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Abstract: For the purpose of tackling ultra-wideband (UWB) indoor positioning with signal interfer-
ence, a binary classifier for signal interference discrimination and positioning errors compensation
model combining genetic algorithm (GA) and extreme learning machine (ELM) are put forward.
Based on the distances between four anchors and the target which are calculated with time of flight
(TOF) ranging technique, GA-ELM-based binary classifier for judging the existence of signal inter-
ference, and GA-ELM-based positioning errors compensation model are built up to compensate
for the result of the preliminary evaluated positioning model. Finally, the datasets collected in the
actual scenario are used for verification and analysis. The experimental results indicate that the
root-mean-square error (RMSE) of positioning without signal interference is 14.5068 cm, which is
reduced by 71.32% and 59.72% compared with those results free of compensation and optimization,
respectively. Moreover, the RMSE of positioning with signal interference is 28.0861 cm, which is
decreased by 64.38% and 70.16%, in comparison to their counterparts without compensation and
optimization, respectively. Consequently, these calculated results of numerical examples lead to
the conclusion that the proposed method displays its wide application, high precision and rapid
convergence in improving the positioning accuracy for mobile robots.

Keywords: ultra-wideband (UWB); robot indoor positioning; genetic algorithm (GA); extreme
learning machine (ELM); errors compensation

1. Introduction

The indoor positioning for mobile robots can hardly be realized by global positioning
system (GPS) technology used mainly for outdoor positioning because GPS accuracy can
degrade significantly in indoor scenarios [1–3]. Currently, several common optional tech-
nologies for indoor positioning of mobile robots have been proposed, including visible light
communication (VLC) [4], Wi-Fi [5], magnetic patterns [6,7], radio frequency identification
technology (RFID) [8], which can be used as potential alternatives to GPS. More impor-
tantly, localization using Wi-Fi and magnetic field does not necessitate the configuration
of extra hardware. Although VLC and RFID are highly accurate, they are susceptible
to interference from ambient light and objects containing metal, respectively. Zigbee, as
another positioning technology, has been used in the indoor positioning of mobile robots
with a precision of up to 0.636 m (in the range of 4 m× 4 m) [9]. Wireless local area network
(WLAN) [10,11], also, has been utilized as a candidate solution for indoor localization,
yet the location accuracy it offers needs to be improved. Weighing and considering the
relationship between cost and accuracy, the original intention of this paper is to achieve
higher positioning accuracy at a lower cost, even in signals being in strong interference.

Therefore, UWB positioning, a technology more suitable for indoor positioning, be-
cause of its advantages of high precision [12], low loss [13], collaborative localization [14,15],
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resistance to harsh multipath effects [16,17] and more robustness to interference [18], is
commonly extensively used in short-range wireless communications, such as in the field of
mobile robots [19], aerial robotics [20], swarm and multi-robot systems [21], human-robot
interaction [22,23], etc. With the widespread application of mobile robots in indoor scenar-
ios [14], UWB positioning technology has become a pivotal method for indoor navigation
and positioning, especially in indoor mobile transportation scenarios [24], such as urban
canyons [25,26], hospitals [27] and IoT factories [14]. For instance, Lu et al. [28] proposed
an assisted navigation system for blind and visually impaired persons utilizing a deep
reinforcement learning guiding robot with UWB voice beacons and semantic feedback.
Wu et al. [29] designed a UWB-based indoor food delivery robot location information system.

However, UWB positioning technology indoors will result in inaccurate positioning
due to measurement errors caused by obstacles [30] and Non-Line-of-Sight (NLOS) [13,30].
To deal with the aforementioned problem, several techniques for improving UWB positioning
accuracy have been previously proposed in recent decades. For example, Sandra et al. [31]
introduced a unique approach that combines trilateration and fingerprinting to tackle the
challenge of UWB-based localization in complicated indoor environments, which can reach
sub-decimeter level precision. Considering the problem of locating a single robot given a
set of squared noisy range difference (SRD-LS) measurements to a set of known-positions
anchors, the work Pinar [32] performed regarding the localization errors has a probability
of 90% within 0.35 m. Tiemann et al. [19] developed a technique for enhancing and integrat-
ing UWB with monocular simultaneous localization and mapping at 13.9 cm inaccuracy
(6 × 6 m square at 4.5 m height). More so, a multi-sensor fusion localization method was
proposed for improving the positioning accuracy and stability of mobile robots [33–38],
but its implementation cost is too high [39]. Nevertheless, Liu et al. [40] fused the Inertial-
measurement unit (IMU) and UWB with a particle filter to obtain a position error of 0.534 m.
A UWB and improved pedestrian dead-reckoning (PDR) integration algorithm has been
applied to dynamic indoor positioning [41], but it can only provide the positioning accuracy
of approximately 51 cm in a two-dimensional scene. The particle filter solution proposed by
Guido et al. [42] has slightly better performance but at the price of increased computational
complexity. Likewise, an indoor positioning optimization algorithm combining GA and
radial basis function (RBF) neural network (GA-RBF) was proposed by Guo et al. [43],
whose positioning error is within 10 cm only in a two-dimensional plane. In addition,
Guo et al. [44] proposed another method that the optimized neural network clustering
algorithm is integrated with the unscented Kalman filter (UKF) to smooth the positioning
data and reduce NLOS error. Besides, deep learning-based localization, for UWB systems
was proposed by Nguyen et al. [45] that utilizes a convolutional neural network (CNN),
for GPS in mobile robots, was adopted by Nilwong et al. [46]. Similarly, machine learning-
based algorithms were developed by Rana et al. [47] through multi-class support vector
machine (MC-SVM) architecture enabling a truly evolving scheme to both localize targets
and identify them in a useful way. Schmid et al. [16] have used a part of the large dataset to
train an artificial neural network (ANN) for errors prediction; mean absolute bias along
the bench was about 8 cm, and the average standard deviation per position was only 4 cm,
however, at specific locations mean errors were over 60 cm. An anchor placement method
for the trajectory of target based on genetic heuristic differential evolution algorithm was
proposed by Pan et al. [48] that its average localization error is 0.56 m.

In summary, there are a multitude of methods towards improving the accuracy of
UWB indoor positioning, among which the accuracy of fusion of multiple sensors with
high costs is proved to be optimal. If only UWB positioning technology is used, owing to
low costs, centimeter-level accuracy can be achieved in a two-dimensional plane, whereas
the accuracy it offers in a three-dimensional space is still underdeveloped. Furthermore,
little literature has investigated the problem of UWB signals being in strong interference,
i.e., abnormal data fluctuations usually caused by time delay will cause indoor positioning
to be inaccurate. Therefore, the precise positioning of UWB in signal interference (e.g.,
obscuration between anchors and target) is regarded as an urgent problem to be solved. In



Machines 2022, 10, 218 3 of 21

this paper, a UWB indoor high-precision positioning model based on GA-optimized ELM is
proposed, as a component of which, a binary classifier based on GA-ELM is established to
judge the existence of signal interference, and the positioning errors compensation is then
performed by using the GA-ELM model to realize the precise positioning of the mobile
robot target in complex indoor environments.

2. Preliminary Positioning and Assessment Model

The UWB positioning anchor receives data packets with less interference, so hundreds
to thousands of positioning tags can work in the same area at the same time. Concerning
the influence of the number of anchors, it is necessary to discuss first. Theoretically, the
more the number of positioning base stations, the higher the positioning accuracy of the
target to be measured, but there is a lower limit to the number of base stations. Since the
equation expressing the distance between the target and the anchors contains quadratic
terms, at least Np + 1 sets of equations are required to solve the Np-dimensional quadratic
equations, i.e., the number of anchors NB and unknown quantities in the set of equations,
and also the spatial dimension must satisfy the following equation:

NB ≥ Np + 1 (1)

Equation (1) shows that indoor three-dimensional spatial positioning requires four or
more base stations, so four anchors are chosen to be adopted in this paper.

In the actual scene, the TOF ranging principle, a technique that uses the time of flight of
radio waves between two objects to calculate distance, is first used to acquire the distances
between the four anchors that transmit the signals and the target that receives the signals.
The schematic diagram of the experimental scene, as well as the operational principle of
data collection, are shown in Figure 1. In particular, the position coordinates of the four
anchors are fixed at different heights indoors, while the mobile robot with the target (i.e.,
Tag in Figure 1) moves in the indoor environment, and the four anchors and the target
sense each other through UWB pulses. Each movement of the target can be recorded with
the information occurring in these four-communication links consisting of four anchors and
the target. Through the mutual communication between the four anchors and the target,
the spatial distance between each pair is accordingly measured with TOF technology.
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Figure 1. Schematic diagram of the principle of TOF-based UWB data collection.
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Next, according to the collected ranging dataset of the target, a preliminary positioning
mathematical model is established to initially calculate the three-dimensional coordinates
of the target by following these detailed steps:

Step 1: The distance DAt (obtained by TOF ranging) between the target and anchor t
is denoted as

DAt =

√
(xt − x)2 + (yt − y)2 + (zt − z)2, t = 0, 1, 2, 3. (2)

Step 2: Squaring both sides of Equation (2) lead to
DA0

2 = x0
2 + y0

2 + z0
2 − 2x0x− 2y0y− 2z0z + x2 + y2 + z2,

DA1
2 = x1

2 + y1
2 + z1

2 − 2x1x− 2y1y− 2z1z + x2 + y2 + z2,
DA2

2 = x2
2 + y2

2 + z2
2 − 2x2x− 2y2y− 2z2z + x2 + y2 + z2,

DA3
2 = x3

2 + y3
2 + z3

2 − 2x3x− 2y3y− 2z3z + x2 + y2 + z2.

(3)

by the definition simultaneously:

Ht = xt
2 + yt

2 + zt
2 (4)

Step 3: The two adjacent terms of Equation (3) are subtracted to eliminate the quadratic
term, hence, the target position Tag (x, y, z) in matrix form is: x

y
z

 =
1
2

 x1 − x0 y1 − y0 z1 − z0
x2 − x1 y2 − y1 z2 − z1
x3 − x2 y3 − y2 z3 − z2

−1 DA0
2 − DA1

2 + H1 − H0
DA1

2 − DA2
2 + H2 − H1

DA2
2 − DA3

2 + H3 − H2

 (5)

Step 4: The RMSE, which is used for evaluating the positioning model accuracy of the
mobile robot, is calculated as:

RMSEj =

√
1
n

n

∑
i=1

(yi − ŷi)
2, j ∈ {X, Y, Z} (6)

where RMSEj represents the root-mean-square error of the coordinates yi and ŷi are the
true value and estimated value of the i-th target coordinate, respectively.

Step 5: The degree of the fitting test is used to verify the fitting degree of the prediction
model to the sample observations value. The sum of squares of the mean difference between
the original and predicted data is given by:

St =
n

∑
i=1

(yi − y)2 =
n

∑
i=1

(yi − ŷ)2 +
n

∑
i=1

(ŷ− y)2 = Sc + Sh (7)

As a satisfactory prediction model, the sample observation values should be well
fitted, i.e., Sc in St should be as small as possible, so the degree of fitting can be defined as:

R2 = 1− Sc

St
(8)

The closer R2 is to 1, the stronger the explanatory ability of the independent variable of
the analytical formula to the dependent variable, which means that there is a better fitting
effect of the equation and a higher fitting degree of the data.

3. Precise Positioning Model

In this section, the details of the UWB-based precise positioning model for mobile
robots proposed in this paper are illustrated as follows. First, the general framework of
the method proposed in this contribution is presented. Afterward, the ELM model is
established, followed by the GA-optimized ELM model is constructed for improving the
positioning accuracy of mobile robots.
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3.1. Construction of Overall Model

No matter whether the signal interference exists, accurate positioning (three-dimensional
coordinates) of the target can be obtained by the GA-optimized ELM model for positioning
errors compensation and its specific process is shown in Figure 2.

Start

Data collection

Data preprocessing

Existence of signal interference
 is judged by GA-ELM model

Preliminary positioning and a
ssessment model is built

N

Error compensation on the Z-axis coordinates
 of the target is performed by GA-ELM model

Draw the trajectory of the target

End

Error compensation for
distance measurement is
built by GA-ELM model

Y

Three-dimensional coordinates of the targets

Figure 2. Workflow chart of the overall method.

It is worthwhile mentioning, in the workflow of the overall method proposed in
this paper, that the GA-optimized ELM model is adopted three times, in which signal
discrimination, Z-axis errors compensation and ranging errors compensation, respectively,
embodies the reusability of the same method regarding the GA-ELM model.

3.2. Construction of the ELM Model

Compared with traditional training methods (e.g., BP neural network), ELM has
the advantages of higher learning speed and better generalization performance [49]. In
addition, ELM can not only predict the positioning errors of the target but also judge
whether signal interference exists during the positioning process of the mobile robot using
UWB technology.

In this research, the ELM model is established to train the nonlinear relationship
between ranging data (between targets and anchors) and category or error, as shown in
Figure 3. The input variable x is actual ranging data, and the output variable t is error or
category. The input layer, hidden layer and output layer has n, l and m neurons, respectively.
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Suppose there are N groups of training samples for ranging, between four anchors
(A0, A1, A2, A3) and the target, is (xi, ti) ∈ Rn × Rm. Subsequently, the ELM model can be
expressed as:

Ok =
l

∑
i=1

vig(wixk + bi), k = 1, 2, . . . , N (9)

where g(x) is the excitation function, wi = [wi1, wi2, . . . , win]T is the weight coefficient of
the connection between the i-th node of the hidden layer and the input layer, vi = [vi1, vi2,
. . . , vim]T is the weight coefficient of the connection between the i-th node of the hidden
layer and the output layer, and bi is the threshold of hidden layer nodes.

In the case of l = N, Equation (9) is defined as:

Hv = T (10)

where 

H =

 g(w1x1 + b1) · · · g(wlx1 + b1)
...

...
g(w1xN + bN) · · · g(wlxN + bN)


N×l

,

v =
[
vT

1 , · · · , vT
l
]T

l×m,

T =
[
tT

1 , · · · , tT
l
]T

N×m.

If the number of datasets is large, l < N is taken to reduce the computation, and the
network model of ELM is calculated as:

min‖Hv− T‖ (11)

where g(x) is infinitely differentiable, the weight coefficient wi and the threshold bi are all
random numbers limited in the interval [−0.5, 0.5], and the training process of the ELM
can be regarded as solving the least square solution of the linear system Hv = T, namely:

ν̂ = H+T (12)

where H+ is the Moore–Penrose generalized inverse matrix of H.
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Eventually, substituting the results of w, v and b into Equation (9) yield the result of
the output layer.

3.3. Construction of GA-Optimized ELM Model

Since the weight coefficients and thresholds of ELM are generated by random num-
bers, which leads to the prediction results of the model not being accurate enough, an
optimization algorithm should be used to obtain the optimal value of weight coefficients
and thresholds. Similarly, GA simulates the biological evolution process in nature rather
than the traditional search method and employs the evolution method to perform a random
optimization search on the target. In view of its global search optimal ability [50], this paper
adopts GA to optimize the weight coefficients and thresholds of ELM, which effectively
improves the positioning accuracy of the target and the correct rate of judging the presence
and absence of signal interference.

According to the input and output parameters of ELM, the number of GA optimization
parameters is determined, so as to set the code length of population individuals. In the
following, the fitness function adopts a linearly ordered fitness distribution function, which
is defined as:

F(ρ) = 2− ηmax + 2(ηmax − 1)
ρ− 1
χ− 1

, ηmax ∈ [1, 2] (13)

where ρ is the individual serial number, χ expresses the population size of the objective
function value, ηmax indicates the selective pressure.

The selection operator uses random traversal sampling, the crossover operator uses
single-point crossover, and the mutation operator generates the number of variant genes
with a certain probability (i.e., change code 1 to 0 or change code 0 to 1).

The objective function of signal interference identification is to minimize the error
rate, specifically:

min arg
wi ,vi ,bi

< = (1− nt

Nt
)× 100% (14)

where nt and Nt represent the correct number and the total number of the test sets respec-
tively, respectively.

The objective function of the target coordinate errors compensation is to minimize
RMSE, specifically:

min arg
wi ,vi ,bi

RMSE =

√
‖εc − εr‖2

2
N

(15)

where εc and εr mean the error prediction value and the true value of the test set, respectively.
Combining the advantages of GA and ELM, GA-optimized ELM based signal inter-

ference discrimination and positioning errors compensation algorithms are established,
whose workflow chart is shown in Figure 4.

In this model, the weight coefficients and thresholds of ELM are optimized by GA to
derive the optimal objective function value, which is used for the discrimination of signal
interference and the positioning errors compensation with and without signal interference
in mobile robots’ positioning.
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Start

Determine the network structure of ELM

Initialize the weights (wi, vi) and
thresholds (bi) of ELM

Training network

Test network

Whether the number of  the
iteration g < gmax? Encode weights and thresholds

Perform selection operation

Perform crossover operation

Perform mutation operation

Decode to form new
weights and thresholds

Calculate fitness function value and
find the minimum value

Y

End

N

Output optimization parameters and
the minimum value of fitness function

GA

ELM

Figure 4. Workflow chart of GA-ELM algorithm.

4. Experimental Results and Analysis

In this section, measured experiments and analyses are carried out to obtain the evalu-
ation results of the model proposed in Section 3. Data preprocessing is firstly performed to
gain reliable and available datasets about the position of the target on the mobile robot, and
then 324 datasets with and without signal interference, i.e., corresponding to two scenarios
of NLOS and LOS, respectively, are tested and analyzed on the signal discrimination and
the positioning errors compensation model proposed in this work.

4.1. Experimental Apparatus

The experiment is conducted in an indoor environment with a length, width and height
of 5 m, 5 m and 3 m, respectively, specifically in Figure 1, L = 5000 mm,
W = 5000 mm, H = 3000 mm, and the coordinates of the four anchors are A0 (0, 0, 1300),
A1 (5000, 0, 1700), A2 (0, 5000, 1700), A3 (5000, 5000, 1300), respectively. The four anchors
are arranged with different height differences to eliminate the Z-axis error.

In this experiment, a high-precision positioning base station (four anchors) and target
with model DWM1000 UWB transceivers from Decawave are adopted to verify GA-ELM
experimentally, which uses coherent receiving technology to enable the positioning system
to realize object positioning, as well as has the advantages of low power consumption and
high positioning accuracy. The basic parameters of Decawave-DWM1000 are shown in
Table 1.
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Table 1. Basic parameters of the base station and target.

Model Decawave-DWM1000

Power Supply DC power The input voltage is 2.8~3.6 V

UWB Wireless Parameters
Supported protocols IEEE802.15.4-2011 UWB protocol

Frequency 3.5 GHz~6.5 GHz
The rate of data transfer Support 6.8 Mbps, 110 kbps and 850 kbps

Positioning Performance
Positioning accuracy <30 cm (No occlusion)

Recommended base station layout interval <300 m
Supported ranging schemes TOF and TDOA

4.2. Data Preprocessing

In the experimental scenario mentioned above, the UWB ranging data of the target at
324 different positions with and without signal interference were collected, respectively,
that is, two datasets of data were collected for each position with and without signal
interference, respectively, and the ranging of each group of the target at the identical
position was collected multiple times to obtain the arithmetic mean for avoiding random
errors of the measurement system.

Typically, in the process of data measurement, regardless of the presence and absence
of signal interference, the measured value may be affected by the environment, resulting in
deviations in the measurement data, i.e., abnormal values, which will interfere with subse-
quent model predictions. Correspondingly, according to the number of measurements, 3σ
criterion is selected for performing data processing to obtain usable data, whose calculation
process is as follows.

Step 1: The mean value of the ranging samples is calculated to mitigate systematic
random errors as follows:

d =
1
n

n

∑
i=1

di (16)

where n represents the number of samples, di is the distance measurement between the
target and anchors in the i-th sample.

Step 2: Sample standard deviation S is obtained by:

S =

√
1
n

n

∑
i=1

(di − d)
2

(17)

If the residual error of the measured value dm satisfies
∣∣∣dm − d

∣∣∣ > 3σ, it is considered
as an abnormal value that must be eliminated.

As mentioned above, the standard deviation comparison of each location ranging
datasets without and with signal interference before and after processing is shown in
Figures 5 and 6, respectively.

From the comparison of Figures 5 and 6, it can be directly seen that the standard
deviation after data preprocessing has been reduced, especially for anchors A0 and A3,
indicating that the selected approach is correct and effective. The most remarkable result
is that the standard deviation of the datasets is large in the case of signal interference,
illustrating that there are numerous abnormal values in the measured datasets in the
condition of signal interference, which can effectively verify the effectiveness and accuracy
of the aforementioned positioning algorithm.
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Figure 5. The standard deviation comparison of the samples before and after processing without
signal interference.

Machines 2022, 10, x FOR PEER REVIEW 10 of 21 

 

 
Figure 5. The standard deviation comparison of the samples before and after processing without 
signal interference. 

 
Figure 6. The standard deviation comparison of the samples before and after processing with signal 
interference. 

From the comparison of Figures 5 and 6, it can be directly seen that the standard 
deviation after data preprocessing has been reduced, especially for anchors A0 and A3, 
indicating that the selected approach is correct and effective. The most remarkable result 
is that the standard deviation of the datasets is large in the case of signal interference, 
illustrating that there are numerous abnormal values in the measured datasets in the con-
dition of signal interference, which can effectively verify the effectiveness and accuracy of 
the aforementioned positioning algorithm. 

4.3. Identification of Signal Interference 
Firstly, these 518 samples of the training set for model training and 130 samples of 

the test set for model testing, were generated by the sequential shuffling method from 648 
(i.e., 324 × 2) sets of measurement datasets. The GA-ELM model is then created and 
trained, and finally, the error rate of the training model is calculated and analyzed by 
comparison. 

0 50 100 150 200 250 300 350
Samples number of the target

0

200

400

600

800

1000
Anchor point A0

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the targets

0

5

10

15

20

25
Anchor point A1

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the targets

0

5

10

15

20

25
Anchor point A2

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the target

0

100

200

300

400
Anchor point A3

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the target

0

200

400

600

800

1000

St
an

da
rd

 d
ev

ia
tio

n/
m

m

Anchor point A0

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the target

0

200

400

600
St

an
da

rd
 d

ev
ia

tio
n/

m
m

Anchor point A1

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the target

0

200

400

600

800

1000

St
an

da
rd

 d
ev

ia
tio

n/
m

m

Anchor point A2

Before processing
After processing

0 50 100 150 200 250 300 350
Samples number of the target

0

100

200

300

400

500

St
an

da
rd

 d
ev

ia
tio

n/
m

m

Anchor point A3

Before processing
After processing

Figure 6. The standard deviation comparison of the samples before and after processing with
signal interference.

4.3. Identification of Signal Interference

Firstly, these 518 samples of the training set for model training and 130 samples of the
test set for model testing, were generated by the sequential shuffling method from 648 (i.e.,
324 × 2) sets of measurement datasets. The GA-ELM model is then created and trained,
and finally, the error rate of the training model is calculated and analyzed by comparison.

In the following operation, the minimum error rate of the binary classifier for judging
the existence of UWB signal interference is calculated, based on GA to optimize ELM, in
the activation function of Sigmoid is 3.2819%. The evolution curve is shown in Figure 7,
and the comparison of the discriminant results of the test set is shown in Figure 8.
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In Figure 8, the numerical value on the ordinate represents the judgment of the
presence and absence of signal interference. Specifically, 1 and 2 represent no signal
interference and signal interference, respectively. It can be concluded that the correct rate
of GA-ELM is 96.72%, which is 16.78% higher than that of ELM, manifesting that the
optimization effect of GA-ELM is better than that of ELM.

More classically, support vector machine (SVM) and logistic regression (LR) can
also be used as binary classifiers for signal interference discrimination. The LR model
is a generalized linear regression analysis model, whose independent variables can be
either continuous or categorical [51], while the SVM model is a class of generalized linear
classifiers that perform binary classification of data according to supervised learning [52].
In order to further explore the superiority of the GA-optimized ELM binary classifier, the
LR classifier and SVM classifier are established to compare with the GA-ELM classifier
proposed in this paper, whose results of the comparison are listed in Table 2.



Machines 2022, 10, 218 12 of 21

Table 2. The comparison of correct rates of different classifiers.

Serial Number Classifier Name Training Accuracy Rate Test Accuracy Rate

1 LR 96.33% 63.08%
2 SVM 65.41% 56.03%
3 ELM 83.96% 82.82%
4 GA-ELM 97.92% 96.72%

By comparing these classifiers’ accuracy rate of the training set and testing set, it is
found that the accuracy rate of the GA-ELM classifier is the highest among these classifiers,
accordingly, the GA-ELM classifier is preferred to discriminate whether the UWB signals
are interfered with.

4.4. Preliminary Positioning Results and Analysis

Based on the preliminary positioning model established in Section 2, a rigorous
numerical comparison chart concerning the true value and the estimated value of the target
coordinates with and without signal interference are shown in Figures 9 and 10, respectively.
Additionally, the RMSE of the target coordinates with and without signal interference are
tabulated in Table 3.
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signal interference.

In the comparison of Figures 9 and 10 and Table 3, it is vividly depicted that errors
in X and Y directions are small, only reaching centimeter-level accuracy, while errors in
Z-direction are large, which reached an accuracy of the decimeter level. The reason is that
the quadratic term is eliminated in Equation (5), so the target coordinates are no longer
on the spherical surface with the target as the center and the measurement distance as the
radius, which can potentially cause larger ranging errors. Secondly, the condition number
of the coefficient matrix is much greater than one, consequently, a slight disturbance will
produce a considerable error. In this case, the coordinate difference zi-zi−1 is one order of
magnitude smaller than xi-xi−1 and yi-yi−1, which makes the errors in the Z-direction more



Machines 2022, 10, 218 13 of 21

sensitive. Therefore, it is indispensable that the Z-axis coordinates errors compensation is
carried out to accomplish accurate positioning of the target.Machines 2022, 10, x FOR PEER REVIEW 13 of 21 
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Table 3. The RMSE of preliminary estimation of the target coordinates with and without signal
interference.

The Coordinates of the
Target

RMSE without Signal
Interference (cm)

RMSE with Signal
Interference (cm)

X 5.0187 13.5421
Y 4.6536 13.0012
Z 50.5896 148.3624

(X, Y) 6.8443 16.4087
(X, Y, Z) 51.0505 79.3578

4.5. Positioning Errors Compensation Model

The 324 groups of samples are divided into 250 training set samples and 74 test set
samples. For the absence of signal interference, only the errors compensation towards the
Z-axis is enough, whose training sample has four input parameters (i.e., ranging from four
anchors) and one output parameter (i.e., Z-axis errors). Successively, in the case of the
presence of different interfering signals, the ranging errors caused by signal interference
are firstly compensated and the Z-direction errors are then compensated. The input layer
and an output layer of the ranging errors compensation model each have four nodes,
which are the ranging of four anchors and the ranging errors of four anchors, respectively.
The following procedure is to calculate the position of the target with and without signal
interference, respectively.
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4.5.1. Without Signal Interference

In terms of no signal interference, the input of function expression f : Rn×m → Rn×k

of the GA-optimized ELM based positioning errors compensation model is 324 groups of
target position distances, each of which has distances measurement of four anchors (i.e.,
n = 324, m = 4), and the output is 324 groups Z-axis errors of the target (i.e., k = 1).

The GA-optimized ELM based positioning errors compensation model is applied
to model training, and the minimum RMSE of the test dataset is 14.5068 cm. Then the
evolution curve is shown in Figure A1, and a comparison chart of the prediction results
of the Z-axis coordinate errors of the target in the test set is drawn, as shown in Figure 11.
Additionally, due to the enormous number of standard and extended machine learning
models used in positioning, the BP neural network is added to justify and compare the
usage of the GA-ELM model for experimentation.

Machines 2022, 10, x FOR PEER REVIEW 14 of 21 

 

are firstly compensated and the Z-direction errors are then compensated. The input layer 

and an output layer of the ranging errors compensation model each have four nodes, 

which are the ranging of four anchors and the ranging errors of four anchors, respectively. 

The following procedure is to calculate the position of the target with and without signal 

interference, respectively. 

4.5.1. Without Signal Interference 

In terms of no signal interference, the input of function expression : n m n kf  →  of 

the GA-optimized ELM based positioning errors compensation model is 324 groups of 

target position distances, each of which has distances measurement of four anchors (i.e., 

n = 324, m = 4), and the output is 324 groups Z-axis errors of the target (i.e., k = 1). 

The GA-optimized ELM based positioning errors compensation model is applied to 

model training, and the minimum RMSE of the test dataset is 14.5068 cm. Then the 

evolution curve is shown in Figure A1, and a comparison chart of the prediction results 

of the Z-axis coordinate errors of the target in the test set is drawn, as shown in Figure 11. 

Additionally, due to the enormous number of standard and extended machine learning 

models used in positioning, the BP neural network is added to justify and compare the 

usage of the GA-ELM model for experimentation. 

 

Figure 11. The comparison of the prediction results of the Z-axis errors of the test set target. 

From Figure 11, it is observed that the overall effect of GA-ELM is relatively ideal, 

and its training set degree of fitting is 0.9147. Moreover, the minimum RMSE of GA-ELM 

is 14.5068 cm in the case of LOS, which is 71.32% and 59.72% less than the original estimate 

and the unoptimized one, respectively. Consequently, the Z-direction coordinate can be 

compensated according to the training prediction errors of the measurement data. 

4.5.2. With Signal Interference 

As for signal interference, the input of function expression : n m n kf  →  of the 

GA-optimized ELM, based on the ranging errors compensation model, is 324 groups of 

target position distances, each of which has the measured distances of four anchors (i.e., 

n = 324, m = 4), and the output is 324 ranging errors, each of which has four errors of 

anchors (i.e., k = 4). Then, the input and output of the errors compensation model for the 

Z-direction are the same as those without signal interference. 

As detailed in Section 3, errors compensation is performed on the distances from the 

four anchors to the target, and the minimum of RMSE optimized by the GA-ELM model 

is 134.2459 cm. Then the evolution curve is shown in Figure A2, and a comparison 

ELM: (RMSE = 39.8291 cm, R2  = 0.3976)
GA-ELM: (RMSE = 14.5068 cm, R2  = 0.9147)

BP: (RMSE = 23.9004 cm, R2 =0.8591)

Figure 11. The comparison of the prediction results of the Z-axis errors of the test set target.

From Figure 11, it is observed that the overall effect of GA-ELM is relatively ideal, and
its training set degree of fitting is 0.9147. Moreover, the minimum RMSE of GA-ELM is
14.5068 cm in the case of LOS, which is 71.32% and 59.72% less than the original estimate
and the unoptimized one, respectively. Consequently, the Z-direction coordinate can be
compensated according to the training prediction errors of the measurement data.

4.5.2. With Signal Interference

As for signal interference, the input of function expression f : Rn×m → Rn×k of the
GA-optimized ELM, based on the ranging errors compensation model, is 324 groups of
target position distances, each of which has the measured distances of four anchors (i.e.,
n = 324, m = 4), and the output is 324 ranging errors, each of which has four errors of
anchors (i.e., k = 4). Then, the input and output of the errors compensation model for the
Z-direction are the same as those without signal interference.

As detailed in Section 3, errors compensation is performed on the distances from the
four anchors to the target, and the minimum of RMSE optimized by the GA-ELM model is
134.2459 cm. Then the evolution curve is shown in Figure A2, and a comparison diagram of
the predicted value and the true value of the ranging errors of each anchor in the training
set are shown in Figure 12.
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Figure 12. The comparison of ranging errors of each anchor point.

The estimated ranging errors are then substituted into the positioning model for Z-axis
errors compensation, and the comparison figure before and after the compensation of range
errors with signal interference is shown in Figure 13. Successively, the RMSE after errors
compensation is calculated and compared with the one before compensation in Table 4.
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Table 4. RMSE before and after compensation of ranging errors with signal interference.

Serial Number Target Coordinates RMSE before
Compensation (cm)

RMSE after
Compensation (cm)

Reduction Percentage
of RMSE

1 X 13.5421 10.1621 24.96%
2 Y 13.0012 9.2658 28.73%
3 Z 148.3624 77.6429 47.67%
4 (X, Y) 16.4087 13.7522 16.19%
5 (X, Y, Z) 79.3578 78.8514 0.64%

From the rigorous numerical comparison of Figure 13 and Table 4, it can be con-
cluded that after the ranging errors compensation with signal interference, the RMSE of
the Z-direction is reduced by nearly 50%, which shows the effectiveness of the errors com-
pensation model. However, there is still room for improvement in the errors of the Z-axis
compared with those precision free of signal interference. Therefore, compensation for the
Z-axis errors is equivalent to dual errors compensation for signal interference, which can
effectively improve the positioning accuracy of the three-dimensional space coordinates of
the target on the mobile robot.

The Z-axis errors are compensated by using the data after ranging errors compensation,
and finally, the minimum RMSE is 37.9811 cm, of which the evolution curve is shown in
Figure A3. Then, as shown in Figure 14, the Z-axis errors of the target in the test with signal
interference are compared with the predicted results by forming a point plot. Meanwhile,
the RMSE comparison before and after errors compensation with signal interference is
shown in Table 5.
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Figure 14. The comparison of Z-axis test set errors compensation with signal interference.

Table 5. RMSE before and after errors compensation with signal interference.

Serial
Number

Target
Coordinates

RMSE before
Ranging Errors

Compensation (cm)

RMSE after Ranging
Errors Compensation

(cm)

RMSE after Z-Axis
Errors Compensation

(cm)

Reduction
Percentage of

RMSE

1 X 13.5421 10.1621 — 24.96%
2 Y 13.0012 9.2658 — 28.73%
3 Z 148.3624 77.6429 37.9811 51.08%
4 (X, Y) 16.4087 13.7522 — 16.19%
5 (X, Y, Z) 79.3578 78.8514 28.0861 64.38%
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From Table 5, it can be clearly seen that the RMSE of the spatial coordinates after
compensation of the GA-ELM model is 28.0861 cm in the case of NLOS, which is 64.38% and
70.16% significantly lower than those without compensation and optimization, respectively.

In order to better compare the performance of different algorithms, it is necessary to
draw a cumulative distribution function (CDF) graph of the algorithm positioning errors.
Figure 15 shows the CDF comparison of different algorithms in the two cases of LOS and
NLOS, where the localization errors of LOS and NLOS are uniformly distributed numbers
between 0~180 cm and 0~350 cm, respectively. As can be seen from Figure 15, compared to
other algorithms, the GA-ELM model performs the best with an absolute error of less than
20 cm and 50 cm at over 80% quantile, in LOS and NLOS, respectively.
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Figure 15. The comparison of CDFs for different algorithms under LOS and NLOS: (a) Without signal
interference; (b) With signal interference.

In the following, the numerical results of state-of-the-art approaches provided by other
researchers in comparison with the GA-ELM model proposed in this paper are summarized
in Table 6. The numerical results in Table 6 demonstrate that the method proposed in this
paper has high accuracy in comparison with other methods.

Table 6. The comparison of the positioning accuracy of different methods.

Number Technology Environment RMSE

1 Proposed (GA-ELM, only UWB) 5 × 5 × 3 m 0.145 m (3D)
2 Zigbee [9] 4 × 4 m 0.636 m (2D)
3 LiDAR, SRD-LS [32] 20 × 20 m 0.35 m (2D)
4 GA-RBF, UWB [43] 14 × 12 m 0.10 m (2D)
5 UWB and PDR [41] 8.5 × 4.5 m 0.51 m (2D)
6 UWB with differential evolution [48] 15 × 10 m 0.56 m (2D)
7 UWB with monocular simultaneous [19] 6 × 6 × 4.5 m 0.139 m (3D)

8 UWB, IMU, multiple onboard visual-inertial
and lidar odometry subsystems [36] 6 × 4 × 3 m 0.33 m (3D)

Finally, as depicted in Figure 16, the target positioning trajectory is connected into a
smooth transition three-dimensional curve by denoising the trajectory of the mobile robot,
and views of XOZ and XOY are drawn to make the trajectory of the target in the Z-axis
more clearly expressed.
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5. Conclusions

This study presents an improved extreme learning machine based UWB positioning
for mobile robots with signal interference. It is worth mentioning that the implementation
costs of this proposed method are comparably low since only UWB technology is used
instead of extra hardware, as compared to solutions (provided by other researchers) of
multi-sensor fusion with high costs. The main contributions of the work can be summarized
as follows:

1. By combining the advantages of ELM and GA, the GA-optimized ELM model, for
optimizing the weight coefficients and thresholds of ELM by GA, is constructed,
which can achieve both classification (discrete) and prediction (continuous).

2. A binary classifier for the signal interference discrimination and positioning errors
compensation model, based on the GA-optimized ELM model mentioned above, is
proposed so as to judge whether the UWB signals are disturbed and compensate for
the positioning errors, respectively.

3. This proposed model was tested on 628 available datasets of actual scene experiments,
and it is concluded from the comparison of results that the minimum RMSE with signal
interference reduced dramatically (64.38% and 70.16%), which means improvement
of accuracy compared with those results free of compensation and optimization. The
position of mobile robots can be calculated with decimeter-level accuracy, even in
complicated indoor environments.

In the future work as an extension of this, an improved model able to identify which
anchor signals are interfered with and thus, cause positioning errors will be developed, and
the potential impact of robot mobility and increase in the speed of the positioning accuracy
for the mobile robot will be thoroughly considered.
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