
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title Improved external memory BFS implementations

Authors(s) Ajwani, Deepak; Meyer, Ulrich; Osipov, Vitaly

Publication date 2007-01-06

Publication information Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th 

Workshop on Analytic Algorithms and Combinatorics

Conference details ALEXNEX07/ ANACO04: Workshop on Algorithm Engineering & Experiments, 6 January 

2007, Astor Crowne Plaza, New Orleans, Louisiana

Publisher Society for Industrial and Applied Mathematics Philadelphia

Item record/more information http://hdl.handle.net/10197/10512

Downloaded 2022-08-22T16:16:23Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=ISBN%3A0898716284&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F10512


Improved external memory BFS implementations∗

Deepak Ajwani † Ulrich Meyer † Vitaly Osipov †

Abstract

Breadth first search (BFS) traversal on massive graphs in

external memory was considered non-viable until recently,

because of the large number of I/Os it incurs. Ajwani et

al. [3] showed that the randomized variant of the o(n) I/O

algorithm of Mehlhorn and Meyer [24] (MM BFS) can com-

pute the BFS level decomposition for large graphs (around a

billion edges) in a few hours for small diameter graphs and a

few days for large diameter graphs. We improve upon their

implementation of this algorithm by reducing the overhead

associated with each BFS level, thereby improving the re-

sults for large diameter graphs which are more difficult for

BFS traversal in external memory. Also, we present the im-

plementation of the deterministic variant of MM BFS and

show that in most cases, it outperforms the randomized vari-

ant. The running time for BFS traversal is further improved

with a heuristic that preserves the worst case guarantees of

MM BFS. Together, they reduce the time for BFS on large

diameter graphs from days shown in [3] to hours. In partic-

ular, on line graphs with random layout on disks, our im-

plementation of the deterministic variant of MM BFS with

the proposed heuristic is more than 75 times faster than the

previous best result for the randomized variant of MM BFS

in [3].

1 Introduction

Large graphs arise naturally in many applications and
very often we need to traverse these graphs for solving
optimization problems. Breadth first search (BFS) is
a fundamental graph traversal strategy. It decomposes
the input graph G = (V,E) of n nodes and m edges into
at most n levels where level i comprises all nodes that
can be reached from a designated source s via a path of
i edges, but cannot be reached using less than i edges.
Typical real-world applications of BFS on large graphs
(and some of its generalizations like shortest paths or
A∗) include crawling and analyzing the WWW [26, 27],
route planning using small navigation devices with flash
memory cards [19], state space exploration [17], etc.

∗This work was partially supported by the DFG grants SA
933/1-3 and ME 2088/1-3.

†Max-Planck-Institut für Informatik, Stuhlsatzen-
hausweg 85, 66123 Saarbrücken, Germany. E-mail:

{ajwani,umeyer,osipov}@mpi-inf.mpg.de

While modern processor speeds are measured in
GHz, average hard disk latencies are in the range of
a few milliseconds [20]. Hence, the cost of accessing
a data element from the hard-disk (an I/O) is around
a million times more than the cost of an instruction.
Therefore, it comes as no surprise that the I/Os domi-
nate the runtimes of even basic graph traversal strate-
gies like BFS on large graphs, making their standard im-
plementations non-viable. One way to ease this problem
can be to represent the graph [7, 8] in a more compact
way that minimizes the I/Os required by the standard
algorithms. However, such approaches work only for
graphs with good separators. The other approach that
we consider in this paper relies on new algorithmic ideas
capturing the I/Os into the performance metric of the
computation model. In order to do so, we need to look
beyond the traditional RAM model which assumes an
unbounded amount of memory with unit cost access to
any location.

1.1 Computation models. We consider the com-
monly accepted external memory model of Aggarwal
and Vitter [2] and the cache oblivious model [18]. They
both assume a two level memory hierarchy with faster
internal memory having a capacity to store M ver-
tices/edges. In an I/O operation, one block of data,
which can have B vertices/edges is transferred between
disk and internal memory. The measure of perfor-
mance of an algorithm is the number of I/Os it per-
forms. The number of I/Os needed to read N con-
tiguous items from disk is scan(N) = Θ(N/B). The
number of I/Os required to sort N items is sort(N) =
Θ((N/B) logM/B(N/B)). For all realistic values of N ,
B, and M , scan(N) < sort(N) ¿ N . The difference
between the two models is that the values of B and
M are not known to the algorithm in the cache oblivi-
ous model, allowing the algorithms designed under this
model to be simultaneously efficient on all levels of the
memory hierarchy.

1.2 Algorithms. BFS is well-understood in the
RAM model. There exists a simple linear time algo-
rithm [15] (hereafter refered as IM BFS) for the BFS
traversal in a graph. IM BFS keeps a set of appropriate
candidate nodes for the next vertex to be visited in a

3
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FIFO queue Q. Furthermore, in order to find out the
unvisited neighbours of a node from its adjacency list,
it marks the nodes as either visited or unvisited. Unfor-
tunately as reported in [3], even when half of the graph
fits in the main memory, the running time of this al-
gorithm deviates significantly from the predicted RAM
performance (hours as compared to minutes) and for
massive graphs, such approaches are simply non-viable.
As discussed before, the main cause for such a poor
performance of this algorithm on massive graphs is the
number of I/Os it incurs. Remembering visited nodes
needs Θ(m) I/Os in the worst case and the unstruc-
tured indexed access to adjacency lists may result in
Θ(n) I/Os.

The algorithm by Munagala and Ranade [25] (ref-
ered as MR BFS) ignores the second problem but ad-
dresses the first by exploiting the fact that the neigh-
bours of a node in BFS level i are all in BFS levels i+1,
i or i − 1. Thus, the set of nodes in level i + 1 can
be computed by removing all nodes in level i and i − 1
from the neighbours of nodes in level i. The resulting
worst-case I/O-bound is O(n + sort(n + m)).

Mehlhorn and Meyer suggested another approach
[24] (MM BFS) which involves a preprocessing phase to
restructure the adjacency lists of the graph represen-
tation. It groups the vertices of the input graph into
disjoint clusters of small diameter and stores the ad-
jacency lists of the nodes in a cluster contiguously on
the disk. Thereafter, an appropriately modified ver-
sion of MR BFS is run. MM BFS exploits the fact that
whenever the first node of a cluster is visited then the
remaining nodes of this cluster will be reached soon af-
ter. By spending only one random access (and possibly,
some sequential accesses depending on cluster size) in
order to load the whole cluster and then keeping the
cluster data in some efficiently accessible data structure
(pool) until it is all used up, on sparse graphs the total
amount of I/O can be reduced by a factor of up to

√
B.

The neighbouring nodes of a BFS level can be com-
puted simply by scanning the pool and not the whole
graph. Though some edges may be scanned more often
in the pool, unstructured I/O in order to fetch adjacency
lists is considerably reduced, thereby saving the total
number of I/Os. The preprocessing of MM BFS comes
in two variants: randomized and deterministic (refered
as MM BFS R and MM BFS D, respectively). In the
randomized variant, the input graph is partitioned by
choosing master nodes independently and uniformly at
random with a probability µ and running a BFS like rou-
tine with joint adjacency list queries from these master
nodes “in parallel”.

The deterministic variant first builds a spanning
tree for G and then constructs an Euler tour T for the

tree. Next, each node v is assigned the rank in T of
the first occurrence of the node (by scanning T and a
sorting step). We denote this value as r(v). T has
length 2V −1; so r(v) ∈ [0; 2V −2]. Note that if for two
nodes u and v, the values r(v) and r(u) differ by d, then
d is an upper bound on the distance between their BFS
level. Therefore, we chop the Euler tour into chunks of√

B nodes and store the adjacency lists of the nodes in
the chunk consecutively as a cluster.

The randomized variant incurs an expected number
of O(

√

n · (n + m) · log(n)/B+sort(n+m)) I/Os, while

the deterministic variant incurs O(
√

n · (n + m)/B +
sort(n + m) + ST (n,m)) I/Os, where ST (n,m) is the
number of I/Os required for computing a spanning tree
of a graph with n nodes and m edges. Arge et al. [4]
show an upper bound of O((1 + log log (D · B · n/m)) ·
sort(n + m)) I/Os for computing such a spanning tree.

Brodal et al. [9] gave a cache oblivious algorithm
for BFS achieving the same worst case I/O bounds as
MM BFS D. Their preprocessing is similar to that in
MM BFS D, except that it produces a hierarchical clus-
tering using the cache oblivious algorithms for sorting,
spanning tree, Euler tour and list ranking. The BFS
phase uses a data-structure that maintains a hierarchy
of pools and provides the set of neighbours of the nodes
in a BFS level efficiently.

The other external memory algorithms for BFS are
restricted to special graphs classes like trees [12], grid
graphs [5], planar graphs [23], outer-planar graphs [21],
and graphs of bounded tree width [22].

1.3 Related Work. Ajwani et al. [3] showed that
the usage of the two external memory algorithms
MR BFS and MM BFS R along with disk parallelism
and pipelining can alleviate the I/O bottleneck of BFS
on many large sparse graph classes, thereby making
the BFS viable for these graphs. Even with just a
single disk, they computed a BFS level decomposi-
tion of small diameter large graphs (around 256 million
nodes and a billion edges) in a few hours and moderate
and large diameter graphs in a few days, which other-
wise would have taken a few months with IM BFS. As
for their relative comparison, MR BFS performs better
than MM BFS R on small-diameter random graphs sav-
ing a few hours. However, the better asymptotic worst-
case I/O complexity of MM BFS helps it to outperform
MR BFS for large diameter sparse graphs (computing
in a few days versus a few months), where MR BFS
incurs close to its worst case of Ω(n) I/Os.

Independently, Christiani [14] gave a prototypical
implementation of MR BFS, MM BFS R as well as
MM BFS D and reached similar conclusions regarding
the comparative performance between MR BFS and

4
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MM BFS R. Though their implementation of MR BFS
and MM BFS R is competetive and on some graph
classes even better than [3], their experiments were
mainly carried out on smaller graphs (up to 50 mil-
lion nodes). Since their main goal was to design cache
oblivious BFS, they used cache oblivious algorithms for
sorting, minimum spanning tree and list ranking even
for MM BFS D. As we discuss later, these algorithms
slow down the deterministic preprocessing in practice,
even though they have the same asymptotic I/O com-
plexity as their external memory counterparts.

1.4 Our Contribution. Our contributions in this
paper are the following:

• We improve upon the MR BFS and MM BFS R
implementation described in [3] by reducing the
computational overhead associated with each BFS
level, thereby improving the results for large diam-
eter graphs.

• We discuss the various choices made for a fast
MM BFS D implementation. This involved exper-
imenting with various available external memory
connected component and minimum spanning tree
algorithms. Our partial re-implementation of the
list ranking algorithm of [28] adapting it to the
STXXL framework outperforms the other list rank-
ing algorithms for the sizes of our interest. As for
the Euler tour in the deterministic preprocessing,
we compute the cyclic order of edges around the
nodes using the STXXL sorting.

• We conduct a comparative study of MM BFS D
with other external memory BFS algorithms and
show that for most graph classes, MM BFS D out-
performs MM BFS R. Also, we compared our BFS
implementations with Christiani’s implementations
[14], which have some cache-oblivious subroutines.
This gives us some idea of the loss factor that
we will have to face for the performance of cache-
oblivious BFS.

• We propose a heuristic for maintaining the pool
in the BFS phase of MM BFS. This heuristic
improves the runtime of MM BFS in practice, while
preserving the worst case I/O bounds of MM BFS.

• Putting everything together, we show that the BFS
traversal can also be done on moderate and large
diameter graphs in a few hours, which would have
taken the implementations of [3] and [14] several
days and IM BFS several months. Also, on low
diameter graphs, the time taken by our improved
MR BFS is around one-third of that in [3]. Towards

the end, we summarize our results (Table 13) by
giving the state of the art implementations of
external memory BFS on different graph classes.

2 Improvements in the previous implementat-

ions of MR BFS and MM BFS R

The computation of each level of MR BFS involves
sorting and scanning of neighbours of the nodes in
the previous level. Even if there are very few ele-
ments to be sorted, there is a certain overhead asso-
ciated with initializing the external sorters. In par-
ticular, while the STXXL stream sorter (with the flag
DSTXXL SMALL INPUT PSORT OPT) does not in-
cur an I/O for sorting less than B elements, it still re-
quires to allocate some memory and does some com-
putation for initialization. This overhead accumulates
over all levels and for large diameter graphs, it domi-
nates the running time. This problem is also inherited
by the BFS phase of MM BFS. Since in the pipelined
implementation of [3], we do not know in advance the
exact number of elements to be sorted, we can’t switch
between the external and the internal sorter so easily.
In order to get around this problem, we first buffer the
first B elements and initialize the external sorter only
when the buffer is full. Otherwise, we sort it internally.

In addition to this, we make the graph representa-
tion for MR BFS more compact. Except the source and
the destination node pair, no other information is stored
with the edges.

3 Designing MM BFS D

There are three main components for the determin-
istic variant of MM BFS - Sorting, Connected Com-
ponent/ Minimum Spanning Tree, and List Rank-
ing. The MM BFS D implementation of Christiani [14]
uses the cache-oblivious lazy funnel-sort algorithm [11]
(CO sort). As Table 1 shows, the STXXL stream sort
(STXXL sort) proved to be much faster on external
data. This is in line with the observations of Brodal
et al. [10], where it is shown that an external memory
sorting algorithm in the library TPIE [6] is better than
their carefully implemented cache-oblivious sorting al-
gorithm, when run on disk.

Regarding connected components and minimum
spanning forest, Christiani’s implementations [14] use
the cache oblivious algorithm given in [1] (CO MST).
Empirically, we found that the external memory imple-
mentation of [16] (EM MST) performs better than the
one in [1]. Table 2 shows the total time required for
their deterministic preprocessing using CO MST and
EM MST on low diameter random graphs and on high
diameter line graphs.

As for list ranking, we found Sibeyn’s algorithm

5
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



n CO sort STXXL sort

256 × 106 21 8
512 × 106 46 13
1024 × 106 96 25

Table 1: Timing in minutes for sorting n elements using CO sort and with using STXXL sort

Graph class CO MST EM MST

Random graph;
n = 228, m = 230 107 35
Line graph with contiguous
disk layout; (Simple Line) n = 228 38 16
Line graph with random
disk layout (Random Line); n = 228 47 22

Table 2: Timing in hours required by deterministic preprocessing by Christiani’s implementation using CO MST
and EM MST.

Graph class n m Long clusters Random clusters

Grid(214 × 214) 228 229 51 28

Table 3: Time taken (in hours) by the BFS phase of MM BFS D with long and random clustering

in [28] promising as it has low constant factors in
its I/O complexity. Sibeyn’s implementation relies on
the operating system for I/Os and does not guarantee
that the top blocks of all the stacks remain in the
internal memory, which is a necessary assumption for
the asymptotic analysis of the algorithm. Besides,
its reliance on internal arrays and swap space puts a
restriction on the size of the lists it can rank. The deeper
integration of the algorithm in the STXXL framework,
using the STXXL stacks and vectors in particular, made
it possible to obtain a scalable solution, which could
handle graph instances of the size we require while
keeping the theoretical worst case bounds.

Christiani uses the algorithm in [13] for list ranking
the Euler tour. While Christiani’s cache oblivious list
ranking implementation takes around 14.3 hours for
ranking 229 element random list using 3 GB RAM,
our adaptation of Sibeyn’s algorithm takes less than 40
minutes in the same setting.

To summarize, our STXXL based implementation
of MM BFS D uses our adaptation of [28] for list
ranking the Euler tour around the minimum spanning
tree computed by EM MST. The Euler tour is then
chopped into sets of

√
B consecutive nodes which after

duplicate removal gives the requisite graph partitioning.
The BFS phase remains similar to MM BFS R.
Quality of the spanning tree The quality of the

spanning tree computed can have a significant impact on
the clustering and the disk layout of the adjacency list
after the deterministic preprocessing, and consequently
on the BFS phase. For instance, in the case of grid
graph, a spanning tree containing a list with elements
in a snake-like row major order produces long and
narrow clusters, while a “random” spanning tree is
likely to result in clusters with low diameters. Such a
“random” spanning tree can be attained by assigning
random weights to the edges of the graph and then
computing a minimum spanning tree or by randomly
permuting the indices of the nodes. The nodes in the
long and narrow clusters tend to stay longer in the
pool and therefore, their adjacency lists are scanned
more often. This causes the pool to grow external and
results in larger I/O volume. On the other hand, low
diameter clusters are evicted from the pool sooner and
are scanned less often reducing the I/O volume of the
BFS phase. Consequently as Table 3 shows, the BFS
phase of MM BFS D takes only 28 hours with clusters
produced by “random” spanning tree, while it takes 51
hours with long and narrow clusters.

4 A Heuristic for maintaining the pool

As noted in Section 1.2, the asymptotic improvement
and the performance gain in MM BFS over MR BFS is
obtained by decomposing the graph into low diameter

6
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



B

B B
External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 1: Schema depicting the implementation of our
heuristic

clusters and maintaining an efficiently accessible pool
of adjacency lists which will be required in the next few
levels. Whenever the first node of a cluster is visited
during the BFS, the remaining nodes of this cluster will
be reached soon after and hence, this cluster is loaded
into the pool. For computing the neighbours of the
nodes in the current level, we just need to scan the
pool and not the entire graph. Efficient management
of this pool is thus, crucial for the performance of
MM BFS. In this section, we propose a heuristic for
efficient management of the pool, while keeping the
worst case I/O bounds of MM BFS.

For many large diameter graphs, the pool fits into
the internal memory most of the time. However, even
if the number of edges in the pool is not so large,
scanning all the edges in the pool for each level can
be computationally quite expensive. Hence, we keep a
portion of the pool that fits in the internal memory as a
multi-map hash table. Given a node as a key, it returns
all the nodes adjacent to the current node. Thus, to
get the neighbours of a set of nodes we just query the
hash function for those nodes and delete them from the
hash table. For loading the cluster, we just insert all the
adjacency lists of the cluster in the hash table, unless
the hash table has already O(M) elements.

Recall that after the deterministic preprocessing,
the elements are stored on the disk in the order in which
they appear on the Euler tour around a spanning tree
of the input graph. The Euler tour is then chopped
into clusters with

√
B elements (before the duplicate

removal) ensuring that the maximum distance between
any two nodes in the cluster is at most

√
B−1. However,

the fact that the contiguous elements on the disk are
also closer in terms of BFS levels is not restricted to
intra-cluster adjacency lists. The adjacency lists that
come alongside the requisite cluster will also be required
soon and by caching these other adjacency lists, we can
save the I/Os in the future. This caching is particularly
beneficial when the pool fits in the internal memory.
Note that we still load the

√
B node clusters in the

pool, but keep the remaining elements of the block in
the pool-cache. For the line graphs, this means that we

load the
√

B nodes in the internal pool, while keeping
the remaining O(B) adjacency lists which we get in the
same block, in the pool-cache, thereby reducing the I/O
complexity for the BFS traversal on line graphs to the
computation of a spanning tree.

We represent the adjacency lists of nodes in the
graph as a STXXL vector. STXXL already provides a
fully associative vector-cache with every vector. Before
doing an I/O for loading a block of elements from
the vector, it first checks if the block is already there
in the vector-cache. If so, it avoids the I/O loading
the elements from the cache instead. Increasing the
vector-cache size of the adjacency list vector with a
layout computed by the deterministic preprocessing and
choosing the replacement policy to be LRU provides us
with an implementation of the pool-cache. Figure 1
depicts the implementation of our heuristic.

5 Experiments

Configuration. We have implemented the algorithms
in C++ using the g++ 4.02 compiler (optimization level
-O3) on the GNU/Linux distribution with a 2.6 kernel
and the external memory library STXXL version 0.77.
Our experimental platform has two 2.0 GHz Opteron
processors, 3 GB of RAM, 1 MB cache and 250 GB
Seagate Baracuda hard-disks [29]. These hard-disks
have 8 MB buffer cache. The average seek time for read
and write is 8.0 and 9.0 msec, respectively, while the
sustained data transfer rate for outer zone (maximum)
is 65 MByte/s. This means that for graphs with 228

nodes, n random read and write I/Os will take around
600 and 675 hours, respectively. In order to compare
better with the results of [3], we restrict the available
memory to 1 GB for our experiments and use only one
processor and one disk.

First, we show the comparison between improved
MM BFS R and MR BFS with the corresponding
implementations in [3]. Then we compare our imple-
mentation of MM BFS D (without our heuristic) with
Christiani’s implementation based on cache-oblivious
routines. Finally, we look at the relative performance
of improved versions of MR BFS, MM BFS R and
MM BFS D. We summarize this section by highlight-
ing the best algorithms for each graph class and its
run-time. Note that some of the results shown in this
section have been interpolated using the symmetry in
the graph structure.

Graph classes. We consider the same graph classes
as in [3] - Random, Grid, MR worst graph, MM worst
graph, line graphs with different layouts and the web-
graph. They covers a broad spectrum of different per-
formances of external memory BFS algorithms.

7
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Graph class n m MM BFS R of [3] Improved MM BFS R
Phase 1 Phase 2 Phase 1 Phase 2

Random 228 230 5.1 4.5 5.2 3.8
MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 6.7 26 5.2 18
MR worst 228 230 5.1 45 4.3 40

Grid (214 × 214) 228 229 7.3 47 4.4 26
Simple Line 228 228 − 1 85 191 55 2.9

Random Line 228 228 − 1 81 203 64 25
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 6.2 3.2 5.8 2.8

Table 4: Timing in hours taken for BFS by the two MM BFS R implementations

Random graph: On a n node graph, we randomly se-
lect m edges with replacement (i.e., m times selecting a
source and target node such that source 6= target) and
remove the duplicate edges to obtain random graphs.
MR worst graph: This graph consists of B levels, each
having n

B nodes, except the level 0 which contains
only the source node. The edges are randomly dis-
tributed between consecutive levels, such that these B
levels approximate the BFS levels. The initial layout
of the nodes on the disk is random. This graph causes
MR BFS to incur its worst case of Ω(n) I/Os.
Grid graph (x×y): It consists of a x×y grid, with edges
joining the neighouring nodes in the grid.
MM BFS worst graph: This graph causes MM BFS R

to incur its worst case of Θ(n ·
√

log n
B + sort(n)) I/Os.

Line graphs: A line graph consists of n nodes and n− 1
edges such that there exists two nodes u and v, with the
path from u to v consisting of all the n − 1 edges. We
took two different initial layouts - simple, in which all
blocks consists of B consecutively lined nodes and the
random in which the arrangement of nodes on disk is
given by a random permutation.
Web graph: As an instance of a real world graph, we
consider an actual crawl of the world wide web [30],
where an edge represents a hyperlink between two sites.
This graph has around 130 million nodes and 1.4 billion
edges. It has a core which consists of most of its nodes
and behaves like random graph.
Comparing MM BFS R. Table 4 shows the im-
provement that we achieved in MM BFS R. As Table
5 shows, these improvements are achieved by reducing
the computation time per level in the BFS phase. On
I/O bound random graphs, the improvement is just
around 15%, while on computation bound line graphs
with random disk layout, we improve the running time
of the BFS phase from around 200 hours to 25 hours.
Our implementation of the randomized preprocessing in
the case of the simple line graphs additionally benefits
from the way clusters are laid out on the disk as this

layout reflects the order in which the nodes are visited
by the BFS. This reduces the total running time for the
BFS phase of MM BFS R on simple line graphs from
around 190 hours to 2.9 hours. The effects of caching
are also seen in the I/O bound BFS phase on the grid
(214 × 214) graphs, where the I/O wait time decreases
from 46 hours to 24 hours.

Comparing MR BFS. Improvements in MR BFS
are shown in the Table 6. On random graphs where
MR BFS performs better than the other algorithms,
we improve the runtime from 3.4 hours to 1.4 hours.
Similarly for the web-crawl based graph, the running
time reduces from 4.0 hours to 2.6 hours. The other
graph class where MR BFS outperforms MM BFS R is
the MM worst graph and here again, we improve the
performance from around 25 hours to 13 hours.

Penalty for cache obliviousness. We compared
the performance of our implementation of MM BFS D
(without the heuristic) with Christiani’s implementa-
tion [14] based on cache-oblivious subroutines. Table 7
and 8 show the results of the comparison on the two
extreme graph classes - random graphs and line graphs
with random layout on disk - for the preprocessing and
the BFS phase respectively. We observed that on both
graph classes, the preprocessing time required by our
implementation is significantly less than the one by
Christiani. While pipelining helps the BFS phase of our
implementation on random graphs, it becomes a liabil-
ity on line graphs as it brings extra computation cost
per level.

We suspect that these performance losses are
inherent in cache-oblivious algorithms to a certain
extent and will be carried over to the cache-oblivious
BFS implementation.

Comparing MM BFS D with other external

memory BFS algorithm implementations. Ta-
ble 9 shows the performance of our implementations

8
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Graph class n m MM BFS R of [3] Improved MM BFS R
I/O wait Total I/O wait Total

MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 13 26 16 18
Grid (214 × 214) 228 229 46 47 24 26

Simple Line 228 228 − 1 0.5 191 0.05 2.9
Random Line 228 228 − 1 21 203 21 25

Table 5: I/O wait time and the total time in hours for the BFS phase of the two MM BFS R implementations
on moderate to large diameter graphs

Graph class n m MR BFS of [3] Improved MR BFS
I/O wait time Total time I/O wait time Total time

Random 228 230 2.4 3.4 1.2 1.4
Webgraph ∼ 135 × 106 ∼ 1.18 × 109 3.7 4.0 2.5 2.6
MM worst ∼ 42.6 × 106 ∼ 42.6 × 106 25 25 13 13
Simple line 228 228 − 1 0.6 10.2 0.06 0.4

Table 6: Timing in hours taken for BFS by the two MR BFS implementations

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 107 5.2
Random Line 228 228 − 1 47 3.2

Table 7: Timing in hours for computing the deterministic preprocessing of MM BFS by the two implementations
of MM BFS D

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 16 3.4
Random Line 228 228 − 1 0.5 2.8

Table 8: Timing in hours for the BFS phase of MM BFS by the two implementations of MM BFS D (without
heuristic)

Graph class MR BFS MM BFS R MM BFS D

Random graph 1.4 8.9 8.7
Random Line 4756 89 3.6

Table 9: Timing in hours taken by our implementations of different external memory BFS algorithms.

Graph class n m Randomized Deterministic

Random graph 228 230 500 630
Random Line 228 228 − 1 10500 480

Table 10: I/O volume (in GB) required in the preprocessing phase by the two variants of MM BFS

9
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Graph class n m Randomized Deterministic

Random graph 228 230 5.2 5.2
Random Line 228 228 − 1 64 3.2

Table 11: Preprocessing time (in hours) required by the two variants of MM BFS, with the heuristic

of different external memory BFS algorithms with the
heuristic. While MR BFS performs better than the
other two on random graphs saving a few hours, our
implementation of MM BFS D with the heuristic out-
performs MR BFS and MM BFS R on line graphs with
random layout on disk saving a few months and a few
days, respectively. Random line graphs are an exam-
ple of a tough input for external memory BFS as they
not only have a large number of BFS levels, but also
their layout on the disk makes the random accesses
to adjacency lists very costly. Also, on moderate di-
ameter grid graph, MM BFS D which takes 21 hours
outperforms MM BFS R and MR BFS. It is interesting
to note that Christiani [14] reached a different conclu-
sion regarding the relative performance of MM BFS D
and MM BFS R. As noted before, this is because of the
cache oblivious routines used in their implementation.

On large diameter sparse graphs such as line
graphs, the randomized preprocessing scans the graph
Ω(

√
B) times, incurring an expected number of

O(
√

n · (n + m) · log(n)/B) I/Os. On the other hand,
the I/O complexity of the deterministic preprocessing is
O((1 + log log (D · B · n/m)) · sort(n + m)), dominated
by the spanning tree computation. Note that the Euler
tour computation followed by list ranking only requires
O(sort(m)) I/Os. This asymptotic difference shows in
the I/O volume of the two preprocessing variants (Ta-
ble 10), thereby explaining the better performance of
the deterministic preprocessing over the randomized one
(Table 11). On low diameter random graphs, the diam-
eter of the clusters is small and consequently, the ran-
domized variant scans the graph fewer times leading to
less I/O volume.

As compared to MM BFS R, MM BFS D provides
dual advantages: First, the preprocessing itself is faster
and second, for most graph classes, the partitioning is
also more robust, thus leading to better worst-case run-
times in the BFS phase. The later is because the clus-
ters generated by the deterministic preprocessing are of
diameter at most

√
B, while the ones by randomized

preprocessing can have a larger diameter causing adja-
cency lists to be scanned more often. Also, MM BFS D
benefits much more from our caching heuristic than
MM BFS R as the deterministic preprocessing gathers
neighbouring clusters of the graph on contigous loca-

tions in the disk.

5.1 Results with heuristic. Table 12 shows the
results of MM BFS D with our heuristic on different
graph classes. On moderate diameter grid graphs as
well as large diameter random line graphs, MM BFS D
with our heuristic provides the fastest implementation
of BFS in the external memory.

5.2 Summary. Table 13 gives the current state of
the art implementations of external memory BFS on
different graph classes.

Our improved MR BFS implementation outper-
forms the other external memory BFS implementations
on low diameter graphs or when the nodes of a graph
are arranged on the disk in the order required for BFS
traversal. For random graphs with 256 million nodes
and a billion edges, our improved MR BFS performs
BFS in just 1.4 hours. Similarly, improved MR BFS
takes only 2.6 hours on webgraphs (whose runtime is
dominated by the short diameter core) and 0.4 hours
on line graph with contigous layout on disk. On moder-
ate diameter square grid graphs, the total time for BFS
is brought down from 54.3 hours for MM BFS R im-
plementation in [3] to 21 hours for our implementation
of MM BFS D with heuristics, an improvement of more
than 60%. For large diameter graphs like random line
graphs, MM BFS D along with our heuristic computes
the BFS in just about 3.6 hours, which would have taken
the MM BFS R implementation in [3] around 12 days
and MR BFS and IM BFS a few months, an improve-
ment by a factor of more than 75 and 1300, respectively.

6 Discussion

We implemented the deterministic variant of MM BFS
and showed its comparative analysis with other external
memory BFS algorithms. Together with the improved
implementations of MR BFS and MM BFS R and our
heuristic for maintaining the pool, it provides viable
BFS traversal on different classes of massive sparse
graphs. In particular, we obtain an improvement fac-
tor between 75 and 1300 for line graphs with random
disk layout over the previous external memory imple-
mentations of BFS.

10
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Graph class n m MM BFS D
Phase1 Phase2

Random 228 230 5.2 3.4
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 3.3 2.4

Grid (221 × 27) 228 ∼ 229 3.6 0.4
Grid (227 × 2) 228 ∼ 228 + 227 3.2 0.6
Simple Line 228 228 − 1 2.6 0.4

Random Line 228 228 − 1 3.2 0.5

Table 12: Time taken (in hours) by the two phases of MM BFS D with our heuristic

Graph class n m Current best results
Total time Implementation

Random 228 230 1.4 Improved MR BFS
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 2.6 Improved MR BFS

Grid (214 × 214) 228 229 21 MM BFS D w/ heuristic
Grid (221 × 27) 228 ∼ 229 4.0 MM BFS D w/ heuristic
Grid (227 × 2) 228 ∼ 228 + 227 3.8 MM BFS D w/ heuristic
Simple Line 228 228 − 1 0.4 Improved MR BFS

Random Line 228 228 − 1 3.6 MM BFS D w/ heuristic

Table 13: The best total running time (in hours) for BFS traversal on different graphs with the best external
memory BFS implementations

Acknowledgements

We are grateful to Rolf Fagerberg and Frederik Juul
Christiani for providing us their code. Also thanks are
due to Dominik Schultes and Roman Dementiev for
their help in using the external MST implementation
and STXXL, respectively. The authors also acknowl-
edge the usage of the computing resources of the Uni-
versity of Karlsruhe.

References

[1] J. Abello, A. Buchsbaum, and J. Westbrook. A func-
tional approach to external graph algorithms. Algo-
rithmica 32(3), pages 437–458, 2002.

[2] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9), pages 1116–1127, 1988.

[3] D. Ajwani, R. Dementiev, and U. Meyer. A com-
putational study of external-memory BFS algorithms.
SODA, pages 601–610, 2006.

[4] L. Arge, G. Brodal, and L. Toma. On external-memory
MST, SSSP and multi-way planar graph separation.
SWAT, volume 1851 of LNCS, pages 433–447. Springer,
2000.

[5] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algo-
rithms for problems on grid-based terrains. ALENEX,
2000.

[6] L. Arge et.al. http://www.cs.duke.edu/TPIE/.

[7] D. K. Blandford, G. E. Blelloch, and I. A. Kash.
Compact representations of separable graphs. SODA,
pages 679–688, 2003.

[8] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An
experimental analysis of a compact graph representa-
tion. ALENEX, 2004.

[9] G. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-
oblivious data structures and algorithms for undirected
breadth-first search and shortest paths. SWAT, volume
3111 of LNCS, pages 480–492. Springer, 2004.

[10] G. Brodal, R. Fagerberg, and K. Vinther. Engineering
a cache-oblivious sorting algorithm. ALENEX, pages
4–17. SIAM, 2004.

[11] G. S. Brodal and R. Fagerberg. Cache oblivious
distribution sweeping. ICALP, pages 426–438, 2002.

[12] A. Buchsbaum, M. Goldwasser, S. Venkatasubrama-
nian, and J. Westbrook. On external memory graph
traversal. SODA, pages 859–860. ACM-SIAM, 2000.

[13] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia,
D. E. Vengroff, and J. S. Vitter. External memory
graph algorithms. SODA, pages 139–149. ACM-SIAM,
1995.

[14] Frederik Juul Christiani. Cache-oblivious graph algo-
rithms, 2005. Master’s thesis, Department of Mathe-
matics and Computer Science, University of Southern
Denmark.

[15] T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
duction to Algorithms. McGraw-Hill, 1990.

[16] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn.

11
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Engineering an external memory minimum spanning
tree algorithm. TCS, pages 195–208. Kluwer, 2004.

[17] S. Edelkamp, S.. Jabbar, and S. Schrödl. External A∗.
KI, volume 3238 of LNAI, pages 226–240. Springer,
2004.

[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. FOCS,
pages 285–297. IEEE Computer Society Press, 1999.

[19] A. Goldberg and R. Werneck. Computing point-to-
point shortest paths from external memory. ALENEX.
SIAM, 2005.

[20] P.C. Guide. Disk Latency. http://www.pcguide.com/

ref/hdd/perf/perf/spec/posLatency-c.html.
[21] A. Maheshwari and N. Zeh. External memory algo-

rithms for outerplanar graphs. ISAAC, volume 1741 of
LNCS, pages 307–316. Springer, 1999.

[22] A. Maheshwari and N. Zeh. I/O-efficient algorithms
for graphs of bounded treewidth. SODA, pages 89–90.
ACM-SIAM, 2001.

[23] A. Maheshwari and N. Zeh. I/O-optimal algorithms for
planar graphs using separators. SODA, pages 372–381.
ACM-SIAM, 2002.

[24] K. Mehlhorn and U. Meyer. External-memory
breadth-first search with sublinear I/O. ESA, volume
2461 of LNCS, pages 723–735. Springer, 2002.

[25] K. Munagala and A. Ranade. I/O-complexity of graph
algorithms. SODA, pages 687–694. ACM-SIAM, 1999.

[26] M. Najork and J. Wiener. Breadth-first search crawl-
ing yields high-quality pages. WWW, pages 114–118,
2001.

[27] V. Shkapenyuk and T. Suel. Design and implemen-
tation of a high-performance distributed web crawler.
ICDE. IEEE, 2002.

[28] J. F. Sibeyn. From parallel to external list ranking,
1997. Technical report, Max Planck Institut für Infor-
matik, Saarbrücken, Germany.

[29] Seagate Technology. http://www.seagate.com/

cda/products/discsales/marketing/detail/

0,1081,628,00.html.
[30] The stanford webbase project. http://www-diglib.

stanford.edu/∼testbed/doc2/WebBase/.

12
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/2

9/
17

 to
 3

7.
22

8.
25

1.
15

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


