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Improved Exact Enumerative Algorithms for the

Planted (l, d)-Motif Search Problem
Shunji Tanaka, Member, IEEE

Abstract—In this paper efficient exact algorithms are proposed
for the planted (l, d)-motif search problem. This problem is
to find all motifs of length l that are planted in each input
string with at most d mismatches. The “quorum” version of
this problem is also treated in this paper to find motifs planted
not in all input strings but in at least q input strings. The
proposed algorithms are based on the previous algorithms called
qPMSPruneI and qPMS7 that traverse a search tree starting
from a l-length substring of an input string. To improve these
previous algorithms, several techniques are introduced, which
contribute to reducing the computation time for the traversal. In
computational experiments, it will be shown that the proposed
algorithms outperform the previous algorithms.

Index Terms—Planted (l, d)-motif search problem, closest
substring problem, exact enumerative algorithm, tree search

I. INTRODUCTION

THIS study will propose efficient exact enumerative algo-

rithms for the planted (l, d)-motif search problem. This

problem is to extract common substrings that appear in every

input string with some mismatches allowed. Formally, it is

described as follows. Let Σ be an alphabet (a set of letters)

and si (1 ≤ i ≤ N ) be input strings of length L over Σ, i.e.,

si ∈ ΣL. The planted (l, d)-motif search problem is to find all

the strings t ∈ Σl such that for all i, there exists an l-length

substring oi of si satisfying dH(t, oi) ≤ d, where dH(x, y)
denotes the Hamming distance between the two strings x and

y. This problem is known to be NP-hard [1]. In this study

the “quorum” version of the problem, which is referred to as

the planted (l, d, q)-motif search problem, is also treated: the

problem to find all the strings t such that there exists an l-
length substring oi of si satisfying dH(t, oi) ≤ d for at least

q input strings si. Hereafter, t and oi are called a motif and

an occurrence, respectively.

The planted (l, d)-motif search problem is also referred to as

the closest substring problem in the literature. Studies on the

closest substring problem are primarily in the field of computer

science, which focus on theoretical worst-case computational

complexity such as PTAS (polynomial-time approximation

scheme), parameterized algorithms, and so on [2]–[8]. On the

other hand, the purpose of studies on the planted (l, d)-motif

search problem is to construct practical algorithms applicable

to motif finding in DNA and protein sequences. This paper

follows the latter line of research. The primary purpose of

this study is to construct practically efficient algorithms for
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the planted (l, d)-motif search problem and the planted (l, d,

q)-motif search problem.

Various methods have been proposed so far to solve the

planted (l, d)-motif search problem heuristically or exactly.

Among them, enumerative methods can be roughly categorized

into four approaches. The first approach searches for the

occurrences oi, in place of the motif t itself, that satisfy

dH(oi, oj) ≤ 2d for any 1 ≤ i, j ≤ N , i ̸= j. For

this purpose, a graph is constructed by assigning a vertex

to every substring of length l in the input strings. A pair

of vertices is connected by an edge when they represent

substrings in different input strings and when the Hamming

distance between the substrings is less than or equal to 2d.

Then, cliques of size N are searched for in this graph. The

existing algorithms in this category, which are sometimes

referred to as the sample-driven approach, are: WINNOWER

[9], cWINNOWER [10], the algorithm in [11], DPCFG [12],

RecMotif [13], ListMotif [14], and TreeMotif [15].

The second approach searches for the motifs directly by

extending the length of the motifs from zero to l. Namely, a

trie of depth l is traversed where a node at depth k represents

a k-length prefix of the motif. The existing algorithms in this

category are SPELLER [16], WEEDER [17], MITRA [18],

CENSUS [19], and RISOTTO [20].

The third approach first enumerates candidate motifs, and

then searches them for feasible ones. The existing algorithms

in this category are Voting Algorithm [21], PMS1 [22], PMS2

[22], PMS3 [22], the algorithm in [23], PMSi [24], PMSP

[24], stemming [25], PMS4 [26], PMS5 [27], PMS6 [28], and

PairMotif [29]. These algorithms differ greatly from each other

on how to generate the candidate motifs. For example, Voting

Algorithm considers all the strings of length l at first, while

the other algorithms restrict the initial candidate set by the

information of input strings.

The last approach searches for the motifs by choosing

a candidate from an input string and then modifying its

letters one by one. Since the Hamming distance between an

occurrence and a motif should be at most d, a search tree of

depth d is traversed where each node represents a candidate

motif. The existing algorithms in this category are PMSPrune

[30], Pampa [31], PMS3p [32], Provable [8], qPMSPruneI

[33], and qPMS7 [33].

Among the above-mentioned algorithms, the most efficient

exact algorithms would be qPMSPruneI and qPMS7 in [33]

when d/l is large. In [33], it was shown by computational

experiments for “challenging” DNA and protein instances

that qPMSPruneI performs well for DNA sequences when

l ≤ 15 and qPMS7 for the other cases. To the best of the
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author’s knowledge, qPMS7 is currently the only algorithm

that can solve DNA instances with N = 20, L = 600
and (l, d) = (23, 9) within 1 day or so. qPMSPruneI and

qPMS7 are not the best from the viewpoint of computational

complexities. However, it does not follow that an algorithm

with a less computational complexity works well for randomly

generated instances. Indeed, Provable [8], which was proposed

to improve the computational complexity, was shown to be at

most competitive with PMSPrune, an older and thus much

slower version of qPMSPruneI.

The purpose of this study is to improve qPMSPruneI and

qPMS7. The key observations are as follows:

1) The algorithms work more efficiently by reducing the

size of search trees.

2) It is also important to reduce the computation time

necessary for checking whether subtrees in a search tree

can be pruned or not.

3) The root node of a search tree is an l-length substring

of an input string, and search trees are traversed for

every substring. If two root substrings are similar, the

corresponding search trees will also be similar.

By noting these, several techniques will be introduced. In

computational experiments, it will be exhibited that the im-

proved algorithms outperform qPMSPruneI and qPMS7, and

that challenging DNA instances with N = 20, L = 600 and

(l, d) = (25, 10) become solvable for the first time in 15

hours or so on a desktop computer (single-threaded).

The rest of this paper is organized as follows. In Section II,

notations and definitions will be introduced. In Section III,

qPMSPruneI and qPMS7 will be described briefly. Next,

qPMSPruneI will be improved in Sections IV and V, and

qPMS7 will be improved in Section VI. Then, in Section VII,

the effectiveness of the proposed algorithms will be verified

by computational experiments. Finally, Section VIII will sum-

marize the results in this paper.

II. NOTATIONS AND DEFINITIONS

First, the notations and definitions in this paper will be

presented.

The input data of the problem are given in TABLE I.

Throughout this paper, all strings are assumed to be over Σ.

The notations and definitions are summarized in TABLE II.

With regard to Ri(a, b, c), Ri(a, b, c)∩Rk(a, b, c) = ∅ holds

for any i ̸= k, and

|a| = |b| = |c| =

∣

∣

∣

∣

∣

5
∪

i=1

Ri(a, b, c)

∣

∣

∣

∣

∣

. (1)

In addition, dH(a, b), dH(b, c), and dH(c, a) are expressed by

dH(a, b) = |R3(a, b, c)|+ |R4(a, b, c)|+ |R5(a, b, c)|, (2)

dH(b, c) = |R2(a, b, c)|+ |R3(a, b, c)|+ |R5(a, b, c)|, (3)

dH(c, a) = |R2(a, b, c)|+ |R4(a, b, c)|+ |R5(a, b, c)|. (4)

III. PREVIOUS ALGORITHMS

In this section, qPMSPruneI and qPMS7 proposed in [33]

will be reviewed.

TABLE I
INPUT OF THE PROBLEM

Σ : The alphabet.
si : The input string of length L over Σ (1 ≤ i ≤ N ).
l : The motif length.
d : The maximum number of mismatches allowed in each occur-

rences.
q : The minimum number of input strings that should have at least

one occurrence.

TABLE II
NOTATIONS AND DEFINITIONS

|a| : The length of a string a.
a[j] : The jth letter of a string a.
a ◦ b : The string generated by concatenating two strings a and

b.
dH(a, b) : The Hamming distance between two strings a and b of

the same length. It is given by the number of positions
j such that a[j] ̸= b[j].

sl
ij

: The l-length substring of an input string si that starts
from the jth position.

Si : The set of all the l-length substrings of an input string
si. Si = {sl

i1
, . . . , sl

i,L−l+1
}.

Sd
i

: The set of all the (l + 1)-length substrings of an input

string si defined by Sd
i
= {sl+1

i0
, . . . , sl+1

i,L−l+1
}. Here,

sl+1

i0
[1] = sl+1

i,L−l+1
[l + 1] = ∅, and dH(∅, α) = ∞ is

assumed for any α ∈ Σ.
B(a, R) : The set of strings in the sphere of radius R centered at

a . B(a, R) = {b | |b| = |a|, dH(a, b) ≤ R}.
nB(l, d) : |B(a, d)| for an l-length string a.

x|P : The substring of x composed by sequencing the letters
of x at the positions in a vector P . For example, x|P =
GCA for x = ACCGAT and P = (4, 2, 5).

P (j) : The jth element of a vector P .
P+(j) : The j-dimensional vector composed of the first j ele-

ments of a vector P .
P−(j) : The (|P | − j)-dimensional vector composed of the last

|P | − j elements of a vector P .
I : The vector of length l defined by I = (1, . . . , l).

R1(a, b, c) : The set of indices j satisfying a[j] = b[j] = c[j].
R2(a, b, c) : The set of indices j satisfying a[j] = b[j] ̸= c[j].
R3(a, b, c) : The set of indices j satisfying c[j] = a[j] ̸= b[j].
R4(a, b, c) : The set of indices j satisfying b[j] = c[j] ̸= a[j].
R5(a, b, c) : The set of indices j satisfying a[j] ̸= b[j], b[j] ̸= c[j],

and c[j] ̸= a[j].

A. qPMSPruneI

Although qPMSPruneI as well as qPMS7 is for the planted

(l, d, q)-motif search problem, q = N is assumed at first for

ease of explanation. Suppose that x0 ∈ S1 is an occurrence of

a motif t. Then, t ∈ B(x0, d) holds because dH(t, x0) ≤ d.

In other words, t ∈ B(x0, d) for some x0 ∈ S1 if t
is a motif. Therefore, qPMSPruneI searches for motifs by

enumerating B(x0, d) for every x0 ∈ S1. Hereafter, x0 is

referred to as the root occurrence. Since letters in at most d
positions are different between the root occurrence x0 and any

y ∈ B(x0, d), y is uniquely expressed by a sequence of the

pairs of a position and a letter as (p1, α1), . . ., (pd′ , αd′ ),

where d′ = dH(x0, y) ≤ d, 1 ≤ p1 < p2 < · · · < pd′ ≤ l, and

x0[pj ] ̸= αj for any 1 ≤ j ≤ d′. In this case, y is given by

y[j] =

{

x0[j] if j ̸= pk, ∀k,

αk if j = pk.
(5)

By noting this, qPMSPruneI traverses a tree of depth d to

enumerate all y ∈ B(x0, d). In this tree, a node at depth k
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corresponds to the kth pair (pk, αk) and thus can be regarded

as representing the string xk expressed by (p1, α1), . . ., (pk,

αk). The string xk differs from its parent string xk−1 only

at position pk. Similarly, a child string xk+1 differs from xk

only at position pk+1.

To find motifs, whether xk is a valid motif or not is checked

at every node (at depth k). This is performed by checking

whether there exists yi ∈ Si satisfying dH(xk, yi) ≤ d for

every i (2 ≤ i ≤ N ). The primary advantage in enumerating

B(x0, d) by the tree traversal is that it is not necessary to

consider all the candidate occurrences in Si (2 ≤ i ≤ N ).

To see this, let us define x01 = x0|I+(pk), x02 = x0|I−(pk),

xk1 = xk|I+(pk), and xk2 = xk|I−(pk) = x02. Let us also

denote by O(xk, d) the set of all the offspring of xk (including

xk itself). Then,

O(xk, d) = {x
′
k ∈ B(x0, d) |x

′
k|I+(pk) = xk1}

= {xk1 ◦ x
′
k2 |x

′
k2 ∈ B(x02, d− dH(xk1, x01))}.

(6)

Hence, for some y to be an occurrence of an offspring of xk,

O(xk, d) ∩ B(y, d) ̸= ∅ (7)

should be satisfied. If we define y1 = y|I+(pk) and y2 =
y|I−(pk), this condition can be rewritten as

B(x02, d− dH(xk1, x01)) ∩ B(y2, d− dH(xk1, y1)) ̸= ∅.
(8)

Therefore, if (8) is not satisfied, y cannot be an occurrence of

any offspring of xk. From the triangle inequality,

2d− dH(xk1, x01)− dH(xk1, y1) ≥ dH(x02, y2) (9)

is necessary for (8) to be satisfied. This condition can be

further transformed into

2d− k ≥ dH(xk1, y1) + dH(x02, y2) = dH(xk, y), (10)

because dH(xk1, x01) = dH(xk, x0) = k. In summary, y
cannot be an occurrence of any (candidate) motif t ∈ O(xk, d)
if (10) is not satisfied. Therefore, it is not necessary to check

this y in the subtree rooted at xk. To take advantage of this

observation, (10) is checked for all y ∈ Si (2 ≤ i ≤ N ) at each

node representing xk, and those breaking (10) are removed

from the corresponding sets when the subtree rooted at xk is

traversed. When Si becomes empty for some i (2 ≤ i ≤ N ),

the subtree can be pruned.

We should compute dH(xk, y) to check whether xk is a

valid motif and whether (10) is satisfied. qPMSPruneI first

computes the Hamming distances dH(t1, y) for all t1 ∈ S1
and all y ∈ Si (2 ≤ i ≤ N ), which takes O(NL2) time. By

using them, the table of dH(x0, y) for x0 ∈ S1 and all y ∈ Si
(2 ≤ i ≤ N ) is constructed and initialized at the root node

of a tree. Then, at each node xk, dH(xk, y) can be computed

incrementally from dH(xk−1, y) of the parent xk−1 in O(1)
time because xk differs from xk−1 only at one position.

When q < N , i.e. the planted (l, d, q)-motif search problem

is considered, S1 does not necessarily have an occurrence of a

motif. It follows that the above algorithm is not valid because

it searches only B(x0, d) (x0 ∈ S1). In this case, at least

one set among S1, . . ., SN−q+1 should include an occurrence.

Hence, the root occurrence x0 of a tree should be taken not

only from S1 but also from S2, . . ., SN−q+1. The pruning

condition should also be modified: The subtree rooted at xk

can be pruned if the number of empty sets among S1, . . .,
SN is more than N − q, or, equivalently, if the number of

nonempty sets (except that from which the root occurrence is

taken) is less than q − 1.

The pseudocode of qPMSPruneI is shown in Fig. 1.

FeasibleOccurrences2(k, xk,Q) in line 3 of qPMSPruneI Tree

removes infeasible candidate occurrences from Q that break

(10). IsMotif(xk, q′, T ) in line 11 checks whether there exist

at least q′(= q − 1) sets in T that have an occurrence within

a Hamming distance d from xk. Namely, it returns “true” if
∣

∣

∣

∣

{Q ∈ T | min
y∈Q

dH(xk, y) ≤ d}

∣

∣

∣

∣

≥ q′. (11)

The time and space complexities of qPMSPruneI are given by

O((N − q + 1)NL2nB(l, d)) and O(NL2), respectively.

B. qPMS7

qPMS7 also searches for motifs by traversing trees. Let

us first assume q = N as in the preceding subsection. The

primary difference from qPMSPruneI is that it utilizes r ∈ S2
as well as x0 ∈ S1 to traverse a tree. In the following, r
is referred to as the reference occurrence. A node at depth

k represents a pair of a position and a letter (pk, αk) as in

qPMSPruneI, while the corresponding string xk is constructed

in a different way. More specifically, xk is expressed by its

parent xk−1 as follows:

1) xk|I+(pk−1) = xk−1|I+(pk−1),

2) xk[pk] = αk ̸= xk−1[pk],
3) If dH(xk|I+(pk), x0|I+(pk

)) > dH(xk|I+(pk), r|I+(pk
)),

xk|I−(pk) = x0|I−(pk). Otherwise, xk|I−(pk) = r|I−(pk).

It is worth noting that only 3) is different from xk in qPM-

SPruneI, where xk|I−(pk) = x0|I−(pk) always holds.

For y to be an occurrence at a node representing xk,

B(xk2, d− dH(xk1, x01)) ∩ B(r2, d− dH(xk1, r1))

∩ B(y2, d− dH(xk1, y1)) ̸= ∅ (12)

should be satisfied, where r1 = r|I+(pk) and r2 = r|I−(pk).

This condition is a natural extension of (8) that utilizes only

xk. In [27], it is shown that (12) can be checked by solving

an ILP (integer linear programming) problem that depends

on the eight variables d − dH(xk1, x01), d − dH(xk1, r1),
d − dH(xk1, y1), and Rj(x02, r2, y2) (1 ≤ j ≤ 5). To avoid

solving the ILP problem every time when (12) is checked,

it is solved in advance for every possible combination of the

eight variables, and an eight-dimensional table is constructed.

qPMS7 employs this table for checking (12), which takes

only O(1) time because all the eight values can be computed

incrementally in O(1) time.

When q < N , the root occurrence x0 and the reference

occurrence r should also be taken from those other than S1 and

S2, respectively, as in qPMSPruneI. Therefore, the pseudocode

of qPMS7 is described as in Fig. 2. In qPMS7, it is sufficient

to consider x0 ∈ Si1 and r ∈ Si2 for 1 ≤ i1 < i2 ≤ N −
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qPMSPruneI

1: M← ∅
2: for i = 1 to N − q + 1 do

3: for j = 1 to L− l + 1 do

4: T ← {Sh | 1 ≤ h ≤ N, h ̸= i}
5: qPMSPruneI Tree(0, slij , 0, T )

6: end for

7: end for

8: Output M

qPMSPruneI Tree(k, xk , pk , T )

1: T ′ ← ∅
2: for all Q ∈ T do

3: Q′ ← FeasibleOccurrences2(k, xk , Q)

4: if Q′ ̸= ∅ then

5: T ′ ← T ′ ∪ {Q′}
6: end if

7: end for

8: if |T ′| < q − 1 then

9: return

10: end if

11: if IsMotif(xk , q − 1, T ′) = true then

12: M←M∪ {xk}
13: end if

14: if k = d then

15: return

16: end if

17: for pk+1 = pk + 1 to l do

18: for all α ∈ Σ \ {xk[pk+1]} do

19: xk+1 ← xk

20: xk+1[pk+1]← α
21: qPMSPruneI Tree(k + 1, xk+1, pk+1, T ′)

22: end for

23: end for

FeasibleOccurrences2(k, xk , Q)

1: Q′ ← ∅
2: for all y ∈ Q do

3: if dH(xk, y) ≤ 2d− k then

4: Q′ ← Q′ ∪ {y}
5: end if

6: end for

7: return Q′

IsMotif(x, q′, T )

1: matched← 0
2: for all Q ∈ T do

3: found← false

4: for all y ∈ Q do

5: if dH(x, y) ≤ d then

6: found← true

7: break the inner loop

8: end if

9: end for

10: if found = true then

11: matched← matched + 1
12: if matched ≥ q′ then

13: return true

14: end if

15: end if

16: end for

17: return false

Fig. 1. Pseudocode of qPMSPruneI

q + 2. The time and space complexities of qPMS7 are given

by O((N − q + 1)2NL3nB(l, d)) and O(NL2), respectively,

It follows that qPMS7 is slower than qPMSPruneI by a factor

of O((N − q + 1)L) in the worst case. However, the former

is superior to the latter in practice when d/l is large or |Σ| is

large.

IV. TRAVERSTRINGSINGLE: AN IMPROVED VERSION OF

QPMSPRUNEI

In this section, three improvements for qPMSPruneI will

be proposed one by one. The algorithms with these is named

TraverStringSingle.

qPMS7

1: M← ∅
2: for i1 = 1 to N − q + 1 do

3: for j1 = 1 to L− l + 1 do

4: for i2 = i1 + 1 to N − q + 2 do

5: for j2 = 1 to L− l + 1 do

6: T ← {Sh | 1 ≤ h ≤ N, h ̸= i1, h ̸= i2}
7: qPMS7 Tree(0, sli1j1

, sli2j2
, sli1j1

, 0, T )

8: end for

9: end for

10: end for

11: end for

12: Output M

qPMS7 Tree(k, x0, r, xk , pk , T )

1: T ′ ← ∅
2: for all Q ∈ T do

3: Q′ ← FeasibleOccurrences3(x0, r, xk , pk , Q)

4: if Q′ ̸= ∅ then

5: T ′ ← T ′ ∪ {Q′}
6: end if

7: end for

8: if |T ′| < q − 2 then

9: return

10: end if

11: if dH(xk, x0) ≤ d and dH(xk, r) ≤ d and IsMotif(xk , q − 2, T ′) = true

then

12: M←M∪ {xk}
13: end if

14: if k = d then

15: return

16: end if

17: for pk+1 = pk + 1 to l do

18: for all α ∈ Σ \ {xk[pk+1]} do

19: z|I+(pk+1−1) ← xk|I+(pk+1−1)

20: z[pk+1]← α
21: xk+1|I+(pk+1) ← z

22: if dH(z, x0|I+(pk+1)) > dH(z, r|I+(pk+1)) then

23: xk+1|I
−

(pk+1) ← xk|I
−

(pk+1)

24: else

25: xk+1|I
−

(pk+1) ← r|I
−

(pk+1)

26: end if

27: qPMS7 Tree(k + 1, x0, r, xk+1, pk+1, T ′)

28: end for

29: end for

FeasibleOccurrences3(x0, r, xk , pk , Q)

1: Q′ ← ∅
2: dx ← d− dH(xk|I+(pk), x0|I+(pk))

3: dr ← d− dH(xk|I+(pk), r|I+(pk))

4: for all y ∈ Q do

5: dy ← d− dH(xk|I+(pk), y|I+(pk))

6: if B(x0|I
−

(pk), dx) ∩ B(r|I
−

(pk), dr) ∩ B(y|I
−

(pk), dy) ̸= ∅ then

7: Q′ ← Q′ ∪ {y}
8: end if

9: end for

10: return Q′

Fig. 2. Pseudocode of qPMS7

A. Strict Check of (8)

qPMSPruneI checks the feasibility of an occurrence y by

employing (10). However, (10) is only a necessary condition

for (8) and hence redundant candidate occurrences may be

considered. Therefore, a necessary and sufficient condition is

checked in the proposed algorithm, which is given by the

following theorem.

Theorem 1: Two strings a and b of the same length satisfy

B(a, da) ∩ B(b, db) ̸= ∅, (13)

if and only if

da ≥ 0, db ≥ 0, (14)

da + db ≥ dH(a, b). (15)
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The proof is direct from the triangle inequality and thus is

omitted.

From this theorem, we can see that not only (10) but also

d ≥ dH(xk1, x01), (16)

d ≥ dH(xk1, y1), (17)

are necessary for (8). Since (16) is always satisfied because

dH(xk1, x01) = k ≤ d, (17) is checked as well as (10). In

practice, the following equivalent condition is checked instead:

d ≥ dH(xk, y)− dH(x02, y2). (18)

As already explained in the preceding section, dH(xk, y),
which also appears in (10), can be computed incrementally.

To compute dH(x02, y2), a table of dH(x0|I−(j), y|I−(j))
(0 ≤ j ≤ l−1) is constructed for all the candidate occurrences

y in advance at the root node of every search tree. This

table construction takes O(NLl) time for one tree, and hence

the total time complexity is given by O((N − q + 1)NL2l).
Therefore, it does not increase the time complexity of the

overall algorithm because l ≤ nB(l, d) holds if d > 0.

B. Elimination of Unnecessary Combinations

When q < N , qPMSPruneI calls qPMSPruneI Tree(0,

slij , 0, T ) by choosing the set of candidate occurrences as

T = {Sh | 1 ≤ h ≤ N, h ̸= i} for 1 ≤ i ≤ N − q + 1
(see the pseudocode of qPMSPruneI in Fig. 1). However,

this choice of T is redundant. For example, suppose that

N = 3 and q = 2. In this case, at least two input strings

should have occurrences. It follows that all the possible

combinations of the input strings that have an occurrence

are {S1, S2, S3}, {S1, S2}, {S1, S3}, and {S2, S3}. Among

these, {S1, S2, S3}, {S1, S2}, and {S1, S3} that include

S1 are considered by calling qPMSPruneI Tree(0, sl1j , 0,

{S2, S3}). To check the last combination {S2, S3}, we need

not assume an occurrence in S1 and hence it is sufficient to

choose a root occurrence from S2 and an occurrence from S3.

In other words, it is sufficient to call qPMSPruneI Tree(0, sl2j ,

0, {S3}). Therefore, line 4 of qPMSPruneI in Fig. 1 can be

modified into “T ← {Sh | i+1 ≤ h ≤ N}.” It is expected that

the algorithm becomes more efficient because the number of

candidate occurrences that should be considered is reduced.

C. String Reordering

In qPMSPruneI, a subtree is pruned if the number of input

strings including an occurrence becomes less than q. Because

the input string from which the root occurrence is taken is

always assumed to include an occurrence (the root occurrence

itself), the pruning condition in qPMSPruneI Tree is given by

|T ′| < q−1 in line 8 of the pseudocode in Fig. 1. It is possible

to check this condition before T ′ is completely constructed

from T . More specifically, |T ′| < q − 1 is satisfied if the

number of the sets in T that newly become empty exceeds

|T | − q + 1. This fact implies that the order of checking the

feasibility of occurrences in Q (in line 3) is important to prune

the subtree as early as possible. From (10), Q ∈ T becomes

empty by the feasibility check of the candidate occurrences

when

min
y∈Q

dH(xk, y) > 2d− k (19)

is satisfied. If we note −1 ≤ dH(xk−1, y) − dH(xk, y) ≤ 1,

we can say that Q is more likely to become empty as

miny∈Q dH(xk−1, y) becomes larger. Therefore, the feasibil-

ity check is applied to Q ∈ T in its nonincreasing order. To

achieve this, the elements of T ′ are sorted in the nonincreasing

order of

min
y∈Q

dH(xk, y) (20)

after the feasibility check is finished. Ties are broken by |Q|:
Q with a smaller cardinality is checked earlier. The time

complexity of this reordering is O(N logN) for each node,

and hence the total time complexity is given by O((N − q +
1)NLnB(l, d) logN).

D. TraverStringSingle

The algorithm with the three improvements in Sec-

tions IV-A-IV-C is named TraverStringSingle. Its pseudocode

is shown in Fig. 3. IsMotifFast is an improved version of

IsMotif in Fig. 1 that returns “false” as soon as the num-

ber of subsets Q ∈ T that do not have any occurrence

exceeds |T | − q′ (see also Section IV-C). Clearly, the time

complexity of TraverStringSingle is given by O((N − q +
1)NL(L + logN)nB(l, d)). The space complexity of qPM-

SPruneI and qPMS7 is O(NL2) due to the computation of

d(x0, y). On the other hand, in TraverStringSingle the table

of dH(x0|I−(j), y|I−(j)) (0 ≤ j ≤ l − 1) is constructed

at the root node of each search tree and dH(x0, y) =
dH(x0|I−(0), y|I−(0)) is computed at the same time. Thus the

space complexity of TraverStringSingle reduces to O(NLl),
although the time complexity for d(x0, y) increases from

O((N − q+1)NL2) of qPMSPruneI and qPMS7 to O((N −
q + 1)NL2l).

V. TRAVERSTRINGDOUBLE: FURTHER IMPROVEMENT ON

QPMSPRUNEI

TraverStringSingle proposed in the preceding section can

further be improved by noting the similarity in the structure of

adjacent search trees. This section will introduce an improved

version of TraverStringSingle, which is named TraverString-

Double.

A. Tree Pairing

Here, q = N is assumed for simplicity of explanation. In

qPMSPruneI, a search tree is traversed from sl1j for every j.

Since slij and sli,j+1 have a common (l− 1)-length substring,

the two search trees rooted at slij and sli,j+1 are assumed to

have a similar structure. This motivates the new algorithm to

traverse the adjacent two search trees at the same time. In the

following, the case when L− l+ 1 is even will be explained.

If L− l + 1 is odd, the last search tree rooted at sl1,L−l+1 is

traversed by TraverStringSingle Tree in Fig. 3, and the other

search trees are paired.
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TraverStringSingle

1: M← ∅
2: for i = 1 to N − q + 1 do

3: for j = 1 to L− l + 1 do

4: T ← {Sh | i + 1 ≤ h ≤ N}
5: TraverStringSingle Tree(0, slij , slij , 0, T )

6: end for

7: end for

8: Output M

TraverStringSingle Tree(k, x0, xk , pk , T )

1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do

4: Q′ ← FeasibleOccurrencesStrict2(k, x0, xk , pk , Q)

5: if Q′ ̸= ∅ then

6: T ′ ← T ′ ∪ {Q′}
7: else

8: missed← missed + 1
9: if missed > |T | − q + 1 then

10: return

11: end if

12: end if

13: end for

14: if IsMotifFast(xk , q − 1, T ′) = true then

15: M←M∪ {xk}
16: end if

17: if k = d then

18: return

19: end if

20: Sort the elements of T ′ in the nonincreasing order of (20).

21: for pk+1 = pk + 1 to l do

22: for all α ∈ Σ \ {xk[pk+1]} do

23: xk+1 ← xk

24: xk+1[pk+1]← α
25: TraverStringSingle Tree(k + 1, x0, xk+1, pk+1, T ′)

26: end for

27: end for

FeasibleOccurrencesStrict2(k, x0, xk , pk , Q)

1: Q′ ← ∅
2: for all y ∈ Q do

3: d0 ← d + dH(x0|I
−

(pk), y|I
−

(pk))

4: if dH(xk, y) ≤ min(d0, 2d− k) then

5: Q′ ← Q′ ∪ {y}
6: end if

7: end for

8: return Q′

IsMotifFast(x, q′, T )

1: matched← 0
2: missed← 0
3: for all Q ∈ T do

4: found← false

5: for all y ∈ Q do

6: if dH(x, y) ≤ d then

7: found← true

8: break the inner loop

9: end if

10: end for

11: if found = true then

12: matched← matched + 1
13: if matched ≥ q′ then

14: return true

15: end if

16: else

17: missed← missed + 1
18: if missed > |T | − q′ then

19: return false

20: end if

21: end if

22: end for

Fig. 3. Pseudocode of TraverStringSingle

The combined search tree is traversed as follows. Let us

define vectors A, B, C, and D by

A = (1, . . . , l), B = (2, . . . , l + 1),

C = (2, . . . , l), D = (1, . . . , l + 1). (21)

The root occurrence xd
0 of length l + 1 is taken from

TraverStringDouble

1: M← ∅
2: for i = 1 to N − q + 1 do

3: j ← 1.

4: while j ≤ L− l + 1 do

5: if j < N − q + 1 then

6: T ← {Sd
h | i + 1 ≤ h ≤ N}

7: TraverStringDouble Tree(0, s
l+1
ij

, s
l+1
ij

, 1, T )

8: else

9: T ← {Sh | i + 1 ≤ h ≤ N}
10: TraverStringSingle Tree(0, slij , slij , 0, T )

11: end if

12: j ← j + 2.

13: end while

14: end for

15: Output M

TraverStringDouble Tree(k, xd
0 , xd

k , pk , T )

1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do

4: Q′ ← FeasibleOccurrencesStrict2Double(k, xd
0 , xd

k , pk , Q)

5: if Q′ ̸= ∅ then

6: T ′ ← T ′ ∪ {Q′}
7: else

8: missed← missed + 1
9: if missed > |T | − q + 1 then

10: return

11: end if

12: end if

13: end for

14: if IsMotifDoubleA(xd
k|A, q − 1, T ′) = true then

15: M←M∪ {xd
k|A}

16: end if

17: if IsMotifDoubleB(xd
k|B , q − 1, T ′) = true then

18: M←M∪ {xd
k|B}

19: end if

20: if k = d then

21: return

22: end if

23: Sort the elements of T ′ in the nonincreasing order of (30).

24: for pk+1 = pk + 1 to l do

25: for all α ∈ Σ \ {xk[pk+1]} do

26: xd
k+1 ← xd

k

27: xd
k+1[pk+1]← α

28: TraverStringDouble Tree(k + 1, xd
0 , xd

k+1, pk+1, T ′)

29: end for

30: end for

31: for all α ∈ Σ \ {xk[1]} do

32: xk+1 ← xd
k|A

33: xk+1[1]← α
34: if IsMotifDoubleA(xk+1, q − 1, T ′) = true then

35: M←M∪ {xk+1}
36: end if

37: end for

38: for all α ∈ Σ \ {xk[l + 1]} do

39: xk+1 ← xd
k|B

40: xk+1[l]← α
41: if IsMotifDoubleB(xk+1, q − 1, T ′) = true then

42: M←M∪ {xk+1}
43: end if

44: end for

Fig. 4. Pseudocode of TraverStringDouble

{sl+1
11 , . . . , sl+1

1,L−l} = S
d
1 \ {s

l+1
10 , sl+1

1,L−l+1} and assumed to

denote two occurrences of length l, xd
0 |A and xd

0 |B , at the same

time. A node at depth k corresponds to a pair of a position

and a letter (pk, αk) as in qPMSPruneI, where 1 ≤ pk ≤ l+1
and αk ∈ Σ \ xd

0 [pk]. The node becomes a leaf when pk = 1
or pk = l + 1, and otherwise, pk (pk ̸= 1, pk ̸= l + 1) is

chosen to satisfy pk−1 < pk (pk−1 ̸= 1, pk−1 ̸= l + 1). The

string xd
k represented by the node is constructed by:

1) If pk = 1, xd
k is an l-length string, and xd

k[1] = αk,

xd
k|(2, ...,l) = xd

k−1|C .

2) If pk = l+1, xd
k is an l-length string, and xd

k|(1, ..., l−1) =
xd
k−1|C , xd

k[l] = αk.
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3) Otherwise, xd
k is an (l + 1)-length string, and

xd
k[j] =

{

xd
k−1[j] if j ̸= pk,

αk if j = pk.
(22)

A pair of candidate occurrences is also denoted by an (l+1)-

length string. More specifically, for yd ∈ Sdj (2 ≤ j ≤ N ),

yd|A and yd|B are assumed to be candidate occurrences of

xd
k|A and xd

k|B , respectively, when |xd
k| = l + 1. From (10)

and (17), for at least yd|A or yd|B to be an occurrence of xd
k

with |xd
k| = l + 1,

2d− k ≥ dH(x
d
k|A, y

d|A), (23)

d ≥ dH(x
d
k|C+(pk−1), y

d|C+(pk−1)), (24)

or

2d− k ≥ dH(x
d
k|B , y

d|B), (25)

d ≥ dH(x
d
k|C+(pk−1), y

d|C+(pk−1)), (26)

should be satisfied. Let us define dt(x
d
0 , y

d) by

dt(x
d
0 , y

d) = min(dH(x
d
0 [1], y

d[1]), dH(x
d
0 [l + 1], yd[l + 1])).

(27)

Then, at least one of (23) and (25) is satisfied when

2d− k ≥ dH(x
d
k|C , y

d|C) + dt(x
d
0 , y

d). (28)

On the other hand, (24) (or (26)) can be transformed into

d ≥ dH(x
d
k|C , y

d|C)− dH(x
d
0 |C−(pk−1), y

d|C−(pk−1)). (29)

Therefore, (28) and (29) are checked for the feasibility of yd.

For this purpose, dH(x
d
k|C , y

d|C) is computed incrementally,

while dH(x
d
0 |C−(pk−1), y

d|C−(pk−1)) is computed from a table

constructed in advance at the root node as dH(x02, y2) in (18).

When two search trees are traversed separately, we should

check (23) and (24) for xd
k|A in the first search tree and (25)

and (26) for xd
k|B in the second search tree. On the other hand,

we only need to check (28) and (29) for xd in the paired search

tree. It follows that the tree pairing enables us to reduce the

computational efforts required for the feasibility check.

B. TraverStringDouble

The algorithm with all the four improvements in Sections IV

and V-A is named TraverStringDouble. Its pseudocode is

shown in Fig. 4. When L − l + 1 is odd, TraverStringS-

ingle Tree is called in line 10 of TraverStringDouble. Fea-

sibleOccurrencesStrict2Double in line 4 of TraverStringDou-

ble Tree returns the candidate occurrences that satisfy (28)

and (29) as FeasibleOccurrencesStrict2 in Fig. 3. In line 23

of TraverStringDouble Tree, the sets in T ′ are sorted in the

nonincreasing order of

min
yd∈Q

(dH(x
d
k|C , y

d|C) + dt(x
d
0 , y

d)), (30)

by taking into account (28) instead of (10). The procedure

IsMotifDoubleA(x, q′, T ) in lines 14 and 34 of TraverString-

Double Tree returns “true” when
∣

∣

∣

∣

{Q ∈ T | min
yd∈Q

dH(x, y
d|A) ≤ d}

∣

∣

∣

∣

≥ q′, (31)

as IsMotifFast for TraverStringSingle in Fig. 3. Similarly,

IsMotifDoubleB(x, q′, T ) in lines 17 and 41 of TraverString-

Double Tree returns “true” when

∣

∣

∣

∣

{Q ∈ T | min
yd∈Q

dH(x, y
d|B) ≤ d}

∣

∣

∣

∣

≥ q′. (32)

The pseudocodes of FeasibleOccurrencesStrict2Double, Is-

MotifDoubleA, and IsMotifDoubleB are omitted here. The

time and space complexities of TraverStringDouble are same

as those of TraverStringSingle: O((N − q + 1)NL(L +
logN)nB(l, d)) and O(NLl), respectively.

VI. TRAVERSTRINGREF: AN IMPROVED VERSION OF

QPMS7

Next, qPMS7 will be improved so that a new algorithm

named TraverStringRef is obtained. In this section, the pro-

posed three improvements will be explained one by one.

A. Feasibility Check without Precomputed Table

In qPMS7, the feasibility check of an occurrence is per-

formed by a table computed in advance. However, it takes 10

seconds to read the table because its size is (l + 1)5(d+ 1)3

(its actual file size is approximately 300MB). To avoid reading

such a large file of the precomputed table, the following

theorem is exploited.

Theorem 2: Three strings a, b and c of the same length

satisfy

B(a, da) ∩ B(b, db) ∩ B(c, dc) ̸= ∅, (33)

if and only if

da ≥ 0, db ≥ 0, dc ≥ 0, (34)

da + db ≥ dH(a, b), (35)

db + dc ≥ dH(b, c), (36)

dc + da ≥ dH(c, a), (37)

da + db + dc ≥ |R2(a, b, c)|+ |R3(a, b, c)|

+ |R4(a, b, c)|+ 2|R5(a, b, c)|. (38)

This theorem is an extension of the necessary and sufficient

condition given in [11] that covers only the case when da =
db = dc. The proof is shown in Supplemental Material.

To apply this theorem to the feasibility check, the string

represented by a node in the search tree is constructed not as

in qPMS7, but as in qPMSPruneI. Namely, the string xk for

a node at depth k that corresponds to (pk, αk) is given by

xk[j] =

{

xk−1[j] if j ̸= pk,

αk if j = pk.
(39)
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Then, applying this theorem to (12) yields

d ≥ dH(xk1, x01), (40)

d ≥ dH(xk1, r1), (41)

d ≥ dH(xk1, y1), (42)

2d ≥ dH(xk1, x01) + dH(xk1, r1) + dH(xk2, r2), (43)

2d ≥ dH(xk1, r1) + dH(xk1, y1) + dH(r2, y2), (44)

2d ≥ dH(xk1, x01) + dH(xk1, y1) + dH(xk2, y2), (45)

3d ≥ dH(xk1, x01) + dH(xk1, r1) + dH(xk1, y1)

+ |R2(xk2, r2, y2)|+ |R3(xk2, r2, y2)|

+ |R4(xk2, r2, y2)|+ 2|R5(xk2, r2, y2)|. (46)

By substituting

xk2 = x02, (47)

dH(xk1, x01) = k, (48)

dH(xk1, r1) = dH(xk, r)− dH(x02, r2), (49)

dH(xk1, y1) = dH(xk, y)− dH(x02, y2) (50)

into the above inequalities, we obtain

d ≥ k, (51)

d ≥ dH(xk, r)− dH(x02, r2), (52)

d ≥ dH(xk, y)− dH(x02, y2), (53)

2d− k ≥ dH(xk, r), (54)

2d ≥ dH(xk, r) + dH(xk, y)

− dH(x02, r2)− dH(x02, y2) + dH(r2, y2), (55)

2d− k ≥ dH(xk, y), (56)

3d− k ≥ dH(xk, r) + dH(xk, y)

− dH(x02, r2)− dH(x02, y2)

+ |R2(x02, r2, y2)|+ |R3(x02, r2, y2)|

+ |R4(x02, r2, y2)|+ 2|R5(x02, r2, y2)|

= dH(xk, r) + dH(xk, y)− |R4(x02, r2, y2)|. (57)

Here, (2) and (4) are employed to derive (57). Since (51)

is trivial and thus can be removed, we should check (52)–

(57). For this purpose, dH(xk, r) and dH(xk, y) are computed

incrementally, while dH(x02, r2), dH(x02, y2), dH(r2, y2),
and |R4(x02, r2, y2)| are computed from a table constructed

at the root node.

It is worth noting that (52) and (54), which correspond to

(18) and (10), respectively, can be checked independently of

y.

B. Elimination of Unnecessary Combinations

The same argument holds for qPMS7 as that in Section IV-B

for qPMSPruneI, and unnecessary checks can be suppressed

when q < N . In this case, line 6 of qPMS7 in Fig. 2 is

replaced by T ← {Sh | i2 + 1 ≤ h ≤ N}.

C. String Reordering

This improvement is also similar to that in Section IV-C

for qPMSPruneI. It is expected that the subtree rooted at

the current node is pruned as early as possible by checking

TABLE III
NUMBER OF NODES AT EACH DEPTH (|Σ| = 4, l = 6, AND d = 3)

depth
(x0, r)

(AAAAAA, AAGGGG) (AAAAAA, GGGGAA)

0 1 1
1 16 10
2 60 42
3 112 112

total 189 165

the feasibility of the occurrences y ∈ Q (Q ∈ T ) in

the nonincreasing order of (20). The difference is that it is

also applied when the input string from which the reference

occurrences are taken is determined. Since the number of

strings in B(x0, d) ∩ B(r, d) is a nondecreasing function of

dH(x0, r), the reference occurrences r are taken from the input

string Si that maximizes

min
r∈Si

dH(x0, r), (58)

to reduce the size of the search tree.

D. Position Reordering

To make the pruning of subtrees as efficient as possible, the

structure of the search trees is investigated.

As explained in Section VI-A, (52) and (54) can be checked

independently of the candidate occurrences y, and only those

nodes satisfying (52) and (54) are traversed in a search tree.

The observation here is that the structure of the search tree

changes in accordance with x0 and r even if dH(x0, r) does

not change. For example, suppose |Σ| = 4, l = 6, and

d = 3, and consider the two cases where (x0, r)=(AAAAAA,

AAGGGG) and (x0, r)=(AAAAAA, GGGGAA). In the for-

mer case, the number of feasible nodes at depth 1 satisfy-

ing (52) and (54) is 16 (CAAAAA, GAAAAA, TAAAAA,

ACAAAA, AGAAAA, ATAAAA, AACAAA, AAGAAA,

AATAAA, AAACAA, AAAGAA, AAATAA, AAAACA,

AAAAGA, AAAATA, AAAAAG), while it is 10 (CAAAAA,

GAAAAA, TAAAAA, ACAAAA, AGAAAA, ATAAAA, AA-

CAAA, AAGAAA, AATAAA, AAAGAA) in the latter case.

Moreover, the total number of nodes in the two cases are 189

and 165, respectively, as summarized in TABLE III. It follows

that the tree traversal is more efficient and the pruning of a

subtree cuts more nodes in the latter case than in the former

case. It should be noted that this property does not always

hold. The above two cases do not make any difference when

dH(x0, r) ≥ 2d − 1, and, moreover, the opposite property

is true when dH(x0, r) is small (typically, dH(x0, r) ≤ d).

However, we can almost always assume dH(x0, r) > d
because r is chosen from the input string Si that maximizes

(58).

To take advantage of this observation, the positions of

strings are reordered so that the positions where the letters

of x0 and r are different come earlier. To achieve this, an l-
dimensional vector J is computed for each pair of x0 and r
at the root node of the search tree, where

x0[J(i)] ̸= r[J(i)], 1 ≤ i ≤ dH(x0, r), (59)

x0[J(i)] = r[J(i)], dH(x0, r) + 1 ≤ i ≤ l. (60)
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TraverStringRef

1: M← ∅
2: for i1 = 1 to N − q + 1 do

3: for j1 = 1 to L− l + 1 do

4: T ← {Sh | i1 + 1 ≤ h ≤ N}
5: Sort the elements of T in the nonincreasing order of (58)

6: while |T | ≥ q − 2 do

7: R ← first element of T
8: T ← T \ R
9: for all r ∈ R do

10: Initialize the vector J
11: if dH(sli1j1

, r) ≤ 2d then

12: TraverStringRef Tree(0, sli1j1
, r, sli1j1

, 0, T , J)

13: end if

14: end for

15: end while

16: end for

17: end for

18: Output M

TraverStringRef Tree(k, x0, r, xk , pk , T , J)

1: T ′ ← ∅
2: missed← 0
3: for all Q ∈ T do

4: Q′ ← FeasibleOccurrencesReordered3(k, x0, r, xk , pk , Q, J)

5: if Q′ ̸= ∅ then

6: T ′ ← T ′ ∪ {Q′}
7: else

8: missed← missed + 1
9: if missed > |T | − q + 2 then

10: return

11: end if

12: end if

13: end for

14: if IsMotifFast(xk , q − 2, T ′) = true then

15: M←M∪ {xk}
16: end if

17: if k = d then

18: return

19: end if

20: Sort the elements of T ′ in the nonincreasing order of (20).

21: for pk+1 = pk + 1 to l do

22: for all α ∈ Σ \ {xk[J(pk+1)]} do

23: xk+1 ← xk

24: xk+1[J(pk+1)]← α
25: d0 ← d + dH(x0|J

−
(pk+1), r|J

−
(pk+1))

26: if dH(xk+1, r) ≤ min(d0, 2d− k − 1) then

27: TraverStringRef Tree(k + 1, x0, r, xk+1, pk+1, T ′, J)

28: end if

29: end for

30: end for

Fig. 5. Pseudocode of TraverStringRef

Since its time complexity is O(l), this reordering does not

affect the overall time complexity of the algorithm. It is

necessary to modify the feasibility check as well as the

branching to take this reordering into account. However, this

modification is direct and thus the detailed explanation is

omitted.

E. TraverStringRef

The new algorithm TraverStringRef with the the four im-

provements from qPMS7 is summarized in Fig. 5. In line 11

of TraverStringRef and in line 26 of TraverStringRef Tree,

(52) and (54) are checked at the same time. FeasibleOccur-

rencesReordered3 in line 4 of TraverStringRef Tree returns

candidate occurrences that satisfy (53), (55), (56), and (57),

where x02, y2, and r2 are replaced by

x′02 = x0|J−(pk), y′2 = y|J−(pk), r′2 = r|J−(pk), (61)

respectively, due to the position reordering in the preceding

subsection. Its pseudocode is omitted. The time complexity

of TraverStringRef is given by that of TraverStringSingle and

TABLE IV
PARAMETER SETTING FOR DATA SET

parameter setting

|Σ| 4 (DNA), 20 (protein)
N 20
L 600
q 10, 20
l 13, 15, 17, . . .

TraverStringDouble multiplied by O((N − q + 1)L) and thus

O((N − q + 1)2NL2(L+ logN)nB(l, d)) (see also the time

complexity of qPMS7 in Section III-B). The space complexity

does not change from TraverStringSingle and TraverString-

Double, and is given by O(NLl).

VII. COMPUTATIONAL EXPERIMENTS

The effectiveness of the proposed algorithms will be ex-

amined by computational experiments. As in previous studies

including [33], the random data set was generated according

to the FM (fixed number of mutations) model [9]. First, N
base strings of length L were generated randomly so that each

letter in Σ appears with the equal probability 1/|Σ|. Then, a

motif of length l was generated in the same manner. Next, q
occurrences were generated from the motif by mutating letters

at exactly d random positions1 Finally, they were planted in q
input strings chosen randomly, where the planting locations

were also determined randomly. The parameter setting is

summarized in Table IV. The remaining parameter, d, was

determined to generate “challenging” instances. Its choice

follows [33]. For each combination of parameters, 10 instances

were generated.

The proposed algorithms were written in C, whose

source code is downloadable from https://sites.google.com/

site/shunjitanaka/motif. The computation was performed on a

laptop computer with an Intel Core i7-3610QM CPU (2.3GHz)

and 16GB memory. In the tables shown from now on, Traver-

StringSingle, TraverStringDouble, and TraverStringRef are

abbreviated to TravStrS, TravStrD, and TravStrR, respectively.

A. Comparison with qPMSPruneI and qPMS7

First, TraverStringDouble and TraverStringRef will be com-

pared with qPMSPruneI and qPMS7, respectively. The pro-

gram of qPMS7 was downloaded from http://pms.engr.uconn.

edu/downloads/qPMS7.zip. Since the program of qPMSPruneI

was not available, the CPU times of qPMSPruneI were esti-

mated from those given in [33] by using the results of qPMS7.

More specifically, it was calculated as follows: (The average

CPU time of qPMS7 obtained in this study)×(The ratio of the

CPU time of qPMSPruneI to that of qPMS7 in [33]). It should

be noted that qPMS7 did not work correctly for the protein

instances with |Σ| = 20 because the program always assumes

|Σ| = 21 for them.

The results are summarized in Tables V and VI, where

the minimum (min), average (ave), and maximum (max) CPU

1In [33], the authors claims that the data set was generated by mutating
letters at most d positions. However, it seems that letters at exactly d positions
were mutated also in their data set.
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TABLE V
COMPUTATIONAL RESULTS FOR DNA SEQUENCES (|Σ| = 4)

(a) q = 20 (100% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7

min 4.0 10.9 39
(13, 4) ave 4.0 11.3 14.3 39.4

max 4.2 11.6 40
min 27.6 45.5 129

(15, 5) ave 28.3 46.5 132.6 132.6
max 29.8 48.3 134
min 199.3 175.2 499

(17, 6) ave 202.4 179.5 1046.8 509.5
max 209.2 182.3 529
min 1527.4 728.4 2182

(19, 7) ave 1547.4 744.6 8465.6 2240.9
max 1581.8 775.5 2325
min 10781.7 3039.2 10367

(21, 8) ave 10943.9 3098.6 71749.6 10994.6
max 11116.9 3192.1 11352
min 12721.9 52741

(23, 9) ave 13027.0 56097.2
max 13385.5 62164
min 51796.5

(25, 10) ave 53781.6
max 56628.8

∗Estimated from [33] and the results of qPMS7.

(b) q = 10 (50% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7

min 2.0 5.5 31
(13, 3) ave 2.0 5.5 12.8 31.0

max 2.0 5.6 31
min 13.3 31.5 151

(15, 4) ave 13.5 32.0 126.7 152.0
max 13.6 32.2 153
min 120.7 162.9 839

(17, 5) ave 123.0 166.1 1116.5 850.7
max 124.5 168.8 857
min 1137.7 763.1 4770

(19, 6) ave 1148.6 779.9 10540.8 4865.0
max 1174.2 794.2 4978
min 10020.7 3659.2 28820

(21, 7) ave 10067.7 3700.6 29258.0
max 10149.8 3745.7 29856
min 17676.5

(23, 8) ave 17922.2
max 18181.7

∗Estimated from [33] and the results of qPMS7.

times are shown in seconds for DNA sequences (|Σ| = 4) and

protein sequences (|Σ| = 20), respectively. From these tables,

we can verify that TraverStringDouble and TraverStringRef

outperform qPMSPruneI and qPMS7, respectively. In the case

of the DNA sequences, TraverStringDouble is 5 or 6 times as

fast as qPMSPruneI, and TraverStringRef is 3 or 4 times as

fast as qPMS7 when q = 20 (TABLE V(a)). The advantage of

the proposed algorithms is more apparent when q = 10 (TA-

BLE V(b)), probably due to the improvement in Sections IV-A

and VI-A. Indeed, TraverStringDouble is 10 times as fast as

qPMSPruneI (except for l = 13), and TraverStringRef is 5

or 6 times as fast as qPMS7. With regard to the relation

between the proposed two algorithms, TraverStringDouble

is faster than or at least competitive with TraverStringRef

when l ≤ 17. It will be because the time complexity of

TraverStringDouble is O((N−q+1)NL(L+logN)nB(l, d))
in the worst case, while that of TraverStringRef is O((N −

TABLE VI
COMPUTATIONAL RESULTS FOR PROTEIN SEQUENCES (|Σ| = 20)

(a) q = 20 (100% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7

min 98.5 3.2 59
(13, 6) ave 105.6 3.3 916.5 61.1

max 113.7 3.4 64
min 644.2 3.9 80

(15, 7) ave 666.5 4.1 6790.7 89.6
max 720.9 4.5 114
min 2262.7 4.9 104

(17, 8) ave 2394.8 6.0 34680.0 231.2
max 2746.1 9.6 838
min 7554.7 9.4 157

(19, 9) ave 11379.0 17.8 1891.2
max 18031.7 37.8 8672
min 44.2

(21, 10) ave 109.6
max 286.9
min 125.8

(23, 11) ave 1068.3
max 2070.3
min 1712.1

(25, 12) ave 8333.8
max 25639.2

∗Estimated from [33] and the results of qPMS7.

(b) q = 10 (50% match)

(l, d) TravStrD TravStrR qPMSPruneI∗ qPMS7

min 6.8 3.2 18
(13, 5) ave 7.0 3.2 97.1 18.2

max 7.2 3.2 19
min 27.9 5.2 29

(15, 6) ave 30.3 5.3 403.3 32.7
max 33.9 5.3 43
min 215.9 9.1 51

(17, 7) ave 236.7 9.2 74.0
max 262.0 9.3 146
min 671.7 15.2 87

(19, 8) ave 1328.5 16.3 413.9
max 4158.6 21.7 865
min 25.2 359

(21, 9) ave 28.0 2551.7
max 32.6 10653
min 45.5

(23, 10) ave 141.0
max 628.0
min 94.0

(25, 11) ave 406.0
max 1788.4
min 226.1

(27, 12) ave 8956.5
max 68598.1

∗Estimated from [33] and the results of qPMS7.

q+ 1)2NL2(L+ logN)nB(l, d)) due to the consideration of

reference occurrences. Nonetheless, its effect makes Traver-

StringRef outperform TraverStringDouble when l ≥ 19.

In the case of the protein sequences (TABLE VI), qPMS7

(and qPMSPruneI, probably) would be slower than was ex-

pected because of an additional unnecessary letter (|Σ| = 21
instead of |Σ| = 20). Even if it is taken into account, the

improvement from the previous algorithms is more than that

for the DNA sequences: For the instances with (l, d, q) =
(17, 8, 20), TraverStringDouble and TraverStringRef are ap-

proximately 15 times and 40 times as fast as qPMSPruneI

and qPMS7, respectively. A similar tendency is observed in
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TABLE VII
EFFECT OF IMPROVEMENTS FOR DNA SEQUENCES

(TRAVERSTRINGDOUBLE)

(a) (l, d) = (17, 6), q = 20 (100% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio

min 277.9 1.35 372.9 1.82 641.0 3.11
ave 280.7 1.39 379.3 1.87 648.5 3.20
max 283.4 1.39 384.0 1.91 654.1 3.26

(b) (l, d) = (17, 5), q = 10 (50% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio

min 168.9 1.39 265.4 2.17 347.5 2.84
ave 172.1 1.40 269.2 2.19 353.2 2.87
max 173.8 1.40 272.9 2.20 362.7 2.95

TABLE VIII
EFFECT OF IMPROVEMENTS FOR PROTEIN SEQUENCES

(TRAVERSTRINGDOUBLE)

(a) (l, d) = (17, 8), q = 20 (100% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio

min 3305.5 1.46 5417.9 2.27 18553.4 7.67
ave 3531.2 1.47 6116.8 2.55 21590.1 9.00
max 4050.4 1.49 7681.9 2.80 27381.6 10.02

(b) (l, d) = (17, 7), q = 10 (50% match)

TravStrS
TravStrS TravStrS
w/o IV-C w/o IV-C, IV-A

time ratio time ratio time ratio

min 282.9 1.31 433.6 1.99 786.2 4.09
ave 310.3 1.45 490.2 2.58 923.5 6.05
max 344.6 1.60 532.7 3.18 1029.9 8.93

the case of q = 10. In addition, TraverStringRef always

outperforms TraverStringDouble as qPMS7 outperforms qPM-

SPruneI. Another difference from the DNA sequences is that

the variation of the CPU times is more significant. One reason

for it would be that the number of motifs found varies greatly.

Indeed, the minimum and maximum numbers of motifs found

for the protein instances with (l, d, q) = (27, 12, 10) are 566

and 13,953,017, respectively. This fact implies that the number

of nodes that should be traversed varies greatly, which resulted

in the variation of CPU times. The protein instances in this

study seems too challenging: The motifs were so weak that it

was difficult to distinguish them from the background noise,

and the number of motifs found was affected severely by the

randomness of the instances.

B. Effect of Proposed Improvements

Next, the effect of the proposed improvements will be exam-

ined. The algorithms without some of the improvements were

applied to the instances with l = 17 (TraverStringDouble)

or l = 19 (TraverStringRef). The results are summarized in

Tables VII–X. In these tables, “time” denotes the CPU time

of the algorithms, and “ratio” is the ratio of the CPU time

over that of the original algorithm, i.e. TraverStringDouble in

TABLE IX
EFFECT OF IMPROVEMENTS FOR DNA SEQUENCES

(TRAVERSTRINGREF)

(a) (l, d) = (19, 7), q = 20 (100% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio

min 1065.1 1.46 947.7 1.27 1490.1 2.00
ave 1097.0 1.47 979.1 1.32 1536.1 2.06
max 1154.8 1.49 1011.0 1.36 1598.5 2.16

(b) (l, d) = (19, 6), q = 10 (50% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio

min 920.4 1.20 977.3 1.26 1276.5 1.65
ave 942.8 1.21 995.3 1.38 1300.4 1.67
max 962.8 1.21 1029.8 1.30 1331.2 1.68

TABLE X
EFFECT OF IMPROVEMENTS FOR PROTEIN SEQUENCES

(TRAVERSTRINGREF)

(a) (l, d) = (19, 9), q = 20 (100% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio

min 12.1 1.10 13.6 1.20 16.9 1.54
ave 26.0 1.37 121.2 8.51 360.7 25.49
max 73.2 1.93 259.8 27.64 1085.1 78.97

(b) (l, d) = (19, 8), q = 10 (50% match)

w/o VI-D w/o VI-C
w/o VI-D,
w/o VI-C

time ratio time ratio time ratio

min 15.3 1.00 17.1 1.12 17.3 1.14
ave 16.8 1.02 21.8 1.32 33.9 1.94
max 24.6 1.13 34.8 1.87 119.5 5.50

Tables VII and VIII and TraverStringRef in Tables IX and X.

A larger “ratio” means that the corresponding improvements

removed from the original algorithm are more effective.

The results indicate that all the proposed improvements

contribute to the reduction of the computation time. From

Tables VII and VIII, we can see that TraverStringDouble

with the tree pairing in Section V-A is about 1.4 times as

fast as TraverStringSingle without it. The string reordering in

Section IV-C is at least as efficient as this improvement, while

the strict check in Section IV-A is more efficient for the protein

instances. It would be because the improvement by the strict

check in pruning subtrees becomes more notable when the

size of a search tree increases as |Σ| increases. “TravStrS w/o

IV-C, IV-A” in Tables VII(a) and VIII(a) is still faster than

qPMSPruneI, although the former should be identical to the

latter for the instances with q = N because the improvement in

Section IV-B is active only when q < N . The algorithm seems

to have been implemented less efficiently in qPMSPruneI.

With regard to TraverStringRef in Tables IX and X, the

position reordering in Section VI-D is competitive with the

string reordering in Section VI-C for the DNA sequences,

while the effect of the former is not so impressive and the latter

is much more effective for the protein instances especially
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TABLE XI
EFFECT OF MULTI-THREADING FOR DNA SEQUENCES (4 THREADS)

(a) q = 20 (100% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio

min 1.2 3.11 3.0 3.57
(13, 4) ave 1.2 3.25 3.1 3.64

max 1.3 3.39 3.2 3.70
min 7.4 3.62 12.3 3.55

(15, 5) ave 7.7 3.67 12.8 3.65
max 8.1 3.75 13.2 3.69
min 53.2 3.70 48.3 3.53

(17, 6) ave 54.3 3.73 50.0 3.59
max 55.4 3.78 51.2 3.68
min 409.3 3.69 201.6 3.48

(19, 7) ave 416.0 3.72 206.4 3.61
max 426.4 3.74 221.7 3.66
min 2888.8 3.63 835.5 3.59

(21, 8) ave 2969.8 3.69 853.5 3.63
max 3051.0 3.73 875.8 3.67
min 3443.8 3.62

(23, 9) ave 3549.3 3.67
max 3657.6 3.72
min 14345.2 3.53

(25, 10) ave 14839.9 3.62
max 15322.3 3.70

(b) q = 10 (50% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio

min 0.6 3.53 1.5 3.56
(13, 3) ave 0.6 3.63 1.5 3.64

max 0.6 3.71 1.5 3.70
min 3.7 3.47 8.8 3.62

(15, 4) ave 3.8 3.57 8.8 3.65
max 3.9 3.64 8.9 3.72
min 33.7 3.40 45.5 3.62

(17, 5) ave 34.6 3.55 45.5 3.65
max 36.2 3.68 46.4 3.69
min 318.1 3.42 214.4 3.61

(19, 6) ave 324.8 3.54 214.4 3.64
max 343.4 3.58 219.1 3.67
min 2771.6 3.28 1043.3 3.44

(21, 7) ave 2940.3 3.43 1043.3 3.55
max 3055.9 3.66 1087.7 3.63
min 5064.2 3.43

(23, 8) ave 5064.2 3.54
max 5260.3 3.63

when q = N . These results imply that TraverStringRef

works differently for the DNA sequences and for the protein

instances. Indeed, the number of search trees not pruned at

the root node in TraverStringRef was 500 on average for the

protein instances with (l, d, q) = (19, 9, 20), while that for

the DNA instances with (l, d, q) = (19, 7, 20) was 174,000

on average. This difference can be explained by the probability

of a random string to fall into B(x0, d)∩B(r, d). It decreases

exponentially as |Σ| increases, and a search tree is more likely

to be pruned by the feasibility check when x0 and r are not

valid occurrences, because at least q − 2 out of the other

N − 2 input strings should have an occurrence belonging to

B(x0, d) ∩ B(r, d), whereas it rarely happens by chance.

C. Effect of Multi-threading

The algorithms are easy to parallelize by traversing several

search trees in parallel [34]. The results of the algorithms

TABLE XII
EFFECT OF MULTI-THREADING FOR PROTEIN SEQUENCES (4 THREADS)

(a) q = 20 (100% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio

min 26.7 3.60 0.9 3.26
(13, 6) ave 28.9 3.66 1.0 3.41

max 31.1 3.70 1.1 3.53
min 174.8 3.42 1.1 3.35

(15, 7) ave 190.9 3.49 1.2 3.48
max 203.9 3.69 1.3 3.62
min 656.8 3.27 1.4 3.24

(17, 8) ave 700.1 3.42 1.8 3.43
max 802.1 3.51 2.8 3.54
min 2196.6 2.78 2.6 2.99

(19, 9) ave 3493.3 3.30 5.5 3.32
max 5475.5 3.54 12.7 3.57
min 17.4 2.35

(21, 10) ave 37.1 2.93
max 88.7 3.39
min 59.4 1.75

(23, 11) ave 446.6 2.43
max 870.2 3.01
min 779.0 1.83

(25, 12) ave 3347.3 2.54
max 11547.6 3.19

(b) q = 10 (50% match)

(l, d)
TravStrD TravStrR

time 1/ratio time 1/ratio

min 2.0 3.22 0.9 3.24
(13, 5) ave 2.1 3.31 0.9 3.41

max 2.2 3.44 1.0 3.65
min 8.9 2.65 1.5 3.39

(15, 6) ave 9.8 3.10 1.5 3.53
max 12.1 3.34 1.6 3.61
min 62.8 2.74 2.5 3.38

(17, 7) ave 75.3 3.17 2.6 3.49
max 95.6 3.67 2.7 3.64
min 201.4 1.62 4.2 3.41

(19, 8) ave 574.7 2.96 4.6 3.58
max 2567.4 3.35 6.1 3.68
min 7.1 3.23

(21, 9) ave 8.0 3.51
max 10.1 3.56
min 12.8 1.98

(23, 10) ave 57.5 3.16
max 317.4 3.61
min 26.0 2.66

(25, 11) ave 133.9 3.22
max 599.5 3.62
min 80.6 1.67

(27, 12) ave 3353.5 2.24
max 22614.1 3.03

run in 4 threads are shown in Tables XI and XII, where

“1/ratio” denotes the ratio between the CPU times in 4

threads and in a single thread (given in Tables V and VI).

A larger “1/ratio” means that multi-threading works more

effectively. These tables verify that multi-threading makes

the algorithms 3 times faster on average, except for the

protein instances with N = 20, L = 600, and (l, d, q) =
(23, 11, 20), (25, 12, 20), (27, 12, 10). As explained in Sec-

tion VII-A, motifs in the protein instances with large l’s are

so weak that traversing some specific search trees requires a

considerable amount of computation time because they include

many valid motifs. Thus the CPU time of each thread was not
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TABLE XIII
RESULTS FOR REAL DNA DATA SETS

data set (l, d) number of motifs found

preproinsulin
(15, 1) 1
(15, 2)∗ 379

DHFR
(11, 1) 7
(11, 2)∗ 9880

c-fos
(9, 1) 3
(9, 2)∗ 7492

metallothionein
(15, 2)∗ 8
(15, 3) 3487

Yeast ECB
(16, 3)∗ 117
(16, 4) 8648

∗Choice of (l, d) in [29].

balanced, which made the multi-threading less advantageous.

D. Results for Real Data Sets

The proposed algorithms were applied to the real DNA data

sets, preproinsulin, DHFR, c-fos, metallothionein and Yeast

ECB data sets as in [29]. The results are summarized in

TABLE XIII. The CPU time was less than 1 s even in a single-

thread and so is omitted. In the table, only the number of

motifs found is shown to concentrate on the planted motif

finding problem itself, although post-processing is necessary

to filter the motifs by some scoring schemes in order to predict

motifs. It was verified that all the motifs predicted in [29] are

among the motifs found by the algorithm when the same (l,
d) as in [29] is chosen.

VIII. CONCLUSION

This study proposed several improvements for the exist-

ing algorithms for the planted motif search problem. Com-

putational experiments showed that TraverStringDouble and

TraverStringRef outperform qPMSPruneI and qPMS7, re-

spectively. Specifically, TraverStringRef is the first algorithm

that solves the challenging DNA instances with (l, d, q) =
(25, 10, 20) in a reasonable computation time. Although its

practical effectiveness is obvious, the theoretical time com-

plexity is not so impressive because it is worse than that

of TraverStringDouble. It would be necessary to reduce the

time complexity of TraverStringRef in future research. It is

possible to apply the tree pairing in Section V-A also to

TraverStringRef. However, the result of preliminary experi-

ments was not positive due to complicated pruning conditions.

Hence, it is another direction of future research to improve

TraverStringRef by the tree pairing in a more sophisticated

way.
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