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Abstract Estimating lower percentiles in reliability for medium-density fiber-

board is an important issue for manufacturers for better assessing and improving

manufacturing processes, plus for guiding better product warranties while seeking

lower costs. Since data may be sparse or costly in the lower tails, estimation of these

percentiles may be difficult. Bootstrapping provides a helpful solution for interval

estimation of lower percentiles when other approaches fail or are not as realistic.

This computer intensive resampling technique estimates more accurately the true

standard error of any population parameter, not just percentiles. Bootstrapping can

be used for parametric models or indeed nonparametric settings when parametric

models are not appropriate. This paper shows the usefulness of bootstrap methods to

better assess the key quality metric of internal bond (IB or tensile strength) of

medium-density fiberboard (MDF) in the critical lower percentiles when data are

limited.
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Introduction

There are many ways to measure reliability of a component subsystem or system

product being manufactured. Compare the classic reliability references of Barlow

and Proschan (1975, 1981) plus the more recent Kuo et al. (1998, 2000), and

Meeker and Escobar (1998, 2004). Often, some key reliability measures are the

mean or median time to failure (Hoffmeyer and Sorensen 2007). Kim and Kuo

(2003) stress the importance of percentiles in optimizing system life in contrast to

other classical approaches, see also Prasad et al. (2001). These lower percentiles

may be of critical importance to manufacturers of engineered wood panels as such

percentiles may represent product failure (Steiger and Arnold 2009).

In this article, bootstrapping methods as a useful approach to understanding

reliability of manufactured medium-density fiberboard (MDF) are discussed. This

study is an outcome of Edwards (2004) and builds upon the study of wood plastics

composites discussed in Young et al. (2008). Bootstrapping’s versatility allows this

approach to be used on a wide range of engineering and manufacturing settings

where standard approaches might yield misleading numbers.

In numerous reliability studies, it is of particular interest to estimate percentiles.

In particular, interest usually lies in the estimation of the lower percentiles. These

lower numbers are helpful for warranty analysis, understanding early failures during

normal usage, improving the specification limits, reducing manufacturing costs, and

avoiding costly product failure claims.

In this study, the authors focus on the needs of estimating percentiles of internal

bond (IB) strengths of MDF measured in kilopascal (kPa), but the estimation

procedure applies much more generally to various manufacturing settings, lifetimes,

service response times, repair times, or any kind of response time (time to assemble

a product, etc.) for improving reliability by more realistic assessment of uncertainty.

To be able to say that improvements have been made, one must be able to

measure reliability expressed in percentiles that allow for statistical uncertainty

inherent in real data. Knowing when to trust confidence intervals and when not to

trust them are crucial for engineers and technical managers (Moses et al. 2003).

Historically, the problem of estimating percentiles was not in finding point

estimators, but in finding standard errors and thus confidence intervals of

percentiles. Serfling (1980) thoroughly and superbly examines the asymptotic

distribution of the sample quantile. In particular, under mild requirements (i.e.,

smoothness of the distribution function), the sample quantiles are asymptotically

normal. This is a useful result since by possessing asymptotic normality, asymptotic

normal confidence intervals for the pth quantile can be constructed. Meeker and

Escobar (1998) discuss the construction of such intervals for the location-scale

distributions used commonly in reliability data analysis (i.e., normal, lognormal,

Weibull). In particular, an asymptotic normal confidence interval for tp is given by:

t̂p � z1�a=2ŝt̂p ð1Þ

where t̂p is the estimated pth quantile, and ŝt̂p is the standard error of the estimate

approximated by:
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ŝt̂p ¼ t̂p Var l̂ð Þ þ 2U�1 pð ÞCov l̂; r̂ð Þ þ U�1 pð Þ
� �2

Var r̂ð Þ
n o1=2

: ð2Þ

Equation (2) is obtained using the delta method; l̂ and r̂ are the maximum

likelihood estimates (MLEs) of the location and scale parameters, respectively, and

U�1 represents the inverse of the cumulative standardized location-scale distribution

of interest. Var(l̂), Var(r̂), and Cov(l̂; r̂) are obtained from the inverse of the

observed information matrix.

When the sample size is sufficiently large, the asymptotic normal intervals can

provide reasonable approximations. Even though these intervals are approximations,

they are usually good enough for practice, provided the sample size is indeed large

enough. However, data may not be plentiful, and in many manufacturing settings,

parametric assumptions may be suspect or actually invalid, leading to a higher risk

of inaccurate results. Asymptotic intervals are often criticized for not being as

realistic for small or even moderate sample sizes. Bootstrapping provides an

alternative strategy that can realistically inform the practitioner by a more accurate

assessment of the variability inherent in a system or process.

Methods

MDF manufacturer dataset

The IB data are from a MDF manufacturer in North America and are sorted based

on three key characteristics: density (kg/m3), thickness (mm), and width (mm).

These three characteristics differentiate the MDF produced by the manufacturer for

various applications. Since MDF in this particular study was produced in continuous

length of sheets, length was not a crucial variable for the purposes here as indicated

by the manufacturer. For the purpose of analysis, the MDF was separated into two

main groups: Group I- standard density and Group II- high density. The high density
type is MDF with densities of 753–769 kg/m3. The standard density type is MDF

with densities of 721–737 kg/m3.

Since there were a number of MDF product types within each group produced by

the manufacturer, two types were selected for a more detailed analysis: in particular,

Type 1 (737 kg/m3, 15.9 mm thick, 1,550 mm wide) from Group I and Type 5

(769 kg/m3, 15.9 mm thick, 1,550 mm wide) from Group 2. These two MDF types

were chosen since they are commonly used MDF product types and in order to

allow for useful comparisons. Type 1, which had the most sales of the producer, had

n = 396 observations while Type 5, a higher valued product, had n = 74

observations. This illustrates two extremes in the data.

Bootstrap methods and confidence intervals

The fundamental idea behind the bootstrap is that the empirical bootstrap

distribution provides an approximation to the theoretical sampling distribution of

the statistic of interest. Meeker and Escobar (1998) contend that bootstrap methods,
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‘‘when used properly, can be expected to be more accurate than the normal-

approximation methods and competitive with the likelihood-based methods.’’

Bootstrapping is a computer intensive statistical method where the basic idea is to

simulate the sampling process a specified (usually large) number of times and obtain

an approximate sampling distribution of interest. This empirical bootstrap

distribution is then used to acquire characteristics (i.e., standard error, bias

estimates, confidence intervals) with regard to the population parameter; see

Chernick (1999) which is an excellent book on many bootstrap methods and their

applications. Efron and Tibshirani (1993) provide an excellent introduction to the

fundamental concepts and applications of bootstrapping. Also, DiCiccio and Efron

(1996) are devoted to the construction of bootstrap confidence intervals.

Bootstrap sampling methods

This study begins with the fully nonparametric bootstrap and adopts the notation of

Martinez and Martinez (2002). In general, the basic nonparametric bootstrap

procedure can be summarized as follows. For a given data set, x = ðx1; x2; . . .; xnÞ of

size n, a population parameter is estimated nonparametrically, say h, by ĥ: For

instance, the pth quantile is estimated as the (p/100)(n ? 1)st observation in x. It is

then sampled with replacement (i.e., a unit is drawn from and then returned to the

sample allowing for the possibility of being drawn again, repeating this process

many times using simulation) from the original data set to obtain a bootstrap sample

of the same size n as the original data denoted by x*b ¼ ðx�b1 ; x
�b
2 ; . . .; x�bn Þ: This

resampling with replacement is usually done a large number of times, B. For each

bootstrap sample, a new estimate of h is calculated, denoted by ĥ�b where b stands

for the bth bootstrap estimate. The empirical bootstrap distribution of ĥ�; is defined

and used as an estimate to the true sampling distribution of ĥ: This method of

sampling is helpful since it has the advantage of no distributional assumptions.

The completely parametric bootstrap, which requires the assumption of a

parametric distribution, is described briefly in Efron and Tibshirani (1993), Meeker

and Escobar (1998), and Chernick (1999). Meeker and Escobar (1998) point out that

the parametric bootstrap has a disadvantage in reliability data problems. That is, the

complete censoring process must be specified given that data from an assumed

parametric distribution are simulated. This may seem to be unproblematic in simple

examples where such specification is easy. For example, the strength data is

complete. However, this can be more difficult for complicated systematic or random

censoring. Thus, the fully parametric form of sampling is not emphasized in this

paper.

As an alternative method, Meeker and Escobar (1998) describe and illustrate

applications of a ‘‘nonparametric’’ bootstrap sampling method for parametric

inference, which is denoted, for the sake of simplicity, as NBSP, for nonparametric

bootstrap sampling for parametric models. This sampling scheme does require

parametric assumptions. However, rather than simulating random variates from an

assumed parametric distribution, the authors sample with replacement from the

original data. For each bootstrap sample of size n, MLEs are obtained based on the

assumed parametric model. These MLEs are used to estimate the population
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parameter of interest and form the bootstrap distribution. For instance, a parametric

estimate of the pth percentile is given by t̂p ¼ exp½l̂þ U�1ðpÞr̂�, which requires the

MLEs l̂ and r̂.

Bootstrap confidence intervals

Different algorithms/methods are available for constructing bootstrap confidence

intervals for population parameters. The authors emphasize the standard normal

bootstrap confidence interval, bootstrap percentile interval, and bias-corrected

bootstrap percentile interval. Much of the theoretical details are omitted. For those

interested in the theoretical underpinnings and additional topics see, among others,

Efron and Tibshirani (1993), DiCiccio and Efron (1996), and Davison and Hinkley

(1997). The standard bootstrap confidence interval is given by:

½ĥ� zða=2Þsĥ;ĥþ zð1�a=2Þsĥ� ð2:1Þ

where ŝĥ is obtained by computing the standard deviation of the B bootstrap

estimates of h and z(a/2) is the a=2th quantile of the standard normal distribution. The

necessary steps are provided in Algorithm 1 below. The algorithms that follow are

given for the fully nonparametric case with the NBSP method alternatives shown in

parentheses.

Algorithm 1: standard bootstrap confidence interval:

Step 1. From the original sample of size n, estimate the parameter(s) of interest

(denoted by ĥ). (For the NBSP method, obtain MLEs of the assumed parametric

distribution and use them to estimate the parameter(s) of interest.)

Step 2. Sample with replacement from the original sample to create a bootstrap

sample of size n.

Step 3. Estimate the parameter(s) of interest from the bootstrap sample to obtain

ĥ�b. (For the NBSP method, calculate the MLE’s of the assumed parametric

distribution based on the bootstrap sample and use them to estimate the

parameter(s).)

Step 4. Repeat steps 2 and 3 a pre-specified B C 1,000 times to form the

bootstrap distribution.

Step 5. Calculate the standard deviation of the B bootstrap estimates (ŝĥ) and use

this to estimate the standard error, sĥ.

Step 6. Use (2.1) to obtain the confidence interval.

Perhaps one of the most obvious ways to construct a confidence interval is to base

it on the quantiles of the bootstrap distribution of estimates, which is known as the

percentile method.

Algorithm 2: bootstrap percentile confidence interval:

Steps 1, 2, 3, and 4. Same as in Algorithm 1.

Step 5. Order the B bootstrap estimates, ĥ�b.

Step 6. Determine the a=2th and 1� ða=2Þth quantiles of the distribution of ĥ�

denoted by ĥ�ða=2Þ and ĥ�ð1�a=2Þ, respectively.

Step 7. Form the 1 - a confidence interval as ½ĥ�ða=2Þ;ĥ�ð1�a=2Þ�.
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Though the percentile method is easy to implement, Chernick (1999) points out

that the percentile method works well if exactly 50% of the bootstrap distribution is

less than ĥ which certainly might not hold and ‘‘in the case of small samples, the

percentile method does not work well.’’ Fortunately, there are methods that help

improve on the percentile method.

The bias-corrected percentile interval (or BC) was introduced in Efron (1981)

and discussed further in Efron (1987). A bias-correction constant is defined as the

amount of difference between the median of the bootstrap estimates ĥ�b and the

estimate, ĥ, from the original sample. Explicitly, the estimate of the bias-correction

constant, denoted by ẑ0, is defined as:

ẑ0 ¼ U�1
NOR

#ðĥ�b\ĥÞ
B

 !

ð2:2Þ

where U�1
NOR represents the inverse cumulative standard normal distribution and #

means ‘‘number of’’. Then, a 100(1 - a)% BC confidence interval for h is given by:

½ĥ�ða1Þ; ĥ�ða2Þ� ð2:3Þ

where a1 and a2 are the new quantities on which to base the percentile confidence

interval endpoints. These quantities are defined as:

a1 ¼ UNORð2ẑ0 þ zða=2ÞÞ ð2:4Þ

and

a2 ¼ UNORð2ẑ0 þ zð1�a=2ÞÞ ð2:5Þ

where UNOR is the cumulative standard normal distribution.

Algorithm 3: bias-corrected percentile bootstrap confidence interval:

Steps 1, 2, 3, and 4. Same as Algorithm 1.

Step 5. Calculate the bias-correction constant, ẑ0, as given in (2.2).

Step 6. Determine the new cutoff percentages, a1 and a2, as given in (2.4) and

(2.5).

Step 7. Order the bootstrap estimates, ĥ�b.

Step 8. Determine the a1th and a2th quantiles of the distribution of ĥ� denoted by

ĥ�ða1Þ and ĥ�ða2Þ respectively.

Step 9. Form the 1 - a confidence interval as given in (2.3).

Results and discussion

For each method of sampling, the standard normal, percentile, and bias-corrected

percentile bootstrap intervals were constructed and compared for the 1st, 10th, 25th,

and 50th (median) percentiles for MDF product Types 1 and 5. These two types

were chosen to aid in the illustration of the benefits and limitations of the bootstrap.

Recall their respective sample sizes given above. For each method of sampling,

B = 2,000 bootstrap samples of the same size as the original sample were created.

538 Wood Sci Technol (2011) 45:533–546

123



In many cases, but not always, this should be a sufficient number of bootstrap

samples to create the confidence intervals. The asymptotic normal confidence

intervals will also be provided in order to compare with the bootstrap results.

Table 1 provides the 95% asymptotic normal confidence intervals for Type 1

MDF, while Table 2 shows the fully nonparametric 95% bootstrap confidence

intervals. In the tables that follow, LCL stands for lower confidence limit and UCL

stands for upper confidence limit. Figure 1 displays the nonparametric empirical

bootstrap sampling distribution for each of the four quantiles. An initial look at the

bootstrap sampling distributions shown in Fig. 1 indicates that the bootstrap

distribution becomes narrower and more peaked as the percentiles increase from 1

to 50, reflecting smaller variability in the sampling distribution.

In Table 2, the intervals for the 1st percentile of Type 1 MDF are rather wide.

They are, in fact, wider than the asymptotic normal intervals. This, again, is to be

expected given the limited amount of data in the extreme lower tail of the IB data.

These wide bootstrap intervals may provide early warnings on uncertainty to the

MDF engineer or technical manager regarding the variability present in the

destructive sampling process. These bootstrap intervals also provide MDF

manufacturers with a defendable metric of quality near the manufacturer’s lower

Table 1 95% Asymptotic normal confidence intervals for IB strength of Type 1 MDF

p t̂p = quantile (kPa) LCL UCL

.01 670.7 657.8 683.6

.10 741.8 732.8 750.9

.25 783.1 775.7 790.6

.50 829.1 822.4 835.8

LCL lower confidence limit, UCL upper confidence limit

Table 2 Fully nonparametric 95% bootstrap confidence intervals for IB strength of Type 1 MDF

p t̂p = quantile (kPa) Interval type LCL UCL

.01 651.1 Standard 601.7 761.3

Percentile 601.2 693.8

Bias-corrected 601.2 684.5

.10 742.5 Standard 728.6 755.1

Percentile 730.4 756.8

Bias-corrected 730.2 754.5

.25 788.4 Standard 782.0 795.5

Percentile 781.9 795.7

Bias-corrected 777.7 793.9

.50 829.4 Standard 821.5 836.0

Percentile 823.2 838.7

Bias-corrected 822.5 838.4

LCL lower confidence limit, UCL upper confidence limit
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specification limit. As the percentiles increase and the ‘‘relative’’ IB data become

more plentiful, the bootstrap confidence intervals (Tables 1 and 2) are more closely

matching the asymptotic intervals. Also, it is useful to acknowledge that the three

different methods for constructing the bootstrap confidence intervals when the data

become plentiful yielded very similar results. Figure 1 yields plots reasonably close

enough to normality for all of these three intervals to be in agreement.

In order to construct intervals based on the NBSP method, it was previously

determined that the underlying parametric distribution for Type 1 MDF is better

modeled by the normal than Weibull or lognormal. Table 3 and Fig. 2 show the

confidence intervals and sampling distribution, respectively, for Type 1 MDF based

on the NBSP sampling method.

The sampling distributions shown in Fig. 2 appear approximately normal for

each of the percentiles. It is also observed that the intervals are similar to the

asymptotic intervals as well as similar among themselves. Certainly, this shows the

benefit of parametric assumptions.

Table 4 provides the 95% asymptotic normal intervals for Type 5 MDF. Table 5

and Fig. 3 display the fully nonparametric intervals and sampling distributions,

respectively, for Type 5 MDF percentiles. Notice the discrete nature and skewness
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Fig. 1 Sampling distribution of percentiles for Type 1 MDF under the fully nonparametric bootstrap
sampling method. a 1st, b 10th, c 25th, and d 50th
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Table 3 NBSP 95% bootstrap confidence intervals for IB strength of Type 1 MDF

p t̂p = quantile (kPa) Interval type LCL UCL

.01 670.9 Standard 654.1 686.9

Percentile 654.3 687.0

Bias-corrected 652.5 685.5

.10 742.0 Standard 731.4 752.1

Percentile 731.2 752.5

Bias-corrected 730.8 751.8

.25 783.3 Standard 775.3 790.9

Percentile 775.4 790.8

Bias-corrected 774.9 790.5

.50 829.0 Standard 822.2 835.9

Percentile 822.4 835.9

Bias-corrected 822.6 836.3

LCL lower confidence limit, UCL upper confidence limit

640 650 660 670 680 690 700
0

50

100

150

200

250

300

350

400

450

500

Internal Bond (kPa)

F
re

qu
en

cy

720 725 730 735 740 745 750 755 760
0

100

200

300

400

500

600

Internal Bond (kPa)

F
re

qu
en

cy

765 770 775 780 785 790 795 800
0

100

200

300

400

500

600

Internal Bond (kPa)

F
re

qu
en

cy

815 820 825 830 835 840 845
0

100

200

300

400

500

600

Internal Bond (kPa)

F
re

qu
en

cy

(a) (b)

(c) (d)

Fig. 2 Sampling distribution of percentiles for Type 1 MDF under the NBSP method. a 1st, b 10th, c
25th, and d 50th
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of the histogram for the 1st percentile. As can be seen in Table 5, the bias-corrected

interval takes this into account whereas the normal and percentile intervals do not.

The sampling distributions shown provide an example of a limitation of the fully

nonparametric bootstrap. When the sample size is relatively small, as is the case of

Type 5 MDF, the sampling distributions appear more discrete. Practitioners are

advised that when these histograms are discrete or appear ‘‘snaggle-toothed’’, as in

Fig. 3a and b, to increase the resampling size to, say, B = 5,000. If the histogram no

longer has a ‘‘snaggle-toothed’’ appearance, then the larger resampling size has

helped. However, if the sampling distribution still maintains a ‘‘snaggle-toothed’’

appearance, then practitioners are advised not to use the fully nonparametric

approach for constructing bootstrap confidence intervals. The NBSP method

intervals for Type 5 MDF are shown in Table 6. The sampling distributions appear

very similarly to those in Fig. 3 and will not be shown in order to conserve space.

The intervals are in greater agreement with the asymptotic intervals and with each

other than with the fully nonparametric case, and the sampling distributions appear

normally distributed for each percentile.

Table 4 95% Asymptotic normal confidence intervals for IB strength of Type 5 MDF

p t̂p = quantile (kPa) LCL UCL

.01 1,037.4 994.4 1,080.5

.10 1,140.0 1,109.8 1,170.2

.25 1,199.6 1,174.8 1,224.3

.50 1,265.7 1,243.4 1,288.1

LCL lower confidence limit, UCL upper confidence limit

Table 5 Fully nonparametric 95% bootstrap confidence intervals for IB strength of Type 5 MDF

p t̂p = quantile (kPa) Interval type LCL UCL

.01 1,030.0 Standard 956.0 1,069.0

Percentile 1,008.7 1,110.9

Bias-corrected 1,008.7 1,039.1

.10 1,140.0 Standard 1,098.8 1,168.2

Percentile 1,110.1 1,164.5

Bias-corrected 1,085.2 1,160.3

.25 1,191.9 Standard 1,148.9 1,227.0

Percentile 1,160.4 1,225.9

Bias-corrected 1,160.4 1,224.5

.50 1,277.4 Standard 1,248.9 1,309.7

Percentile 1,232.8 1,303.1

Bias-corrected 1,231.0 1,302.1

LCL lower confidence limit, UCL upper confidence limit
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Summary and conclusions

This paper has given the reader an opportunity to briefly explore the basic ideas

surrounding bootstrap methods, the construction of bootstrap confidence intervals,

and how it can be applied to the estimation of percentiles (especially lower) from

real manufacturing data using costly (due to primarily human labor along with

material lost) destructive testing on IB. The approach is broader than just improving

manufacturing assessment of reliability (or quality or safety specification)

percentiles; plus it allows for less restrictive assumptions.

For a sufficiently large sample size, as is the case for Type 1 MDF, the fully

nonparametric bootstrap sampling distributions appear continuous and are roughly

normally distributed. It is relatively a matter of preference as to which of the

bootstrap interval types are used. Indeed, they provide very similar results.

However, it is clear that some care should be taken when examining the 1st

percentile. When the sample size is large, nonparametric sampling is an appropriate

choice and can be used more confidently.

Conversely, when the sample size is much smaller, as is the case for Type 5

MDF, and when sampling is done using the fully nonparametric method, the
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Fig. 3 Sampling distribution of percentiles for Type 5 MDF under the fully nonparametric bootstrap
sampling method. a 1st, b 10th, c 25th, and d 50th
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bootstrap sampling distributions can be irregular and often do not resemble a normal

distribution. Furthermore, the three methods discussed for constructing bootstrap

confidence intervals do not yield similar results using the nonparametric bootstrap.

This may complicate the interpretation of such intervals and requires considerations

other than those recommended for the large sample case.

If no distributional assumptions can be made, it is recommended that the

practitioner use the bias-corrected percentile intervals as a first choice. Doing so can

still produce accurate results for the median or lower quartile using the

nonparametric method with a small sample size. However, the authors would

recommend not using bootstrap confidence intervals for the lower percentiles and

instead resort to another approach. As an alternative, one can use kernel smoothing

to better estimate lower percentile in smaller samples (see Polansky 2000). Some

others might even consider doing a Bayesian approach, if expert assessments

warrant. Ideally, the best answer to estimating lower percentiles realistically is to

have a larger sample. Next, three alternatives are suggested to get around this

difficulty of needing a larger sample size when cost is prohibitive.

First, study the outliers and classify as due to measurement error or statistical

variation. One might do bootstrapping in a way that takes into account the outliers in

a data set or determine whether they are truly not representative, thus can be

eliminated. A second approach is to estimate the lower percentiles for IB using the

multiple regression equation in Young and Guess (2002) for estimating IB or to use

a quantile regression approach as in Young et al. (2008), taking advantage of co-

variables, when they are available (see also Parajo et al. 1994; André et al. 2008).

These modeling approaches may yield more helpful estimates on the lower

percentiles. Although these approaches may save sample size, cost, and time from

destructive tests, they would require continuous validation of the models.

Alternatively, engineering judgment and experiences could be incorporated into a

helpful Bayesian approach to get more realistic estimates on the lower percentiles

Table 6 NBSP 95% bootstrap confidence intervals for IB strength of Type 5 MDF

p t̂p = quantile (kPa) Interval type LCL UCL

.01 1,038.1 Standard 991.7 1,080.0

Percentile 994.7 1,083.0

Bias-corrected 989.9 1,079.2

.10 1,140.0 Standard 1,106.1 1,172.1

Percentile 1,108.2 1,172.7

Bias-corrected 1,107.7 1,171.9

.25 1,199.4 Standard 1,172.3 1,225.9

Percentile 1,172.5 1,225.5

Bias-corrected 1,171.8 1,225.3

.50 1,265.6 Standard 1,243.7 1,287.8

Percentile 1,242.6 1,287.0

Bias-corrected 1,242.3 1,286.2

LCL lower confidence limit, UCL upper confidence limit
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when the data are small. A third approach would be to sample using the NBSP

method which may be a more defendable choice when the sample size is small,

provided there is some confidence in the underlying parametric model. Although

requiring parametric assumptions, this method is useful in constructing intervals for

the extreme lower percentiles.

In summary, the sample size is key for bootstrapping methods. Chernick (1999)

tells us that ‘‘the main concern in small samples is that with only a few values to

select from, the bootstrap sample will under represent the true variability as

observations are frequently repeated and the bootstrap samples themselves repeat.’’

This does not mean that the bootstrap should not be used with small sample sizes.

Rather, much greater care should be taken when analyzing the accuracy of results,

using the helpful checks in the histogram plots to see whether ‘‘snaggle-toothed’’

histograms appear or not. It is recommended that in the case of constructing

confidence intervals, more than 1,000 bootstrap samples should be generated. This

number should be increased even more when the sample size is small. Bootstrap-

ping can be used in many other manufacturing settings and on numerous other

reliability parameters besides the lower percentiles targeted for improvements.
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