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Improved extremal optimization for the Ising spin glassA. Alan MiddletonDepartment of Physi
s, Syra
use University, Syra
use, NY 13244(Dated: 24th May 2011)A version of the extremal optimization (EO) algorithm introdu
ed by Boett
her and Per
us istested on 2D and 3D spin glasses with Gaussian disorder. EO preferentially �ips spins that arelo
ally �un�t�; the variant introdu
ed here redu
es the probability to �ip previously sele
ted spins.Relative to EO, this adaptive algorithm �nds exa
t ground states with a speed-up of order 10
4 (102)for 16

2- (83-) spin samples. This speed-up in
reases rapidly with system size, making this heuristi
a useful tool in the study of materials with quen
hed disorder.Exploring the low temperature behavior of disorderedmaterials, su
h as spin glasses and other random mag-nets [1℄, is quite 
hallenging due to the very phenomena,glassy dynami
s and multiple metastable states, that areimportant in su
h materials. S
aling arguments [2, 3, 4℄indi
ate that many properties of the glassy state, in
lud-ing the s
aling of the energy of ex
itations and 
orrela-tion fun
tions, 
an be found by studying the ground stateand its response to perturbations. Signi�
ant e�ort hasbeen invested in identifying models whose ground states
an be 
omputed in time polynomial in the system size[5℄. Where no polynomial-time algorithm is known, ex-a
t and heuristi
 methods whi
h take time exponentialin system size are used. This enterprise is intimately
onne
ted with 
on
epts developed in 
omputer s
ien
e,espe
ially the distin
tion between P and NP-hard opti-mization problems [6℄.The Ising spin glass (ISG) is a prototypi
al example ofa disordered magnet. NP-hard problems su
h as the 3DISG are, of 
ourse, parti
ularly 
hallenging. Exa
t meth-ods for the 3DISG with Gaussian bond weights 
an solve
123-spin samples with open boundary 
onditions [7℄.Su
h sizes have not proven to be su�
iently large to de-
ide between alternate pi
tures for the low-temperaturebehavior. Heuristi
 geneti
 methods mix 
on�gurationsand 
an therefore generate large s
ale �moves�: su
hmethods are used for samples with 143 spins for ±J 
ou-plings [8℄. Heuristi
s with lo
al moves generally havedi�
ulty �nding the exa
t ground state, due to the largebarriers separating metastable states. Te
hniques su
h as�at histogram methods [9℄ 
an partially lower free energybarriers between metastable states.In this Communi
ation, I study a modi�ed version ofextremal optimization (EO) [10℄. EO is a lo
al sear
h al-gorithm that preferentially �ips spins with low ��tness�.The version presented here, �jaded� extremal optimiza-tion (JEO) in
reases the �tness of a spin by an amountproportional to the number of times it has been �ipped.The goal of this adjustment is to redu
e the repetitionin exploring paths in 
on�guration spa
e, so that morepossibilities 
an be qui
kly explored. Empiri
ally, thissimple 
hange dramati
ally in
reases the e�e
tiveness ofthe EO algorithm for �nding ground states of two- andthree-dimensional spin glass samples. As exa
t groundstates are needed for studies of ex
itations and s
aling,the algorithm is, for the most part, stringently tested by

demanding that it �nd the ground states 
omputed byexa
t methods. Both EO and JEO take time exponen-tial in the system size to �nd the exa
t ground state,but the rate of growth is slower for JEO. Though JEOintrodu
es an extra parameter, large improvements area
hieved with only modest tuning.I. EXTREMAL OPTIMIZATION ANDEXTENDED ALGORITHMA prin
iple motivation for applying EO is to explorethe energy lands
ape near the trial 
on�guration by un-
onditionally modifying �un�t� variables. Preferentially(but not ex
lusively) 
hanging variables with low �tnesstends to raise the expe
ted �tness while maintaining large�u
tuations. The algorithm di�ers some from traditionalMonte Carlo algorithms that 
onditionally sele
t vari-ables a

ording to the expe
ted improvement. In EO, thepotential moves are sele
ted a

ording to their rank by�tness, rather than a Boltzmann distribution by weight.A 
orresponden
e 
an be de�ned between �tness andthe Hamiltonian for the Ising spin glass [10℄. TheHamiltonian for spins si, indexed by position i, in a d-dimensional ISG of linear size L is
H = −

∑

〈ij〉

Jijsisj , (1)where Jij are random bond strengths ea
h 
hosen withprobability P (Jij) = e−J2

ij/2/
√

2π for nearest neighborspins with 1 ≤ i, j ≤ N = Ld. When d = 2, algorithmswith running times polynomial in N are available [11℄ to�nd the ground state. When d ≥ 3, �nding the groundstate energy is NP-hard, so that �nding ground statesfor the worst-
ase 
hoi
e of Jij is expe
ted to take timeexponential in N . In the 
ontext of EO, one 
hoi
e forthe �tness variable λi for a spin variable si is
λi = λ0

i ≡ si(
∑

j∈Ui

Jijsj), (2)where Ui are the set of unsatis�ed bonds (siJijsj < 0)
ontaining si. (Allowing for site-dependent 
onstantshifts λ0
i → λ0

i + κi as in Ref. [12℄ did not a�e
t the
omparisons here.) The 
on�guration energy is related

http://arxiv.org/abs/cond-mat/0402295v2


2to the �tness by H = − 1
2

∑
i λ0

i +
∑

ij |Jij |. Any in
reasein the �tness de
reases the total energy.Given the �tness variables λ0
i , there are a variety ofstrategies one 
ould employ to attempt to improve thetotal �tness. The simplest version of EO takes �greedy�steps: the algorithm repeatedly �ips the least �t vari-able until a stati
 state is a
hieved. The greedy method
onverges quite rapidly, but in a spin glass the 
onver-gen
e is to a lo
al minimum that is generally quite farfrom the optimal solution, both in 
on�guration of the

{si} and often in energy per degree of freedom H/N .Similar greedy approa
hes for de
ision problems su
h asSAT, whi
h seeks truth assignments for Boolean formulaso that all 
lauses 
ontain a true value, 
an be quite su
-
essful for given ensembles of problems [13℄.An improved method, τ -EO [10℄, sorts the spins by
λi and 
hooses the mth spin in the list with probabil-ity proportional to m−τ . This favors the 
hoi
e of spinswith low �tness, but allows for the o

asional 
hoi
e ofsites with very high �tness. Flu
tuations arising fromthe sto
hasti
 
hoi
e among spins with low �tness andthe ranking of spins by the total weight of broken bonds,rather than energy improvement, allow the sear
h to es-
ape metastable states. It is argued [10℄ that for largesystems, the optimal 
hoi
e of τ approa
hes τ = 1.The extension 
onsidered in this paper (JEO) adjuststhe �tness by an amount proportional to the number oftimes ki that a site i has been previously 
hosen, that is,

λi = λΓ
i ≡ λ0

i + Γki, (3)where Γ is a site-independent �aging� parameter. Thevariables are sorted by λΓ
i and then sele
ted by rank asin τ -EO. The τ -EO algorithm 
orresponds to the 
hoi
e

Γ = 0. Setting Γ 6= 0 redu
es the probability of sele
tingmoves that have been �ipped many times before. For 
on-�gurations near (or in) the ground state, it is favorablefor some spins to have low �tness, in order that a numberof other spins 
an maximize their �tness. When Γ = 0,these spins, whi
h are a
tually in their ground state ori-entation relative to the other spins, will be �ipped in fu-tility. Shifting the λi during the algorithm also breaks the�nite set of o�sets between �tnesses of distin
t spins thatexist at Γ = 0 (due to the �nite number of bond 
on�gu-rations at ea
h site). This adaptive s
heme has similari-ties to a variety of methods for solving problems su
h asSAT (satis�ability of sets of logi
al 
onstraints) that dis-favor repeated sele
tion of the same move, su
h as Nov-elty [14℄ and variants of WALKSAT and GSAT [15, 16℄.In 
ontrast with these other s
hemes, the sele
tion pro-
ess in JEO is 
ombined with the power law distributionfor sele
ting ranked moves. Spin glasses with 
ontinuousdisorder di�er from SAT problems as they have less lo
aldegenera
y but also possess a global up-down symmetry,so that distin
t methods may be appropriate.In order to sele
t spins qui
kly, I used the approximatesele
tion method des
ribed in Ref. [12℄. The spins arestored in a heap stru
ture [17℄ a

ording to their 
urrent�tness. This stru
ture is a tree that is relatively 
heap to

maintain (O(log N) total 
ost to sele
t a spin and updatethe tree). Ea
h spin has a parent (ex
ept for the root)and at most two 
hildren. Ea
h 
hild is more �t thanits parent and the root of the tree 
ontains the least �tspin. This stru
ture does not guarantee any other inter-level sorting, so that a spin i that is deeper in the treethan, but not a dire
t des
endant of, a given spin i′, mayhave a lower �tness. The heap stru
ture does maintain auseful approximate sorting, though. To sele
t a spin to�ip, a level ℓ is sele
ted with probability proportional to
2−(τ−1)ℓ and then a random spin within level ℓ is 
hosen.The spin at this site is then inverted. The �tness of theneighboring spins is adjusted and the heap is updatedusing standard methods [17℄.EO does not take advantage of the spe
ial stru
tureof the 2D problem: it is not ne
essary or even expe
tedthat it will �nd the solution in time polynomial in the sys-tem size. Polynomial-time solvable problems have beenused to study algorithms, for example, for hard mean-�eld problems [18℄. For some 
lasses of problems, heuris-ti
s 
an �nd solutions in polynomial time [13, 19℄. Inthe 2DISG, large low-energy ex
itations may make lo
alalgorithms espe
ially ine�
ient.II. PERFORMANCE OF THE ALGORITHMIn this se
tion, I 
ompare the performan
e of the ex-tended EO algorithm, JEO, against τ -EO as applied Isingspin glasses with Gaussian disorder. When feasible, 
om-parisons with ground states found using exa
t methodsprovide a pre
ise and dire
t test for 
onvergen
e.Two-dimensional spin glass. The 2DISG models are ona square latti
e with L2 spins and open boundary 
on-ditions. To determine the 2D ground state, ea
h sampleis mapped [11℄ to a general weighted mat
hing problem.The mat
hing problem for a graph is to �nd a set ofedges with minimal total weight su
h that ea
h vertexbelongs to exa
tly one edge. The weighted graph for a2DISG sample has edges dual to the latti
e bonds, withweight |Jij | for an edge that 
rosses a bond with weight
Jij , and extra edges of weight zero that ensure that thefrustration of ea
h plaquette is maintained: unfrustrated(frustrated) plaquettes give an even (odd) number of thebonds dual to the edges of the plaquette in the mat
h-ing. To �nd the minimum weight mat
hing and hen
ethe ground state energy for a 2DISG sample, I used theBlossom IV algorithm developed by Cook and Rohe [20℄.The exa
t ground state energy of ea
h 2DISG samplewas input to the τ -EO and JEO 
odes. When the heuris-ti
 
odes found this energy, the 
odes terminated. Theprimary results from these 
omputations were the distri-butions of the running times, measured in number of spin�ips, to �nd the true ground state. The time to solutionis a fun
tion of both the seed used to generate the sampleand an independent �algorithm seed� used to generate therandom initial 
on�guration and to sele
t spin �ips. In agiven sample, the distribution of times to �nd a ground
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Figure 1: Plot of tm, the sample mean of the median timeto �nd the ground state , measured in spin �ips, using τ -EO(squares) and JEO (
ir
les), for the 2DISG with optimal τand, for JEO, Γ. The triangles indi
ate the same measure oftime to �nd the ground state energy to within 1% a

ura
y.The line shows, for 
omparison, a running time exponentialin L, tm = 15 · 2
L, 
onsistent with the results for JEO. Theun
ertainties are 
omparable to the symbol size.state was roughly Poissonian. This suggests that restart-ing the algorithm with di�erent initial 
on�gurations orseeds for sele
ting �ips does not signi�
antly de
rease themean running time. This 
on
lusion was 
onsistent withempiri
al trials of restarting the algorithm: the algorithmdoes not get stu
k in history dependent traps. Given asample k, the median tkm of the running time was esti-mated from the solution time for 100 algorithm seeds.The results reported here are for tm, the sample meanof tkm. The Γ = 0 data is in agreement with previouslyresults for τ -EO, with tm minimal at τ ≈ 1.5.The results for the mean solution time tm for optimal

τ and Γ are summarized in Fig. 1. As suggested by thedata plotted in Fig. 2, tm is not very sensitive to the exa
t
hoi
e of parameters, as long as τ is in the range 1.5 <
τ < 2.5 and the optimal Γ (on the order of 10−3 to 10−1)is found to within a fa
tor of about 2, for the sizes studiedhere. The best running times for τ -EO grow mu
h morerapidly than those for JEO. For L = 16, JEO is of theorder 104 times faster than τ -EO. Extrapolation suggeststhat the advantage of JEO in
reases signi�
antly with L.For 
omparison, an exponential dependen
e tm = 15 · 2Lis shown in Fig. 1. This fun
tion does a good job ofdes
ribing the JEO data for L = 4 through L = 32.In separate runs, for 
omparison, the heuristi
 algorithmwas terminated when the energy was within 1% of theexa
t ground sate energy. These approximate solutionswere found mu
h more rapidly than exa
t solutions (≈
105 times faster for L = 32).Three-dimensional spin glass. A similar 
omparisonwas 
arried out for 3DISG samples with Gaussian disor-der. The L3 spins in the 3DISG samples lie on a 
ubi
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Figure 2: Plot of tm for 2DISG samples of size L = 8, for Γranging from Γ = 0 (i.e., τ -EO) through Γ = 0.5, as a fun
tionof the power law for rank sele
tion, τ . For 
larity, the errorbars, whi
h are of order 10% of the values for all points, arenot shown. The solid lines are added only to group the points.Choosing Γ ≈ 0.1 and τ ≈ 2.0 minimizes the run time.latti
e with periodi
 boundary 
onditions. For 3DISGsamples of size up to 63, the spin glass server at the Uni-versity of Köln [21℄ (whi
h applies bran
h-and-
ut [5℄)was used to generate exa
t solutions. The termination
ondition of the algorithm was modi�ed, as exa
t groundstates for the larger samples were not readily available.All samples were simulated in parallel with n = 10 algo-rithm seeds. When the minimal re
ord energy for eight(8) of the samples were identi
al, the algorithm was ter-minated. This 
riterion produ
ed 
on�gurations equalto the exa
t solutions for all L = 4, 6 samples (45 atea
h size). This suggests that true ground states werefound with a high probability for L = 8 and possiblyalso L = 10. The summary results are plotted in Fig. 3.Given the termination 
riterion, JEO was of the order of
102 times faster than τ -EO in 
onverging to a potentialsolution for L = 8 samples. Very roughly, L = 6 sampleswere solved in ≈ 10 s on average both on the Köln spinglass server (a 400 MHz Sun Ultra) and using JEO (ona 1 GHz Intel P5). Further studies would be needed toprovide better estimates of the 
on�den
e in the groundstates and how to improve su
h 
on�den
e.III. DISCUSSIONJEO extends the extremal optimization algorithm ofBoett
her and Per
us by adaptively redu
ing the fre-quen
y of �ipping previously sele
ted spins. As a lo
almove 
an lead to avalan
he-like behavior, due to indu
ed
hanges in the �tness of neighbors, this modi�
ation alsoredu
es the frequen
y of �ipping larger domains. Thisextension of EO does add a parameter, the aging pa-rameter Γ. However, a near-optimal value for Γ for ea
h
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Figure 3: Plot of the sample average of the median runningtimes for τ -EO (squares) and JEO (
ir
les) for the GaussianIsing spin glass on a 
ubi
 latti
e. The algorithm terminatedwhen 8 of the minimal re
ord energies agreed among 10 par-allel samples. The parameter τ was �xed for JEO at a near-optimal τ = 1.7 and near-optimal values of Γ = 0.1, 0.1, 0.05for L = 4, 6, 8, respe
tively, were used. The gain for JEO over
τ -EO is approximately a fa
tor of 100 at L = 8. The lineshows tm = 0.05 · 2

3.4·L, for a rough 
omparison.problem type at a given size 
an be found qui
kly andless tuning of the parameter τ is required than for τ -EO.One possible avenue of exploration is to 
he
k whetheravalan
he regions 
orrespond to important domains or

ex
itations in the sample. Possible modi�
ations of JEOin
lude using a sele
tion distribution with sharp 
uto�s[22℄, rather than power-law distributions. Other s
hemesfor redu
ing the �tness of frequently repeated moves
ould be 
onsidered, su
h as modifying the �tness usingnon-linear fun
tions of the number of �ips at a spin.Regardless of the exa
t details of the role of domainsand possible improvements, empiri
al testing shows thatthe aging of the spins during state-spa
e explorationgreatly redu
es the time for EO to �nd the ground stateof the ISG in two and three dimensions. Though the2D model was used to make a pre
ise 
omparison withexa
t results, the exponential equilibration times for the2DISG using extremal optimization are 
onsistent withthose that would be seen for an NP-hard optimizationproblem with a similar lo
al solution strategy. It may beuseful to use an algorithm like JEO to lo
ally improvethe 
on�gurations formed by whole sample 
rossover ingeneti
 algorithms [23℄. As exa
t solutions for small sam-ples 
an be found with 
on�den
e in a relatively smallnumber of steps, in ma
hine time very similar to thatfor bran
h-and-
ut, this simple algorithm also provides avery 
onvenient way to study small 3D samples.I thank Stefan Boett
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