
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 70, 2004 No. 70, 2005, Pages 83–92

S 0094-9000(05)00642-3
Article electronically published on August 5, 2005

IMPROVED ESTIMATORS FOR MOMENTS
CONSTRUCTED FROM OBSERVATIONS OF A MIXTURE

UDC 519.21

R. MAĬBORODA AND O. KUBAĬCHUK

Abstract. Procedures for improving weighted empirical distribution functions con-

structed from mixtures with varying concentrations are considered. The procedures
are such that the estimators of moments of the mixture components constructed
from weighted empirical distribution functions have specified properties (say, estima-
tors of the variance must not be negative). We prove that the moment estimators
constructed from improved weighted empirical distribution functions have the same
asymptotic behavior as those constructed from the original weighted empirical dis-
tribution functions.

1. Introduction

The model of a mixture with varying concentrations is often used to describe statistical
data. A sample ΞN = {ξj:N , j = 1, . . . , N} in this model (see [1]) consists of independent
random variables ξj:N with distributions

(1) P{ξj:N < x} =
M∑

m=1

wm
j:NHm(x)

where Hm is the distribution function of the component m in the mixture, and wj:N is
the concentration of the component m in the mixture for the observation j.

We consider estimators for moments of distributions of components, namely

(2) ḡk :=
∫

g(x) Hk(dx)

where the function g is fixed, the concentrations of components are known, and the
distributions Hk are unknown.

It is proposed in [2] to use the integral of g with respect to the weighted empirical
distribution function, denoted by F̂N , as an estimator of ḡk:

(3) F̂N (x, a) :=
1
N

N∑
j=1

aj:N 1{ξj:N < x}

where aj:N are nonrandom weighted coefficients chosen so that F̂N (x, a) be a nice es-
timator of Hm(x). (For example, if a = am are the coefficients introduced in [1], then
F̂N (x, a) is the minimax estimator in the class of unbiased estimators for the quadratic
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risk function.) Thus the estimator for ḡ becomes of the form

(4) ĝk:N :=
∫

g(x) F̂N (dx, a) =
1
N

N∑
j=1

aj:Ng(ξj:N).

Unfortunately the weighted coefficients aj:N should necessarily be negative for some j if
one requires nice properties (unbiasedness, say) of the estimator F̂N . As a rule F̂N is
not a probability distribution function in this case. This leads to some problems, say the
estimator for the second moment (g(x) = x2) can be negative, etc.

To avoid the problems mentioned above, a method to improve the weighted empirical
distribution function is proposed in [3]. For example, one can put

(5) F̃+
N (x, a) := min

(
sup
y<x

F̂N (y, a), 1
)

.

It is easy to see that F̃+
N (x, a) is a distribution function of a probability measure. Simi-

larly, one can consider

(6) g̃+
k:N :=

∫
g(x) F̃+

N (dx, a)

as an estimator for ḡ.
The aim of this paper is to study the asymptotic behavior of estimators (6) and similar

estimators as the size of the sample is increasing. The main result is that, under certain
assumptions, the estimators are normal with the same dispersion coefficient as that in
the case of estimators (4). This, in particular, means that the asymptotic behavior of
improved estimators is not worse than that of the estimators (4).

2. Improved weighted empirical distribution functions

Besides the estimator F̃+
N defined by (5) we consider some other improved estimators

of the weighted empirical distribution functions. We assume that all the estimators
defined below are continuous from the left and this corresponds to our definition of the
distribution function Fξ of a random variable ξ:

Fξ(x) = P{ξ < x}.

However, there are some cases where it is convenient to deal with an improved function
continuous from the right. In such a case we “improve” an estimator by considering the
operator

L[f ](x) = lim
y↑x

f(y)

that substitutes the left limit of the function f for its value at any point of discontinuity
of f . Note however that this “improvement” has no sense from the point of view of the
discussion that follows, since all the weighted empirical distribution functions considered
below are of the form

1
N

N∑
j=1

bj 1{ξj:N < x}.

To use such estimators one only needs to evaluate the coefficients bj (algorithms for the
evaluation of the coefficients are described in [3]).
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Let

F̂+
N (x, a) := sup

y<x
F̂N (y, a),(7)

F̂+
N (x, a) := L

[
inf
y>x

F̂N (y, a)
]

,(8)

F̃−
N (x, a) := max(F̂−

N (x, a), 0),(9)

F̃±
N (x, a) :=

1
2

(
F̃+

N (x, a) + F̃−
N (x, a)

)
,(10)

F̂±
N (x, a) =

⎧⎪⎨
⎪⎩

F̂+
N (x, a) if F̂+

N (x, a) ≤ 1/2,
F̂−

N (x, a) if F̂−
N (x, a) ≥ 1/2,

1/2, otherwise.
(11)

In what follows the index ∗ stands for any combination of symbols ˆ or ,̃ with super-
scripts +, or −, or ±, that is, F ∗(x, a) can be any function of the form (5) or (7)–(11).

In the sequel we regard weighted empirical distribution functions as estimators of the
distribution Hk (recall that this is the distribution of the kth component of the mixture).
The process

BN (x) = BN (x, a) :=
√

N
(
F̂N (x, a) − Hk(x)

)
is called the empirical process for F̂N (x, a), while

B∗
N (x) = BN (x, a) :=

√
N (F ∗

N (x, a) − Hk(x))

is called the empirical process for the improved weighted empirical distribution function
F ∗

N (x, a). A point x ∈ R is called a point of growth of a distribution function H if

H(x + δ) − H(x) > 0

for all δ > 0. The set of all points of growth of H is denoted by supp H. By 〈a〉N we
denote the average of a row N of the matrix a. For example,

〈a〉N :=
1
N

N∑
j=1

aj:N , 〈ab〉N =
1
N

N∑
j=1

aj:Nbj:N .

We also put
〈a〉 := lim

N→∞
〈a〉N .

Theorem 2.1. Let
1) supj,N |aj:N | < A < ∞;
2) the average 〈wkwm(a)2〉 exists for all m = 1, . . . , M ;
3) the function Hm is continuous on R for all m = 1, . . . , M ;
4) for all m = 1, . . . , M

supp Hm ⊆ supp Hk;

5) F̂N (x, a) is an unbiased estimator of Hk, that is,

〈awm〉N = 1{k = m}

for all m = 1, . . . , M .
Then there are random functions B̌N (x) and B̌∗

N (x) such that

1. The distribution of B̌N (x) coincides with the distribution of BN (x), while the
distribution of B̌∗

N (x) coincides with the distribution of B∗
N (x).
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2. We have
sup
x∈R

∣∣B̌∗
N (x) − B̌N (x)

∣∣ → 0

in probability as N → ∞.

Remark. To construct the processes B̌N (x) and B̌∗
N (x) one needs, perhaps, to extend

the main probability space.

Proof of Theorem 2.1. The result for B̂+
N is proved in Theorem 2 of [3]. Since

F̂−
N (x, a) = L

[
1 − F̂+

−ΞN
(−x)

]
(by F̂+

−ΞN
(x) we denote the improved weighted empirical distribution function (7) con-

structed from the sample −ΞN = (−ξ1:N , . . . ,−ξN :N )), Theorem 2.1 for B̂−
N follows from

its particular case for B̂+
N . Furthermore,

F̂−
N (x, a) ≤ F̃−

N (x, a) ≤ F̃±
N (x, a) ≤ F̃+

N (x, a) ≤ F̂+
N (x, a).

Similar inequalities hold for B∗
N . This implies that Theorem 2.1 holds for B̃−

N , B̃+
N ,

and B̃±
N . Theorem 2.1 for B̂±

N follows from the estimates

F̂−
N (x, a) ≤ F̂±

N (x, a) ≤ F̂+
N (x, a). �

In what follows we need some results on the asymptotic behavior of BN (x), B+
N (x),

and B−
N (x) as x → ∞ or x → −∞.

Put

(12) H̄(x) =
M∑

m=1

Hm(x).

Theorem 2.2. If the assumptions of Theorem 2.1 are satisfied, then

sup
N

P

{
sup
x<b

|BN (x)|
H̄(x)1/2−δ

> λ

}
→ 0 as λ → ∞,

sup
N

P

{
sup
x<b

∣∣B̂+
N (x)

∣∣
H̄(x)1/2−δ

> λ

}
→ 0 as λ → ∞,

sup
N

P

{
sup
x>b

|BN (x)|(
M − H̄(x)

)1/2−δ
> λ

}
→ 0 as λ → ∞,

sup
N

P

{
sup
x>b

∣∣B̂−
N (x)

∣∣(
M − H̄(x)

)1/2−δ
> λ

}
→ 0 as λ → ∞

for arbitrary b and δ such that 0 < δ < 1/2.

The proof of this theorem is given in Section 4.

3. The asymptotic behavior of improved weighted empirical moments

We noted above that the functions F ∗
N (x, a) can be represented in the following form:

F ∗
N (x, a) =

1
N

N∑
j=1

b∗j:N 1{ξj:N < x}
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where b∗j:N are some coefficients depending on the sample ΞN . Thus estimators of mo-
ments (2) constructed from F ∗(x, a) can be written as follows:

g∗k;N :=
∫

g(x) F ∗
N(dx, a) =

1
N

N∑
j=1

b∗j:Ng(ξj:N).

Our goal is to prove that such estimators are asymptotically normal, that is, to prove
the weak convergence of Y ∗

k;N :=
√

N(g∗k;N − ḡ) to the normal distribution with zero
mathematical expectation.

It is shown in Theorem 2 of [2] that if the assumptions of Theorem 2.1 are satisfied
and

g2
m =

∫
g2(x) Hm(dx)

is finite for all Hm, m = 1, . . . , M , then Yk;N :=
√

N(ĝk;N − ḡ) ⇒ Y where Y has the
normal distribution with zero mean and variance σ2 = 〈(a)2d〉,

dj:N =
M∑

m=1

g2
mwm

j:N −
( M∑

m=1

gmwm
j:N

)2

.

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. If g is a function of
bounded variation on R, then Y ∗

k;N ⇒ Y for all g∗k;N .

Remark. It is sufficient to assume that g is a function of bounded variation on suppHm,
m = 1, . . . , M .

Proof. Note that

Y ∗
k;N =

√
N

(∫
g(x) F ∗

N (dx, a) −
∫

g(x) H(dx)
)

=
∫

g(x) B∗
N (dx, a).

According to Theorem 2.1, there exist processes B̌∗
N (x) and B̌N (x) such that the distri-

bution of

Y̌ ∗
N :=

∫
g(x) B̌∗

N (dx)

coincides with that of Y ∗
k;N , while the distribution of Y̌N :=

∫
g(x) B̌N (dx) coincides with

that of YN . Moreover supx

∣∣B̌∗
N (x) − B̌N (x)

∣∣ → 0 in probability.
Thus∣∣Y̌ ∗

N − Y̌N

∣∣ =
∣∣∣∣
∫

g(x)
(
B̌∗

N (dx) − B̌N (dx)
)∣∣∣∣ =

∣∣∣∣
∫ (

B̌∗
N (x) − B̌N (x)

)
g(dx)

∣∣∣∣
≤ Varx g(x) · sup

x

∣∣B̌∗
N (x) − B̌N (x)

∣∣ → 0

in probability. This implies that the distribution of Y̌ ∗
N (thus the distribution of Y ∗

k;N )
weakly converges to the same limit as Yk;N does, namely to Y .

The theorem is proved. �

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. Assume that g is a monotone
continuous function and that for all m = 1, . . . , M and some 0 < D, C < ∞ and γ > 0

Hm(x) ≤ D

|g(x)|2+γ
for all x < −C,(13)

1 − Hm(x) ≤ D

|g(x)|2+γ
for all x > C.(14)

Then Ŷ ±
k;N ⇒ Y as N → +∞.
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Remark. Any function g that has a bounded variation on all finite intervals can be
represented as g(x) = g+(x) − g−(x) where g+ and g− are monotone functions. Thus
Theorem 3.2 holds for functions of bounded variation on all finite intervals if condi-
tions (13)–(14) are satisfied for both g+ and g−. For example, these conditions for
g(x) = x2 are Hm(x) = O(|x|−4−γ) as x → −∞, and 1−Hm(x) = O(x−4−γ) as x → ∞.

4. Proof of theorems

Lemma 4.1. Let X be a stochastic process on the interval [a, b] and let F be a nonde-
creasing function on the interval [a, b]. If

E |X(t) − X(t1)|γ |X(t2) − X(t)|γ ≤ (F (t2) − F (t1))2α

for some γ > 0 and α > 1/2 and all a ≤ t1 < t < t2 ≤ b, then there exists a constant C
depending on α and γ such that

P

{
sup

t∈[a,b]

|X(t)| ≥ ε

}
≤ P{|X(a)| > ε/2} + P{|X(b)| > ε/2} +

C

ε2γ
|F (b) − F (a)|2α

for all ε > 0.

Proof. If the assumptions of the lemma hold, then there exists a constant K < ∞ such
that

P

{
sup

t∈[a,b]

min{|X(t) − X(t1)|, |X(t2) − X(t)|} ≥ ε

}

≤ 2K

ε2γ
|F (b) − F (a)| sup

t,s∈[a,b]

|F (t) − F (s)|2α−1 =
2K

ε2γ
|F (b) − F (a)|2α

(15)

according to inequality (15.30) in [6]. If |X(t)| > ε for some point t ∈ [a, b], then either
|X(a)| > ε/2, or |X(t) − X(a)| > ε/2, or |X(b) − X(t)| > ε/2, or |X(b)| > ε/2. Thus
inequality (15) implies the lemma. �

Lemma 4.2. Let the assumptions of Theorem 2.1 hold. Then there exists C < ∞
independent of N and such that

P

{
sup
t<x

|B+
N (t)| ≥ ε

}
≤ P

{
sup
t<x

|BN (t)| ≥ ε

}
≤ C

(
H̄2(x)ε−4 + H̄(x)ε−2

)
,(16)

P

{
sup
t>x

|B−
N (t)| ≥ ε

}
≤ P

{
sup
t>x

|BN (t)| ≥ ε

}
≤ C

(
(M − H̄(x))2ε−4 + (M − H̄(x))ε−2

)
for all ε > 0 and x ∈ R.

Proof. We apply Lemma 4.1 on the interval (−∞, x] for γ = 2 and α = 1 to prove the
second inequality in (16). First we estimate

J := E(BN (t) − BN (t1))2(BN (t2) − BN (t))2.

Put
ηj(x, y) := aj:N

(
1{ξj:N ∈ [y, x)} − P{ξj:N ∈ [y, x)}

)
.

Then

BN (t) − BN (s) =
1√
N

N∑
j=1

ηj(s, t)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



IMPROVED ESTIMATORS FOR MOMENTS 89

and

J =
1

N2
E

N∑
j,k,l,m=1

ηj(t, t1)ηk(t, t1)ηl(t2, t)ηm(t2, t)

≤ C

N2

∑
j �=k

{
E(ηj(t, t1))2(ηk(t2, t))2 + E ηj(t, t1)ηj(t2, t)ηk(t, t1)ηk(t2, t)

}

+
1

N2

N∑
j=1

E(ηj(t, t1)ηj(t2, t))2,

since E ηj = 0 and ηk and ηm are independent for k �= m.
Since

E η2
j (t, t1) ≤ E(aj:N )2 1{ξj:N ∈ [t1, t)} ≤ A2H̄([t1, t]) ≤ A2H̄([t1, t2]),

E ηj(t, t1)ηj(t2, t) = −(aj:N)2 P{ξj:N ∈ [t1, t]}P{ξj:N ∈ [t, t2]} ≤ A2H̄2([t1, t2]),

E(aj:N)4 (1{ξj:N ∈ [t1, t]} − P{ξj:N ∈ [t1, t]})2 (1{ξj:N ∈ [t, t2]} − P{ξj:N ∈ [t, t2]})2

≤ CA4H̄3([t1, t2]),

and H̄(R) ≤ M , we get J ≤ C(H̄([t1, t2]))2. Thus Lemma 4.1 implies

(17) P

{
sup
t<x

|BN (t)| > ε

}
≤ P

{
|BN (x)| >

ε

2

}
+

C

ε4

(
H̄(x)

)2
,

since BN (−∞) = H̄(−∞) = 0.
Then

(18) P{|BN (x)| < ε/2} ≤ DBN (x)
ε2

≤ A2H̄(x)
ε

,

since DBN (x) ≤ N−1
∑N

j=1(aj:N)2 P{ξj:N < x}. Now relations (17) and (18) imply the
second inequality in (16).

The first inequality in (16) holds, since B+
N (x) ≥ BN (x) for all x and

B+
N (t) =

√
N sup

y<t

(
F̂N (y, a) − Hk(t)

)
=

√
N sup

y<t

(
BN (y)/

√
N + Hk(y) − Hk(t)

)
≤ sup

y<x
BN (y)

for t < x in view of Hk(y) − Hk(t) ≤ 0 for y ≤ t. The other inequalities of the lemma
can be proved similarly. �

Proof of Theorem 2.2. We prove the first statement of the theorem. The other state-
ments are proved similarly. Put

pλ := P

{
sup
x<b

|BN (x)|
H̄(x)1/2−δ

> λ

}

and let xj be such that H̄(xj) = 2−j . Then

P

{
sup

xj+1≤x≤xj

|BN (x)|
H̄(x)1/2−δ

> λ

}
⊆ Aj

where
Aj :=

{
for all x < xj , BN (x) ≤ λH1/2−δ(xj+1)

}
.
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Applying Lemma 4.2 to the event Aj for εj = λH̄1/2−δ(xj+1) we get

pλ ≤
∞∑

j=1

P{Aj} ≤
∞∑

j=1

C
(
H̄2(xj)ε−4 + H̄(xj)ε−2

)

= C

∞∑
j=1

(
22j

λ42(−2+4δ)j
+

2j

λ22(−1+2δ)j

)
≤ C(λ−4 + λ−2) → 0 as λ → +∞. �

Lemma 4.3. Let the assumptions of Theorem 2.1 hold. If Hk(b) < 1
2 and Hk(c) > 1

2 ,
then

P
{
∃x < b : F̂±

N (x, a) �= F̂+
N (x, a)

}
→ 0, N → ∞,

P
{
∃x > c : F̂±

N (x, a) �= F̂−
N (x, a)

}
→ 0, N → ∞.

Proof. Theorem 2.1 above and Theorem 2.1 in [7] imply that

sup
x

∣∣∣F̂+
N (x, a) − Hk(x)

∣∣∣ → 0

and supx

∣∣F̂−
N (x, a) − Hk(x)

∣∣ → 0 in probability as N → ∞. Since Hk is monotone, the
assumptions of the lemma imply

P

{
sup
x<b

F̂+
N (x, a) > 1/2

}
→ 0, P

{
inf
x>c

F̂−
N (x, a) < 1/2

}
→ 0

as N → ∞.
Taking into account (11) we complete the proof of the lemma. �

Proof of Theorem 3.2. We prove the theorem for the case of an increasing function g.
According to Theorem 2.1, there exist stochastic processes B̌±

N and B̌N such that B̌±
N

has the same distribution as B̂±
N , and B̌N has the same distribution as B̂N . Moreover

sup
x

∣∣B̌±
N (x) − B̌N (x)

∣∣ → 0

in probability as N → ∞. Note that Y̌ ±
k,N =

∫
g(x) B̌±

N (dx) has the same distribution as
Ŷ ±

k,N , while Y̌k,N =
∫

g(x) B̌N (dx) has the same distribution as Ŷk,N . Thus Theorem 3.2
follows, since Y̌ ±

k,N − Y̌k,N → 0 in probability. Note that for all b > 0

J := |Y̌ ±
k,N − Y̌k,N | =

∣∣∣∣
∫ +∞

−∞

(
B̌±

N (x) − B̌N (x)
)

g(dx)
∣∣∣∣ ≤ J1 + J2 + J3

where

J2 =
∫ −b

−∞

∣∣B̌±
N (x) − B̌N (x)

∣∣ g(dx),

J3 =
∫ ∞

b

∣∣B̌±
N (x) − B̌N (x)

∣∣ g(dx).

Now we prove that for all α > 0 and ε > 0 there are numbers b and N0 such that

sup
N>N0

P
{
JN

2 > α
}

< ε,(19)

sup
N>N0

P
{
JN

3 > α
}

< ε.(20)
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This will complete the proof of the theorem, since for all b

JN
1 ≤ (g(b) − g(−b)) sup

|x|<b

∣∣B̌±
N (x) − B̌N (x)

∣∣ → 0

in probability as N → ∞.
Let us prove (19). (The proof of (20) is similar.) Let b be such that

Hk(b) < 1/2.

Then Lemma 4.3 shows that it is sufficient to prove that

sup
N

P
{
J̃N

2 > α
}

< ε

for sufficiently large b where J̃N
2 := JN

21 + JN
22, JN

21 :=
∫ −b

−∞ |BN (x)| g(dx), and

JN
21 :=

∫ −b

−∞
|B+

N (x)| g(dx).

To estimate JN
21 we fix r and 0 < δ < 1

2 such that

γ′ := (2 + γ)(1/2 − δ) > 1.

Theorem 2.2 implies that there exists λ such that supN P{AN} < ε for the events

AN :=
{

sup
t<r

|BN (t)|
H̄1/2−δ(t)

> λ

}
.

If ĀN occurs, then for all t < r

|BN (t)| < λH̄1/2−δ(t) ≤ C

|g(t)|γ′

and, respectively,

JN
21 ≤

∫ −b

−∞

C

(g(t))γ′ g(dt) < ∞

for b < r. Therefore, b can be chosen large enough that JN
21 < α/2 if ĀN occurs. Hence

supN P{JN
21 > α/2} ≤ supN P{AN} ≤ ε.

The term JN
22 is estimated analogously. Therefore (19) is proved and this completes

the proof of the theorem. �
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2. O. Kubăıchuk, Estimation of moments by observations from mixtures with varying concentra-
tions, Theory Stoch. Process. 8(24) (2002), no. 3–4, 226–232. MR2027394 (2005g:62065)
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