same p, though greater if we consider
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p relative to ψ. Because the bias of the estimator is very small, it makes a minimal

contribution to the MSE. For example, with n = 5 and s = 20, the contribution of the

(squared) bias is only 0.07% of the MSE at p = ψ. Therefore it is essentially the variance

of the estimator that we are examining.

The reduction in MSE by applying the Gart bias correction to the MLE is massive. For

example, with n = 5 and s = 20, the MSE of the MLE at p = ψ is 0.0466, which is about

100 times greater than that of the corrected estimator. At p = ψ/2, the ratio is about

30. The correction has therefore succeeded not only in almost eliminating the bias, but

in reducing the variance as well.

Pritchard and Tebbs (2011a) plotted MSE against p for their alternative estimators, but

comparisons with our corrected estimator are ambiguous. Their plot for n = 5 and s = 30

shows an MSE of around 0.0005 at p = ψ for their shift and combined estimators, which

is around twice the MSE for the corrected estimator. On the other hand, their plot for

n = 5 and s = 50 shows an MSE of around 0.00003 at p = ψ, which is less than half

that of the corrected estimator. This discrepancy may be due to the very different upper

bounds they used for p: 0.1 for s = 30 (well above ψ = 0.0261), and 0.01 for s = 50

(below ψ = 0.0158). Note that their optimal values of α and β were defined as those

which minimize the MSE for fixed n, s and p, which puts the resulting estimators at an

advantage in comparisons based on MSE.

3 INTERVAL ESTIMATION

3.1 SKEW-CORRECTED SCORE INTERVALS

For inverse group testing, Pritchard and Tebbs (2011a) derived large sample Wald, score

and likelihood ratio confidence intervals for p, and examined coverage probability for

n = 1, 5 and 100, and s = 20. They did not make strong recommendations, but noted

that all three methods performed satisfactorily for n = 100, had complications when

p̂ = 1, and that Wald lower limits could be negative; all of these results are unsurprising.

Examination of their coverage plots suggests that intervals based on the score are the
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most promising of the methods they considered. In their discussion Pritchard and Tebbs

suggested that a skewness correction to score intervals may provide an improvement, as

it did in the binomial case (Hepworth, 2005). We now consider this.

The score function for equal group sizes s is

S(p) =
s

1− p

(
t− n

1− (1− p)s

)
(see Appendix, equation (9)). Pritchard and Tebbs (2011a) derived the score for unequal

group sizes, of which this is a special case. S(p) is asymptotically normal with mean 0

and variance I(p), enabling approximate confidence intervals to be found. Gart (1991)

noted the problem of skewness with score-based intervals, and found the skewness to be

γ(p) =
µ3{S(p)}
{I(p)}3/2

(7)

where

µ3{S(p)} = 3
dI

dp
+ 2E

(
d3l

dp3

)
is the third central moment of S(p). Approximate confidence limits are found by solving

for p the equations

S(p)− 1

6
γ(p)(z2α/2 − 1) = ±zα/2 (8)

where zα/2 is the 1− α/2 quantile of the standard normal distribution. Hepworth (2005)

derived these quantities for binomial group testing with unequal group sizes, and assessed

coverage probability for this and three other asymptotic interval estimation methods. The

skew-corrected score method was his final recommendation. Biggerstaff (2008) examined

confidence interval methods for the difference of two proportions estimated by binomial

group testing, and recommended the skew-corrected score method in that situation too.

All of the quantities given in the expressions above have already been derived while

investigating the bias correction in section 2.2 (see Appendix). Using them, we found

95% confidence intervals for n = 5, 10, 100 × s = 5, 10, 20, 30, 50. The case n = 100 was

included to examine the asymptotic properties of the intervals.

We firstly examined the intervals themselves, to consider the effect of the skewness cor-

rection. Table 3 shows uncorrected and skew-corrected score 95% confidence limits for
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the first ten outcomes for n = 5 and s = 20. The MLE p̂ is shown as a point of reference

for symmetry. We have again excluded the (uninformative) boundary outcome t = 5,

for which p̂ = 1. For this outcome, the uncorrected score interval is (0.0131, 1), and the

skew-corrected interval is undefined because equation (8) has no solution for the lower

limit. A better choice for the lower limit would be ψ = 0.0391. Equation (8) also has

no solution for the lower limit when n = 1, in which case an exact interval or an interval

based on the likelihood ratio could be used (both are described by Pritchard and Tebbs,

2011a).

Table 3: Uncorrected score, skew-corrected score, and mid-P exact 95% confidence limits,
for n = 5 and s = 20

t 6 7 8 9 10 11 12 13 14 15

p̂ .0857 .0607 .0479 .0397 .0341 .0299 .0266 .0240 .0218 .0201

Uncorrected score

lower .0091 .0070 .0057 .0048 .0041 .0036 .0033 .0029 .0027 .0025

upper .1564 .1116 .0883 .0735 .0640 .0560 .0494 .0446 .0409 .0374

Skew-corrected score

lower .0244 .0182 .0147 .0123 .0106 .0093 .0083 .0075 .0068 .0063

upper .2025 .1310 .1008 .0828 .0706 .0617 .0549 .0494 .0450 .0413

Mid-P exact

lower .0251 .0188 .0152 .0127 .0109 .0096 .0086 .0078 .0071 .0065

upper .2060 .1322 .1010 .0827 .0704 .0614 .0546 .0491 .0447 .0410

The uncorrected intervals are almost symmetrical about p̂, and in fact they are similar

to Wald intervals (not shown), especially for larger values of t. Such symmetry is clearly

undesirable with a small sample and small p. The symmetry of the interval is less about

a bias-corrected estimator such as p̂G, but it is still a problem, particularly for estimates

close to 0, for which the lower limit can be negative. For example, when n = 3 and

s = 20, the lower confidence limit is negative for all outcomes except t = 3. For instance,

t = 4 results in an MLE of 0.0670, an uncorrected score interval of (−0.0077, 0.1361) and

a corrected interval of (0.0115, 0.1833). The possibility of a confidence limit outside the

boundary of the parameter space is a substantial disadvantage of any interval estimation
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method. Skew-corrected score intervals have no such disadvantage.

Another feature of all the intervals examined here is that the upper confidence limit is

smaller than the corresponding limit for the binomial model with the same final outcome.

The fact that the last group tested was positive gives more information than just having

n positives in t tests, a point noted by George and Elston (1993) for the simple n = 1 and

s = 1 case. This result is consistent with the expression for the information (3), which

is the same as that for the binomial model but with the denominator squared. Because

1− (1− p)s ≤ 1 the information is greater for the negative binomial case.

3.2 COVERAGE PROPERTIES

The coverage probability for skew-corrected score intervals was calculated for the combi-

nations of n and s mentioned above. Like the bias, the exact coverage is an infinite sum,

and so we approximated it in the same way, using the summation shown in (6), but with

p̂G replaced by an indicator function which is 1 if the interval contains p and 0 otherwise.

We restricted the outcomes included in the summation in the same way as for the bias.

The number of outcomes included was generally more than 10000, which produced an

extremely close approximation to the true coverage.

Figure 2 (top three rows) shows the coverage probability for selected combinations of n

and s and ψ/500 ≤ p ≤ 1.1ψ. There is no need to mark p = ψ because it is obvious — it is

the point at which the coverage jumps from generally centering around the nominal level

(0.95) to a much more conservative level and a subsequent substantial departure from

the nominal. This phenomenon for group testing was noted and explained by Hepworth

(2004). Another point of interest is that for a fixed n, the coverage pattern for different

values of s is almost identical but on a different scale depending on ψ. We have therefore

not included plots for the other combinations of n and s. This extreme similarity for

different s is because different combinations of s and p can produce the same probability

of a positive group π, and for a fixed n, the same negative binomial distribution for T .

The plots show a very favorable coverage pattern, which converges to the nominal level

as n increases. This is confirmed by the summary statistics shown for each plot in Table
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4. MAD denotes the median absolute deviation about the nominal level, which is a useful

overall measure of closeness. p.95 denotes the proportion of coverage values below 0.95.

The mean coverage is virtually identical to the median, and is not shown.

Table 4: Summary statistics for coverage probability of skew-corrected score and mid-P
exact 95% confidence intervals, p ≤ ψ

n s Minimum Median Maximum MAD p.95

Score Mid-P Score Mid-P Score Mid-P Score Mid-P Score Mid-P

5 5 .924 .924 .953 .950 .970 .967 .0057 .0044 .257 .477

5 20 .924 .923 .953 .950 .970 .967 .0057 .0045 .267 .471

10 5 .925 .925 .952 .951 .972 .972 .0041 .0037 .323 .439

10 20 .925 .925 .952 .951 .972 .972 .0042 .0041 .333 .433

50 20 .927 .933 .951 .951 .974 .974 .0033 .0034 .401 .385

100 20 .921 .932 .951 .950 .970 .976 .0029 .0031 .455 .424

Even for n = 5 the coverage is very good, being centered a little above the nominal

level, with a small MAD. It can be seen as an advantage to average above 0.95, as this

is associated with having fewer values below it. Newcombe (1998) suggested that it is

best to obtain a mean coverage a little over the nominal level and a minimum a little

under it, a situation that is achieved by the smaller values of n in particular. Pritchard

and Tebbs (2011a) produced coverage plots for uncorrected score intervals corresponding

to plots (2, 1) and (3, 2) in Figure 2. Neither the uncorrected nor the corrected coverage

stands out as obviously better or worse, and this is confirmed by examining summary

statistics, which we calculated for these two scenarios. For n = 5, s = 20 and p ≤ ψ,

the mean coverage of uncorrected score intervals is 0.956 and the MAD is 0.0063. These

values are similar to the corresponding statistics for the skew-corrected intervals shown

in Table 4, and so the overall coverage probability in itself does not favor the correction.

However, when we consider symmetry of coverage, the correction is shown to be absolutely

necessary. For example, with n = 5 and s = 20, the mean distal (left) noncoverage for

the uncorrected intervals is 0.0001 and the mean mesial (right) noncoverage is 0.0437.

They are therefore effectively one-sided confidence intervals, which is not the intention

at all. The corresponding figures for the skew-corrected intervals are 0.0237 and 0.0236.
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Other combinations of n and s produce similarly excellent symmetry of coverage for the

skew-corrected intervals.

The MADs shown in Table 4 are small by any standards, and tiny for the larger values

of n. Hepworth (2005) reported a MAD of between 0.010 and 0.013 for skew-corrected

score intervals applied to binomial group testing, and similar values for other asymptotic

methods. Tebbs and Bilder (2004) compared seven methods for binomial group testing,

and for 40 groups of size 20 found the mean absolute deviation to be between about 0.007

and 0.020. Note that even with a set group size s, there is no single binomial group testing

arrangement corresponding to a particular negative binomial arrangement, because of the

unknown number of groups arising from the latter. One way of choosing a corresponding

arrangement would be to use the expected number of tests for a mid-range value of p.

For example, with n = 5 and s = 20, if we let p = ψ/2 = 0.0195, E(T ) = 10.3. So the

40 groups used by Tebbs and Bilder can be seen as large in comparison, which further

underlines the smallness of the MADs we obtained.

3.3 MID-P EXACT INTERVALS

Lui (1995) used the relationship between the negative binomial distribution and the in-

complete beta function to derive an exact confidence interval for the probability parameter

of the negative binomial. This is essentially a Clopper-Pearson-type interval with a con-

venient computational form. Pritchard and Tebbs (2011a) extended this to group testing

(with equal-sized groups) by transforming the endpoints of the interval using an inversion

of the relationship π = 1−(1−p)s. They calculated the resulting exact confidence intervals

for the same values of n and s that were used for the asymptotic intervals. The cover-

age plots shown in their paper are very conservative, as happens with two-sided (1 − α)

Clopper-Pearson-type intervals in general, due to the requirement that the probabilities

of the outcomes in each tail sum to α/2. Pritchard and Tebbs suggested that applying a

mid-P correction to these intervals be considered; this we now do. The mid-P correction

is defined as the inclusion of half the probability of the observed outcome in each tail of

the summation.
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Unless a strictly conservative interval (i.e. one with coverage probability which is never

below 1−α) is desired, applying a mid-P correction is an obvious option. The correction

generally has the effect of centering the coverage around a level close to nominal, and

has the advantage of allowing a meaningful comparison with asymptotic methods. Mid-P

exact intervals have been long advocated for discrete problems, beginning with Lancaster

(1961). In binomial group testing they were successfully applied by Hepworth (1996)

and Hepworth (2004). A minor disadvantage is that computation is not as convenient as

with the strictly conservative intervals; because the probability of the observed outcome

is divided between the tails, it requires an iterative solution. Having an infinite number

of outcomes is not an issue in itself because the sum of probabilities can be taken over

the finite number of outcomes in the other tail.

Again, we firstly examined the intervals themselves — see the last two lines of Table 3.

They are very similar to the skew-corrected score intervals, with the lower limit shifted

slightly to the right, and the upper limit shifted slightly to the left except for the first few

outcomes. This strong similarity occurs for other values of n and s (results not shown). It

is not very surprising given the symmetry of coverage observed in the skew-corrected score

intervals (for which we now drop the label ‘skew-corrected’). Exact intervals based on

tail probabilities should have a fair degree of inherent symmetry because they effectively

involve the computation of two one-sided intervals.

We then calculated the coverage probability for mid-P exact intervals, using the same

combinations of n and s as used for the score intervals. The number of outcomes included

in the approximation was the same (> 10000), and so again it was extremely close to the

true coverage. The two bottom plots of Figure 2 show the coverage probability for n = 5

and 50 and s = 20. There is little point in showing plots for different s, as they are almost

identical except for a scaling factor, as was the case for score intervals.

The two plots (and those not shown) are extremely similar to the corresponding plots

for score intervals. This is not surprising, given the similarity of the intervals themselves.

The only obvious difference is that for n = 5, the mid-P coverage centers on the nominal

level even for small p, in contrast to the score coverage, which stays a little above it. For
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n = 50, both center on the nominal level, because n is large enough for the score coverage

to converge. The summary statistics for the mid-P coverage, shown in Table 4 for the

same combinations of n and s evaluated for the score, confirm our impression from the

plots. The median coverage is extremely close to 0.95 for all combinations of n and s,

with a little over half the values above the nominal level. The minima, maxima, and

especially the MADs, are very favorable indeed. Minimum and maximum values for the

two methods hardly differ. For small n the smaller MAD for mid-P intervals is enough

to be an advantage, but the larger proportion of points below 0.95 is a disadvantage. In

any case, the difference in either virtually disappears for large n.

4 DISCUSSION

We have developed very good point and interval estimators of proportions obtained by

inverse binomial group testing with equal group sizes. Pritchard and Tebbs (2011a)

set solid foundations, and we have built on them to produce an almost unbiased point

estimator, and interval estimators with excellent coverage properties. The practitioner

employing group testing using inverse sampling is now well placed in regard to estimation.

There is no need to (wrongly) assume a binomial model, with a fixed number of groups;

the properties of the negative binomial distribution, which applies to the number of groups

tested, have been used throughout this work. Even if testing begins with the simple aim

of detecting a disease, estimation of prevalence often turns out to be of interest as well.

Two-sided confidence intervals would be required in most situations, though a one-sided

upper limit would be useful in indicating whether a threshold has been exceeded.

Gart’s general bias correction to the MLE is extremely effective in addressing the bias for

values of p consistent with the design of the testing procedure. We have considered a prac-

tical range of group sizes and number of positive groups, and there is no reason why the

results would not extend to other combinations. The computation needed for evaluating

the bias is quite complex, due to the infinite number of outcomes. However, calculation

of bias-corrected estimates is easy to implement in practice because the correction has a
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closed-form.

Confidence intervals based on the skewness correction to the score function give excellent

coverage, with small departures from the nominal level and the majority of values above

it. Exact confidence intervals based on the Clopper-Pearson method are very conservative,

but applying a mid-P correction is highly effective in centering the coverage on the nominal

level, even for a small number of positive groups. Computation of either type of interval

requires iteration, but is quick enough to be readily implemented in practice. The code

could be easily added to existing software such as the R program invbingroup referred

to in Pritchard and Tebbs (2011a), located at the R-Forge website http:// r-forge.r-

project.org/.

Either interval estimation method can be recommended, and the intervals do not differ

much between them. The choice depends mainly on how conservative one desires the

coverage to be. Our recommendation is slightly towards skew-corrected score intervals,

because of the smaller proportion of points below the nominal level. The overall closeness,

as measured by the MAD, is excellent, and is almost as good as that of mid-P exact

intervals even for a moderate number of positive groups. A minor disadvantage is that

the expected interval width is a little larger, which is not surprising given its slightly

greater coverage. For example, the expected width arising from the procedure in Table 3

is up to 1.7% larger for skew-corrected score intervals (average 0.8%). But this is a small

difference, both in relative and absolute terms (maximum difference = 0.00042). Another

minor disadvantage of the skew-corrected score method is that the lower confidence limit

cannot be found when all groups are positive. However, many interval estimation methods

require modifications on the boundary of the parameter space (Hepworth 2005), and

the mid-P exact method would be a reasonable replacement because it produces similar

intervals. Likewise for the special case when there is only one positive, which we do not

recommend in general due to the poor precision of estimates.

Choice of group size (where it is possible) is even more important in inverse binomial

group testing than in the binomial case. Obtaining all positive groups is uninformative

and to be avoided in either situation; it arises when the group size is too large. But a
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group size which is too small is also problematic in the negative binomial case, because

of the real possibility of obtaining no positive groups after a considerable number of

tests. If the testing concludes at that point, a binomial model is needed to find an upper

confidence limit for the prevalence, which violates a key modeling assumption of the

testing procedure.

Extension of this work to unequal group sizes would be a useful addition to the field.

Because of the intractability of the (expected) information, it is not possible to simply

generalize the derivations in the Appendix, which we used for both the Gart bias correc-

tion and the skewness correction to the score. However, by using observed information

and simulation, Pritchard and Tebbs (2011a) constructed (uncorrected) score and likeli-

hood ratio intervals for unequal group sizes, and estimated the coverage probabilities by

simulation. This could be extended to skew-corrected score intervals. Observed infor-

mation and its derivative could also be used to find the Gart bias correction for unequal

group sizes.

A greater challenge would be to extend exact confidence intervals (with or without a

mid-P correction) to unequal group sizes. Pritchard and Tebbs (2011a) stated that ‘to

the best of our knowledge, exact intervals for p are not available when pool sizes are

unequal’. There is no unambiguous ordering of the event space, which is necessary for an

appropriate summation of probabilities (Hepworth 1996). This issue, combined with the

infinite number of outcomes, presents a formidable problem.
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APPENDIX: DERIVATION OF COMPONENTS OF

THE BIAS AND THE SKEWNESS CORRECTION

TO THE SCORE

DERIVATIVE OF THE INFORMATION

Let q = 1− p. I(q) = I(p) =
ns2qs−2

1− qs)2 (see (3)).

d

dq

(
qs−2

(1− qs)2

)
=

(s− 2)qs−3(1− qs)2 + 2sq2s−3(1− qs)
(1− qs)4

=
(s− 2)qs−3 + (s+ 2)q2s−3

(1− qs)3
.

Therefore

dI

dp
= −dI

dq
= −ns2

(
(s− 2)(1− p)s−3 + (s+ 2)(1− p)2s−3

(1− (1− p)s)3

)
.

EXPECTATION OF THE THIRD DERIVATIVE OF THE LOG-LIKELIHOOD

Let q = 1− p. The log-likelihood is

l(q) = n log(1− qs) + s(t− n) log q

(see Pritchard and Tebbs (2011a) who gave the log-likelihood for unequal group sizes; this

is a specific case.)
dl

dq
= −nsq

s−1

1− qs
+
s(t− n)

q

which simplifies to
s

q

(
t− n

1− qs

)
. (9)

d2l

dq2
= − s

q2

(
t− n

1− qs

)
− sn

q

(
− sqs−1

(1− qs)2

)
which simplifies to

s

q2

(
n(1− qs(s+ 1))

(1− qs)2
− t
)
. (10)
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T has a negative binomial distribution, so E(T ) = n/(1− qs). Taking the expectation of

(10) gives the expression for I(p) given in (3).

d3l

dq3
=

2ts

q3
− sn d

dq

(
qs(s+ 1)− 1

q2(1− qs)2

)
.

The derivative of the expression in the large bracket is

s(s+ 1)qs+1(1− qs)2 − 2q ((s+ 1)qs − 1) ((1− qs)2 − sqs(1− qs))
q4(1− qs)4

which simplifies to
s(s+ 1)qs(1− qs) + 2 ((s+ 1)qs − 1)2

q3(1− qs)3
.

Using the expression for E(T) above results in

E

(
d3l

dp3

)
= −E

(
d3l

dq3

)
=

sn

(1− p)3

×
(
s(s+ 1)(1− p)s(1− (1− p)s) + 2(s(1− p)s + (1− p)s − 1)2

(1− (1− p)s)3
− 2

1− (1− p)s

)
.
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Figure 1: Bias and MSE of corrected estimator for various combinations of n and s.
Vertical dashed line is at p = ψ.
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Figure 2: Coverage probability for skew-corrected score 95% confidence intervals (top
three rows) for selected combinations of n and s, and for mid-P exact intervals (bottom
row).
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