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Improved extremal optimization for the Ising spin glass

A. Alan Middleton
Department of Physics, Syracuse University, Syracuse, NY 1324/
(Dated: 24th May 2011)

A version of the extremal optimization (EO) algorithm introduced by Boettcher and Percus is
tested on 2D and 3D spin glasses with Gaussian disorder. EO preferentially flips spins that are
locally “unfit”; the variant introduced here reduces the probability to flip previously selected spins.
Relative to EO, this adaptive algorithm finds exact ground states with a speed-up of order 10* (102)
for 162- (83-) spin samples. This speed-up increases rapidly with system size, making this heuristic
a useful tool in the study of materials with quenched disorder.

Exploring the low temperature behavior of disordered
materials, such as spin glasses and other random mag-
nets ﬂ], is quite challenging due to the very phenomena,
glassy dynamics and multiple metastable states, that are
important in such materials. Scaling arguments ﬂ, E, E]
indicate that many properties of the glassy state, includ-
ing the scaling of the energy of excitations and correla-
tion functions, can be found by studying the ground state
and its response to perturbations. Significant effort has
been invested in identifying models whose ground states
can be computed in time polynomial in the system size
E] Where no polynomial-time algorithm is known, ex-
act and heuristic methods which take time exponential
in system size are used. This enterprise is intimately
connected with concepts developed in computer science,
especially the distinction between P and NP-hard opti-
mization problems [].

The Ising spin glass (ISG) is a prototypical example of
a disordered magnet. NP-hard problems such as the 3D
ISG are, of course, particularly challenging. Exact meth-
ods for the 3DISG with Gaussian bond weights can solve
123-spin samples with open boundary conditions ﬂ]
Such sizes have not proven to be sufficiently large to de-
cide between alternate pictures for the low-temperature
behavior. Heuristic genetic methods mix configurations
and can therefore generate large scale “moves” such
methods are used for samples with 143 spins for £+.J cou-
plings E] Heuristics with local moves generally have
difficulty finding the exact ground state, due to the large
barriers separating metastable states. Techniques such as
flat histogram methods E] can partially lower free energy
barriers between metastable states.

In this Communication, I study a modified version of
extremal optimization (EO) [10]. EO is a local search al-
gorithm that preferentially flips spins with low “fitness”.
The version presented here, “jaded” extremal optimiza-
tion (JEO) increases the fitness of a spin by an amount
proportional to the number of times it has been flipped.
The goal of this adjustment is to reduce the repetition
in exploring paths in configuration space, so that more
possibilities can be quickly explored. Empirically, this
simple change dramatically increases the effectiveness of
the EO algorithm for finding ground states of two- and
three-dimensional spin glass samples. As exact ground
states are needed for studies of excitations and scaling,
the algorithm is, for the most part, stringently tested by

demanding that it find the ground states computed by
exact methods. Both EO and JEO take time exponen-
tial in the system size to find the exact ground state,
but the rate of growth is slower for JEO. Though JEO
introduces an extra parameter, large improvements are
achieved with only modest tuning.

I. EXTREMAL OPTIMIZATION AND
EXTENDED ALGORITHM

A principle motivation for applying EO is to explore
the energy landscape near the trial configuration by un-
conditionally modifying “unfit” variables. Preferentially
(but not exclusively) changing variables with low fitness
tends to raise the expected fitness while maintaining large
fluctuations. The algorithm differs some from traditional
Monte Carlo algorithms that conditionally select vari-
ables according to the expected improvement. In EO, the
potential moves are selected according to their rank by
fitness, rather than a Boltzmann distribution by weight.

A correspondence can be defined between fitness and
the Hamiltonian for the Ising spin glass m] The
Hamiltonian for spins s;, indexed by position ¢, in a d-
dimensional ISG of linear size L is

H=—- JijSiSj, (].)
(ig)

where J;; are random bond strengths each chosen with
probability P(J;;) = e_‘]ff/2/\/ 27 for nearest neighbor
spins with 1 < i,j < N = LY. When d = 2, algorithms
with running times polynomial in N are available [11] to
find the ground state. When d > 3, finding the ground
state energy is NP-hard, so that finding ground states
for the worst-case choice of J;; is expected to take time
exponential in N. In the context of EO, one choice for
the fitness variable \; for a spin variable s; is
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where U; are the set of unsatisfied bonds (s;J;;s; < 0)
containing s;. (Allowing for site-dependent constant
shifts A9 — A0 + k; as in Ref. [19] did not affect the
comparisons here.) The configuration energy is related
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to the fitness by H = —1 >, A0+ >i; [Jij|. Any increase
in the fitness decreases the total energy.

Given the fitness variables A}, there are a variety of
strategies one could employ to attempt to improve the
total fitness. The simplest version of EO takes “greedy”
steps: the algorithm repeatedly flips the least fit vari-
able until a static state is achieved. The greedy method
converges quite rapidly, but in a spin glass the conver-
gence is to a local minimum that is generally quite far
from the optimal solution, both in configuration of the
{si} and often in energy per degree of freedom H/N.
Similar greedy approaches for decision problems such as
SAT, which seeks truth assignments for Boolean formula
so that all clauses contain a true value, can be quite suc-
cessful for given ensembles of problems [14].

An improved method, 7-EO m], sorts the spins by
A; and chooses the mth spin in the list with probabil-
ity proportional to m™". This favors the choice of spins
with low fitness, but allows for the occasional choice of
sites with very high fitness. Fluctuations arising from
the stochastic choice among spins with low fitness and
the ranking of spins by the total weight of broken bonds,
rather than energy improvement, allow the search to es-
cape metastable states. It is argued m] that for large
systems, the optimal choice of 7 approaches 7 = 1.

The extension considered in this paper (JEO) adjusts
the fitness by an amount proportional to the number of
times k; that a site ¢ has been previously chosen, that is,

where I is a site-independent “aging” parameter. The
variables are sorted by Al and then selected by rank as
in 7-EQO. The 7-EO algorithm corresponds to the choice
' = 0. Setting I" £ 0 reduces the probability of selecting
moves that have been flipped many times before. For con-
figurations near (or in) the ground state, it is favorable
for some spins to have low fitness, in order that a number
of other spins can maximize their fitness. When I' = 0,
these spins, which are actually in their ground state ori-
entation relative to the other spins, will be flipped in fu-
tility. Shifting the A; during the algorithm also breaks the
finite set of offsets between fitnesses of distinct spins that
exist at I' = 0 (due to the finite number of bond configu-
rations at each site). This adaptive scheme has similari-
ties to a variety of methods for solving problems such as
SAT (satisfiability of sets of logical constraints) that dis-
favor repeated selection of the same move, such as Nov-
elty [14] and variants of WALKSAT and GSAT [14, [16].
In contrast with these other schemes, the selection pro-
cess in JEO is combined with the power law distribution
for selecting ranked moves. Spin glasses with continuous
disorder differ from SAT problems as they have less local
degeneracy but also possess a global up-down symmetry,
so that distinct methods may be appropriate.

In order to select spins quickly, I used the approximate
selection method described in Ref. [12]. The spins are
stored in a heap structure [17] according to their current
fitness. This structure is a tree that is relatively cheap to

maintain (O(log N) total cost to select a spin and update
the tree). Each spin has a parent (except for the root)
and at most two children. Each child is more fit than
its parent and the root of the tree contains the least fit
spin. This structure does not guarantee any other inter-
level sorting, so that a spin ¢ that is deeper in the tree
than, but not a direct descendant of, a given spin ', may
have a lower fitness. The heap structure does maintain a
useful approximate sorting, though. To select a spin to
flip, a level 7 is selected with probability proportional to
2= ("=D¢ and then a random spin within level ¢ is chosen.
The spin at this site is then inverted. The fitness of the
neighboring spins is adjusted and the heap is updated
using standard methods [17].

EO does not take advantage of the special structure
of the 2D problem: it is not necessary or even expected
that it will find the solution in time polynomial in the sys-
tem size. Polynomial-time solvable problems have been
used to study algorithms, for example, for hard mean-
field problems ﬁ For some classes of problems, heuris-
tics can find solutions in polynomial time m, |E] In
the 2DISG, large low-energy excitations may make local
algorithms especially inefficient.

II. PERFORMANCE OF THE ALGORITHM

In this section, I compare the performance of the ex-
tended EO algorithm, JEO, against 7-EO as applied Ising
spin glasses with Gaussian disorder. When feasible, com-
parisons with ground states found using exact methods
provide a precise and direct test for convergence.

Two-dimensional spin glass. The 2DISG models are on
a square lattice with L? spins and open boundary con-
ditions. To determine the 2D ground state, each sample
is mapped Ilﬁl] to a general weighted matching problem.
The matching problem for a graph is to find a set of
edges with minimal total weight such that each vertex
belongs to exactly one edge. The weighted graph for a
2DISG sample has edges dual to the lattice bonds, with
weight |J;;| for an edge that crosses a bond with weight
Jij, and extra edges of weight zero that ensure that the
frustration of each plaquette is maintained: unfrustrated
(frustrated) plaquettes give an even (odd) number of the
bonds dual to the edges of the plaquette in the match-
ing. To find the minimum weight matching and hence
the ground state energy for a 2DISG sample, I used the
Blossom IV algorithm developed by Cook and Rohe [20].

The exact ground state energy of each 2DISG sample
was input to the 7-EO and JEO codes. When the heuris-
tic codes found this energy, the codes terminated. The
primary results from these computations were the distri-
butions of the running times, measured in number of spin
flips, to find the true ground state. The time to solution
is a function of both the seed used to generate the sample
and an independent “algorithm seed” used to generate the
random initial configuration and to select spin flips. In a
given sample, the distribution of times to find a ground
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Figure 1: Plot of %,,, the sample mean of the median time
to find the ground state , measured in spin flips, using 7-EO
(squares) and JEO (circles), for the 2DISG with optimal T
and, for JEO, I'. The triangles indicate the same measure of
time to find the ground state energy to within 1% accuracy.
The line shows, for comparison, a running time exponential
in L, %, = 15 - 2%, consistent with the results for JEO. The
uncertainties are comparable to the symbol size.

state was roughly Poissonian. This suggests that restart-
ing the algorithm with different initial configurations or
seeds for selecting flips does not significantly decrease the
mean running time. This conclusion was consistent with
empirical trials of restarting the algorithm: the algorithm
does not get stuck in history dependent traps. Given a
sample k, the median t* of the running time was esti-
mated from the solution time for 100 algorithm seeds.
The results reported here are for %,,, the sample mean
of t* . The I = 0 data is in agreement with previously
results for 7-EO, with %,,, minimal at 7 ~ 1.5.

The results for the mean solution time #,, for optimal
7 and T' are summarized in Fig. [l As suggested by the
data plotted in Fig.B 7,,, is not very sensitive to the exact
choice of parameters, as long as 7 is in the range 1.5 <
7 < 2.5 and the optimal I" (on the order of 1073 to 10~1)
is found to within a factor of about 2, for the sizes studied
here. The best running times for -EO grow much more
rapidly than those for JEO. For L = 16, JEO is of the
order 10* times faster than 7-EQ. Extrapolation suggests
that the advantage of JEO increases significantly with L.
For comparison, an exponential dependence %,, = 15 - 2
is shown in Fig. M This function does a good job of
describing the JEO data for L = 4 through L = 32.
In separate runs, for comparison, the heuristic algorithm
was terminated when the energy was within 1% of the
exact ground sate energy. These approximate solutions
were found much more rapidly than exact solutions (=
10° times faster for L = 32).

Three-dimensional spin glass. A similar comparison
was carried out for 3DISG samples with Gaussian disor-
der. The L? spins in the 3DISG samples lie on a cubic
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Figure 2: Plot of %,, for 2DISG samples of size L = 8, for T
ranging from I" = 0 (i.e., 7-EO) through I' = 0.5, as a function
of the power law for rank selection, 7. For clarity, the error
bars, which are of order 10% of the values for all points, are
not shown. The solid lines are added only to group the points.
Choosing I' = 0.1 and 7 ~ 2.0 minimizes the run time.

lattice with periodic boundary conditions. For 3DISG
samples of size up to 6, the spin glass server at the Uni-
versity of Koln [21] (which applies branch-and-cut [A])
was used to generate exact solutions. The termination
condition of the algorithm was modified, as exact ground
states for the larger samples were not readily available.
All samples were simulated in parallel with n = 10 algo-
rithm seeds. When the minimal record energy for eight
(8) of the samples were identical, the algorithm was ter-
minated. This criterion produced configurations equal
to the exact solutions for all L = 4,6 samples (45 at
each size). This suggests that true ground states were
found with a high probability for L = 8 and possibly
also L = 10. The summary results are plotted in Fig. Bl
Given the termination criterion, JEO was of the order of
10? times faster than 7-EO in converging to a potential
solution for L = 8 samples. Very roughly, L = 6 samples
were solved in ~ 10s on average both on the Koln spin
glass server (a 400 MHz Sun Ultra) and using JEO (on
a 1 GHz Intel P5). Further studies would be needed to
provide better estimates of the confidence in the ground
states and how to improve such confidence.

III. DISCUSSION

JEO extends the extremal optimization algorithm of
Boettcher and Percus by adaptively reducing the fre-
quency of flipping previously selected spins. As a local
move can lead to avalanche-like behavior, due to induced
changes in the fitness of neighbors, this modification also
reduces the frequency of flipping larger domains. This
extension of EO does add a parameter, the aging pa-
rameter I'. However, a near-optimal value for I" for each
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Figure 3: Plot of the sample average of the median running
times for 7-EO (squares) and JEO (circles) for the Gaussian
Ising spin glass on a cubic lattice. The algorithm terminated
when 8 of the minimal record energies agreed among 10 par-
allel samples. The parameter 7 was fixed for JEO at a near-
optimal 7 = 1.7 and near-optimal values of I = 0.1, 0.1, 0.05
for L = 4,6, 8, respectively, were used. The gain for JEO over
7-EO is approximately a factor of 100 at L = 8. The line
shows %,, = 0.05 - 2>* for a rough comparison.

problem type at a given size can be found quickly and
less tuning of the parameter 7 is required than for 7-EO.

One possible avenue of exploration is to check whether
avalanche regions correspond to important domains or

excitations in the sample. Possible modifications of JEO
include using a selection distribution with sharp cutoffs
[22], rather than power-law distributions. Other schemes
for reducing the fitness of frequently repeated moves
could be considered, such as modifying the fitness using
non-linear functions of the number of flips at a spin.

Regardless of the exact details of the role of domains
and possible improvements, empirical testing shows that
the aging of the spins during state-space exploration
greatly reduces the time for EO to find the ground state
of the ISG in two and three dimensions. Though the
2D model was used to make a precise comparison with
exact results, the exponential equilibration times for the
2DISG using extremal optimization are consistent with
those that would be seen for an NP-hard optimization
problem with a similar local solution strategy. It may be
useful to use an algorithm like JEO to locally improve
the configurations formed by whole sample crossover in
genetic algorithms [23]. As exact solutions for small sam-
ples can be found with confidence in a relatively small
number of steps, in machine time very similar to that
for branch-and-cut, this simple algorithm also provides a
very convenient way to study small 3D samples.
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this work. I thank the Kavli Institute for Theoretical
Physics and the Schloss Dagstuhl Seminar (03381) for
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the National Science Foundation (grants DMR-~0109164
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