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Abstract: Most facial recognition and face analysis systems start with facial detection. Early tech-
niques, such as Haar cascades and histograms of directed gradients, mainly rely on features that had
been manually developed from particular images. However, these techniques are unable to correctly
synthesize images taken in untamed situations. However, deep learning’s quick development in
computer vision has also sped up the development of a number of deep learning-based face detection
frameworks, many of which have significantly improved accuracy in recent years. When detecting
faces in face detection software, the difficulty of detecting small, scale, position, occlusion, blurring,
and partially occluded faces in uncontrolled conditions is one of the problems of face identification
that has been explored for many years but has not yet been entirely resolved. In this paper, we propose
Retina net baseline, a single-stage face detector, to handle the challenging face detection problem. We
made network improvements that boosted detection speed and accuracy. In Experiments, we used
two popular datasets, such as WIDER FACE and FDDB. Specifically, on the WIDER FACE benchmark,
our proposed method achieves AP of 41.0 at speed of 11.8 FPS with a single-scale inference strategy
and AP of 44.2 with multi-scale inference strategy, which are results among one-stage detectors. Then,
we trained our model during the implementation using the PyTorch framework, which provided an
accuracy of 95.6% for the faces, which are successfully detected. Visible experimental results show
that our proposed model outperforms seamless detection and recognition results achieved using
performance evaluation matrices.

Keywords: face detection; retina net; region offering network; deep learning

1. Introduction

One of the most well-known, essential, and practical issues in computer vision sys-
tems is face detection, the objective of which is to extract information from facial images.
Face detection is an essential first step in face verification [1], face identification and
clustering [2], facial landmarks [3], facial hallmark classification [4], face alignment [5],
and face tracking [6]. The goal of Viola–Jones’ study was to develop an object detection
framework [7] in 2001. Over the past ten years, numerous face-identification techniques
have been developed. Despite notable advancements made in the field over the course
of the last couple’s protracted decades, accurate and effective face identification in the
wild has continued to be a challenge. The face identification depends on variables in
position, face occlusion, scale, lighting, image infringement, facial expressions, and other
elements. Face detection differs from typical object detection; it has smaller component
ratio variations, but considerably larger scale alterations that range from several pixels to
thousands of pixels.
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The conventional strategy, which extracts constructed capabilities from the image
and uses several classifiers to almost certainly pinpoint face regions, was the foundation
for early face detection efforts. In addition, the Haar cascade classifier [7] and histogram
of oriented gradients (HOG) followed by the support vector machine (SVM) [8] are two
other important landmark classical studies for face detection. These studies represent
the most recent state-of-the-art achievements. However, the accuracy of face detection in
difficult images with unresolved variations continues to be limited in the WIDER FACE
facial detection dataset [9].

Deep learning, specifically deep convolutional neural networks (CNN), has proven
highly successful in recent years in a variety of computer vision applications [10], including
image classification, object detection, semantic segmentation, and deep learning algorithms,
which skip the hand-crafted design pipeline and have control over several well-known
benchmark evaluations, such as the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [11]. This is in contrast to traditional computer-vision systems.

A surge in research interest to investigate deep learning for addressing face detection
challenges has been developing, owing to the growing prominence of deep learning in
computer vision. Object detection has recently made excellent progress [12–14], taking
inspiration from common object detection techniques [15–17] that have incorporated all
the current deep learning advancements. Therefore, face detectors can achieve much
better detection results than conventional cascaded classifiers using Faster R-CNN [15],
YOLO [16], or single shot detector (SSD) [18]. There are several comparable works, such
as Face R-CNN [19] and Face R-FCN [20], which have been improved and adjusted us-
ing R-FCN and Faster R-CNN [21]. Additionally, certain other detectors, such as multi-
task cascaded convolutional networks (MTCNN) [22,23], had considerable success owing
to the significant and state-of-the-art benefits over WIDER FACE [9] while achieving
16 frames per second on a 2.6 GHz CPU. The multiscale mechanism from SSD [17], feature
enhancement from FPN [24], and focus loss from RetineNet [25] have all been modified
from common object identification approaches to be used for face detection in accordance
with the unique pattern of images of human faces. These methods led to the proposal
of different outstanding face detectors, such as S3FD [26], Pyramid Box [27], SRN [28],
DSFD [29], and Retina Face [30]. Additionally, the latest state-of-the-art techniques [12,14]
emphasize single-stage [17] design, in which density samples are placed in areas and scales
of feature pyramids, exhibiting promising performance and submitting data more quickly
than two-stage approaches [12,31].

By introducing a branch for concurrently predicting an object mask based on the
existing branch for bounding box detection and regression in Mask R-CNN [32], this
demonstrates the value of extensive pixel-level annotations for enhancing detection. Unfor-
tunately, dense face annotation is not possible for the hard face images of WIDER FACE.
Recently, the WIDER face dataset [9] contains a large number of tiny faces, exposing the
implementation difference between people and present face detectors. This problem be-
comes more difficult if the speed and memory productivity of the detectors are considered.
The best-performing face detectors are commonly not fast and have large memory foot-
prints, partly because of the large number of parameters and the way robustness to scale or
corporation of context is addressed.

The remainder of this paper is organized as follows: Section 2 reviews existing studies
on face detection. In Section 3, the proposed face detection method is described in detail.
Section 4 presents experimental findings, and Section 5 concludes the paper and discusses
the future directions of the proposed method.



Sensors 2023, 23, 502 3 of 16

2. Related Work

In this section, we discuss a number of methods that have been utilized for face
detection and recognition over the years, from early techniques to modern techniques.
Various techniques for face detection and identification have emerged during the last few
years. Four primary object detection algorithms can be used to combine all face detection
techniques. [33]

Computer vision systems have been extensively researched in early face-detection
studies [34]. Despite many extensive studies in recent years, based on the technique
proposed by Viola–Jones [7], there exists insufficient practical results on face detection. The
VJ framework [7] was one of the first frameworks to achieve real-time face detection by
applying rectangular haar-like features to a cascaded AdaBoost classifier. However, these
methods are not end-to-end trained, and feature learning and classifier training are trained
separately. We can obtain the right running speed, but not sufficient accuracy. Although a
good running speed is obtained; it does not have a satisfactory accuracy. SVMs [35] can
be trained for face detection, a good example of which is the Haar wavelet. When Haar
wavelets are trained on positive and negative applied examples of feature extraction, it
helps to distinguish the classes; however, they faced a problem—it could not pick up the
faces of various poses because they were weak, which resulted in the poor performance
of the classifier and the results were indeterminate. Haoxiang Li et al. [36] proposed a
CNN cascade using different resolutions, where the background area was discarded in
the fast, low-resolution phase, and some difficult decisions were carefully evaluated in
the final, high-resolution phase. Using the CNN-based calibration after each detection
stage in the cascade increased the localization and decreased the number of candidates
for the later stages. The status of the detection window is normalized using the output
of each calibration stage as an input to the following calibration stage. The CNN-based
techniques present facial detection methods and inherit some achievements from the
commonly existing techniques. These fall into two categories of approaches: two-stage
(faster R-CNN [31,37]) and one-stage (SSD [18,26]; and Retina Net [14,17]).

The two-step approach uses a highly accurate “offering and improving” mechanism
for localization. In contrast, the one-step method carefully samples facial positions and
scales to derive true and false samples without training principles. The sampling [38] and
reweighting [13] techniques are widely used to reduce this imbalance. Compared to the
two-step method, the one-step method is very productive and has a very high recall, but is
at the risk of higher false-positive rates and less accurate localization.

Recently, the MTCNN [21] performed face detection using a sliding window method
and relied on an image pyramid. HR [39] is a multilevel variant of the MTCNN that
also requires an image pyramid. The image pyramid has several drawbacks: it is not
fast but has a high speed and large memory rate. It considers HF when designing the
discovery branch and provides an anchor-matching technique to improve hit costs. In [40],
Zhu et al. focused on small-face detection by providing powerful anchor generation and
matching techniques. We conclude that anchor-related techniques are important for face
recognition. Subsequently, S3FD [15] and Pyramid Box [17] enhanced the backbone based
on the low-level functional pyramid layer (LFPN) to improve various detections. SSH [23]
builds three cognitive architectures that work together based on a contextual architecture
for scale-invariant face detection.

DSFD [28] features enhanced modules, forward layer monitoring, and improved
anchor matching procedures for quick initialization. S3FD, pyramid box, SSH, and DSFD
use VGG16 as the backbone, which results in a large architecture size and unproductive
computation. Facebox [41] works by drastically shrinking the size of the input face image
to run face detectors in real-time. After four layers consisting of two layers of convolution
and two layers of pooling, a large step size of 32 was reached. Faceboxes are fast but have
limited accuracy due to their inability to detect small facial images. For the face detection,
we use RetineNet architecture as mentioned earlier. All identified faces are recognized
using region offering network (RON) and high feature generation pyramid (HFGP), low
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feature generation pyramid (LFGP), and we trained our model during the implementation
using the PyTorch framework which provided an accuracy of 95.6% for the faces which are
successfully detected.

3. Proposed Face Detection Method

The proposed method uses RetinaNet’s deep learning framework, which is an ad-
vanced deep learning design for common object detection. It is crucial to have two
parts: (1) a region offering network (RON) to compile a list of area suggestions that
almost certainly include faces, and (2) a prediction branch for identifying faces in an area
of the image and fine-tuning the boundaries of these areas. This model can perform face
image detection at a competitive speed because of the elements contributing to the general
parameters for the convolution layers employed in feature extraction. In this work, we
suggest improving the recall and accuracy of facial image detection using the Retina Net
architecture and train our face detection model with the aid of following the proposed
systems show in Figure 1. First, we trained the model of RetinaNet [14] using the Wider
Face dataset [9]. We also tested the pre-trained model using the same dataset to ensure
that it produces hard negatives. As the second step of our training technique, these hard
negative examples are sent into the network. By training on these hard negative samples,
the resulting model is capable of producing fewer false positives. We used the FDDB
dataset to further fine-tune the process in our method [42]. However, as this dataset only
contains 5171 faces in 2845 images, merely fine-tuning it may not be the smart choice. In
our method, we first pre-trained our model on the wider face dataset, a considerably larger
face dataset with much more challenging cases, before fine-tuning it on FDDB. Additionally,
we used the multi-scale training processes during the final fine-tuning stage. We adopted
a similar end-to-end training methodology to RetinaNet because of its effectiveness and
simplicity. As a final optional step, we transformed the obtained detection bounding boxes
into rectangular regions of human faces. In the following, we discuss five key steps of our
solution in detail.
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3.1. Feature Extraction—Region Offering Network

Our network consisted of three parts. First, to create the foundation feature, the high
feature generation pyramid (HFGP) combines shallow and deep features. For instance,
conv4 3 and conv5 3 of ResNet ensure multilevel semantic pieces of information for feature
maps. Second, a low-feature-generation pyramid (LFGP) and convolution layers are stacked
alternately. In particular, LFGP generates low-level feature maps with a scale different
from that of the HFGP. The convolution layers combine the main features and the large
output feature map of the preceding pyramid-based layers. In addition, the added feature
maps were supplied to the next convolution layer. These layers of convolution study the
properties from the layers of the pyramid and take them as the basic properties of Fbase.
The output multi-scale features are calculated as follows:

[
f l
1, f l

2, . . . , f l
i

]
=

{
Tl(Fbase),

Tl(P(F
base, f l−1

i
)),

l = 1
l = 2 . . . L′

(1)

where in Fbase Fbase denotes the feature, f l
i denotes the feature with the i-th scale within

the l-th LFGP, Tl denotes the l-th HFGP processing, and P denotes HFGP processing.
Third, Prediction Step (PS) aggregates the multi-stage, multi-scale features by means of a
scale-sensible feature concatenation operation, and a channel sensible attention mechanism.

3.2. High Feature Generation Pyramid (HFGP)

HFGP fuse feature from one level in our network, which is essential for cre-
ating the last multi-degree feature pyramid. They used the channels of the input
features 1 × 1 convolution layers for compression and coupling operations can be used
to combine these feature maps. In particular, because HFGP takes feature maps with
one-of-a-kind scales in the backbone as input, it accepts the one up sample operation
to rescale the deep functions to the same scale as the coupling operation. Taking HFGP
from very deep backbone features results in stronger detection; therefore, high decision
prototypes bring about better functional extraction and good work on small objects.

3.3. Low Feature Generation Pyramid (LFGP)

LFGP is different from HFGP and RetinaNet. The pyramid network consists of a chain
of 2-stride 3 × 3 convolution layers. Then, the convolution layers use the outputs of those
layers as their information set for the feature maps. The lower convolution layer in the
HFGP backbone selects the final layer at every level. To enhance the learning ability and
maintain feature smoothness, we also added 1 × 1 convolution layers after the up sample
and detailed the clever sum working within the top convolution layer network.

The outputs from every convolution layer in the HFGP and LFGP were combined
to provide multi-scale characteristics of the present level. Overall, the outputs of the
stacked LFGP create multi-degree, multi-scale features, with the front LFGP imparting
shallow-level, middle-level, then returning LFGP to ensure deep-level features.

3.4. Prediction Step

Prediction Step (PS) aims to combine the multi-degree and multi-scale character-
istics brought about by LFGP and HFGP into a convolution layer. Connecting func-
tions of the same scale collectively over the channel dimension are the initial step in
the PS. The aggregated function pyramid can be expressed as F = [F1, F2, . . . Fi,] where
Fi = Concat

(
x1

i , x2
i , . . . , xL

i
)
∈ RWi×Hi×C refers to the features of the i- th large-scale. Every

scale inside the aggregated pyramid includes capabilities from multilevel depth. Moreover,
easy coupling operations are not sufficiently adaptive for the prediction head devoted to
every feature, and we have one 3 × 3 Conv contribution via all three networks, after which
every network takes its own 3× 3 Conv in parallel. Our prediction head model is extremely
lightweight and quick compared with RetinaNet. Additionally, we trained class prediction
using OHEM [43] with a 3:1 neg pos ratio, softmax cross-entropy, c positive labels, and one
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background label. As a result, unlike RetinaNet, we did not use focus loss, which we have
demonstrated to be insignificant in our case.

3.5. Concatenation

To promote the recognition of features on channels where they are most advantageous,
we proposed a channel-specific attention module. Following the PS block, we used channel-
wise statistics z ∈ RC in the compression step using global middle pooling. The following
agitation stage learns the attention mechanism using two convolution-related layers to
fully capture channel-wise dependencies:

s = Pex(z, W) = σ(W2σ(W1z)) (2)

where σ is the ReLU function, δ refers to the sigmoid function, W1 ∈ RC× C
r ,

W2 ∈ RC× C
r , r is the reduction ratio (r = 16 in our experiments). The final output is

obtained by reweighting input F with activation s :

F̃c
i = Pscale(Fc

i , sc) = sc·Fc
i (3)

where [F̃.i = F̃.1i , F̃.2i , . . . F̃.Ci ], each of the features is enhanced or weakened by the
rescaling operation.

4. Implementation and Results

In this section, we present experiments on challenging dataset from WIDER FACE
bounding box detection challenge. We followed the WIDER FACE protocol of having total
faces in images with different detection difficulties, such as occlusions, hard poses, out-
of-focus faces, and low resolution. For a comparison based on state-of-the-art techniques,
we reported open-access face datasets on the test-dev split, which is generally available,
labelled, and does not demand the application of the assessment server. Then, we describe
the results of the ablation learning assessed on the minimal split for comfort.

4.1. Implementation Details

We trained our model during the implementation using the PyTorch framework [44].
Table 1 of ResNet 50 was selected as the backbone of our CNN network, which was pre-
trained on Image Net. The WIDER FACE training and validation datasets were used as
the training datasets in the first stage. We provide a hard value for each ground-truth
annotation in accordance with the level shown in Table 1. Specifically, zero issues were
used as the initialization basis for all faces. The location satisfied the positive direction
stated in Table 1, along with the face. Then, we proceeded to add an appropriate hard value.
Additionally, we did not consider annotations whose difficulty values were greater than 2.

Table 1. Assigning difficulty values: a strategy.

Blur Expression Illumination Occlusion Pose

Normal
Blur

Heavy
Blur

Severe Ex-
pression

Severe
Illumination

limited
Occlusion

Hard
Occlusion

Unusual
Pose

0.5 1 1 1 0.5 1 1

Then, all images that were based on more than 1000 annotations were also thrown
out, as in our previous studies [45–49]. On the abovementioned dataset, the pre-trained
ResNet architecture was trained using 200 iterations with a learning rate of 0.0001. The
images were first resized in this training procedure while maintaining the original party
ratio. The longer aspects were capped at 1000, and the shorter aspects were rescaled
to 600. Horizontal flipping was used for data augmentation. For the region offering
network branch, 12 anchors were employed in the training process, covering a total size of
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64 × 64, 128 × 128, 256 × 256, and 512 × 512, respectively, and three aspect ratios: 1:1, 1:2,
and 2:1, respectively. Following the non-maximum suppression (NMS), 2000 region offers
are retained. The second step is fed into the network using the aforementioned dataset.

The “hard negatives” are those output locations with confidence ratings more than
0.8 and IoU values with any ground-truth annotation less than 0.5. Additionally, using
a fixed learning rate of 0.0001, the difficult negative mining technique was run for
150 iterations, after which it was ensured that those difficult negatives were selected
together with the various sample images. To produce our final detection model, we
fine-tuned the resulting model using the FDDB dataset. We performed a series of
five-fold cross-validation experiments to examine the detection design of our model
on FDDB. We randomly resized each face image before placing it into the network to
achieve horizontal flipping.

We scale every face image such that one in every 480, 600, and 750 pixels, respectively,
will be its shorter aspect. In addition, we ensured that the longer issue did not surpass 1250,
similar to the coverage taken in the first step. We used a feature concatenation approach to
add the features pooled from the conv3 3, conv4 3, and conv5 3 layers during the training
process. The scale was utilized once the features added the potential to be improved upon
or fixed. Additionally, for both the training and test stages, we applied a fixed scale of
4700 to the entire blob. We used our final model after 80 iterations of architecture within a
fixed learning rate of 0.001.

Next, the test period was examined after resizing a query face image using the same
method as in the first level [50,51]. The region offering network branch network in the
region offers a generating stage that generates 100 region offers for every facial image. If
the trust rating of the classification is greater than 0.8. A chosen region was considered as a
face. The non-maximum suppression limit in our study was set to 0.3. In our experiments,
we also output all-region recommendations with trust degrees greater than 0.001.

In addition, on a computer with two NVIDIA Titan X GPUs, CUDA 9.2, and cuDNN
7.1.4, we trained the network on an NVIDIA Tesla V100 to obtain results temporarily and
quickly. The set batch size is 32. Thus, the training method is restricted to the 12 GB memory
NVIDIA Titan Xp if the batch size on a single GPU is less than 5.

In our model based on the VGG-16 backbone, the complete training time rates are
three and six days for input sizes of 320 × 320 and 512 × 512, respectively, and for the
ResNet-101 backbone, 512 × 512 costs five days.

4.2. The Process Speediness

We also evaluated the inference speed of our model using state-of-the-art techniques.
It is quick to apply VGG-16 for extracting base features because it has removed FC layers
and makes less of a backbone. Then, with the batch size set to 1, we computed the inference
time for each image by adding the CNN and NMS run times for 1000 face images and
dividing by 1000. We suggest a fast version with an input size of 320 × 320, and a standard
version with an input size of 512 × 512 and reduced VGG16, which is reduced to the
proposed method. Based on the PyTorch optimization, our model can quickly produce
accurate results. This work benefits from Table 2 by demonstrating the superiority of one-
stage detection, and the multilevel structure of this method yields a very clear and positive
speed-accuracy curve when compared to other approaches. Additionally, we replicated
and tested the speed using additional techniques on our device for comparison.
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Table 2. Speed-accuracy curve compared with other techniques.

Method mAP Time

[A] YOLO3–608 33.0 51
[B] SSD–321 28.0 61

[B *] SSD–321 28.2 22
[C] DSSA-321 28.0 85

[D] R-FCN 29.9 85
[E] SSD–513 31.2 125
[E*] SSD–513 31.0 37
[F] DSSD–513 33.2 156

[G] FPN FRCN 36.2 172
[H *] CornerNet 40.5 228

RetinaNet 39.1 198
[*] RefineDet 36.7 110

Ours 41.0 84.7
[*] Tested on our machine for fair comparison.

Table 3 lists a thorough comparison of the few published competitive strategies used
for the WIDER FACE benchmark. To further demonstrate the efficiency of the proposed
method for face detection based on deep learning methods, we randomly selected qual-
itative outcomes of face detection instances for various situations, as shown in Table 3.
This shows how well our suggested model can identify and find dissimilar cases, such as
faces that are hard occluded, in unusual positions, illumination, etc. A few false negatives
are included in the list, which includes a few challenges, including small, blurry, and
closely occluded faces. Table 3 lists the test results for the proposed model with ten distinct
configuration versions. The batch size was set to 1, and only one NVIDIA Titan X PASCAL
was used. The FDDB test-dev split was used for the testing. References provided additional
statistical findings. Note that our proposed model, which uses a VGG backbone, has an AP
of 38.9, outperforming competing object detectors that have extremely robust backbones
and sizable inputs. For instance, the AP of the deformable R-FCN was 37.5, and the AP
of R-CNN with FPN was 36.2. ResNet-101′s single-scale version has an AP of 38.8, which
is comparable to modern two-stage detectors, such as mask R-CNN. Accumulation with
ResNet-101 increased our results. Additionally, owing to PyTorch’s optimization, it can
operate at 15.8 frames per second (FPS). RefineDet receives an AP of 41.8 and gains the
advantages of both one-stage and two-stage detectors; whereas CornerNet suggests key
point regression for detection and gains the advantages by doing so, earning an AP of
42.1. In contrast, our proposed method, which takes 44.2 AP and outperforms all one-stage
detectors, is based on the regression algorithm of the original SSD and supports multi-scale
multi-level features. We only evaluated the speed of the single-scale inference method
owing to the range of tools or methods used; most approaches do not compare the speed
of multiscale inference strategies. Based on the state-of-the-art, we also contrast one- and
two-stage detectors, which can indicate that the development of the proposed model is not
solely due to the increased depth of the model or the added parameters. Mask R-CNN with
ResNeXt-101-32 × 8d-FPN has 205 M parameters, whereas CornerNet with Hourglass has
201 M parameters. In contrast, the proposed model VGG only contains 147 M parameters.
Additionally, it was not dominant when comparing depths. Experimental results indicated
that our improved face detection method accurately detected face regions. In addition, our
method works effectively, even when there are multiple faces in the frame sequences, as
shown in Figures 2–7.
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Table 3. State-of-the-art methods comparisons.

Method Backbone Input Size MultiScale FPS
Avg. Precision, IoU: Avg. Precision, Area:
0.5:0.95 0.5 0.75 S M L

two-stage:
Faster R-CNN (Ren et al., 2015) VGG-16 ~1000 × 600 False 7 21.9 42.7 - - - -
OHEM ++ (Shrivastava et al., 2016) VGG-16 ~1000 × 600 FALSE 7 25.5 45.9 26.1 7.4 27.7 40.3
R-FCN (Dai et al., 2016) ResNet-101 ~1000 × 600 FALSE 9 29.9 51.9 - 10.8 32.8 45.0
CoupleNet (Zhu et al., 2017) ResNet-101 ~1000 × 600 FALSE 8.2 34.4 54.8 37.2 13.4 38.1 50.8
Faster R-CNN w FPN (Lin et al., 2017a) Res101-FPN ~1000 × 600 FALSE 6 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R–FCN (Dai et al., 2017) Inc-Res-v2 ~1000 × 600 FALSE - 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN (He et al., 2017) ResNeXt-101 ~1280 × 800 FALSE 3.3 39.8 62.3 43.4 22.1 43.2 51.2
Fitness–NMS (Tychen–Smith and Petersson 2018) ResNet-101 ~1024 × 1024 True 5 41.8 60.9 44.9 21.5 45.0 57.5
Cascade R-CNN (Cai and Vasconcelos 2018) Res101-FPN ~1280 × 800 FALSE 7.1 42.8 62.1 46.3 23.7 45.5 55.2
SNIP (Singh and Davis 2018) DPN-98 - TRUE - 45.7 67.3 51.1 29.3 48.8 57.1

one–stage:
SSD300*(Liu et al., 2016) VGG-16 300 × 300 FALSE 43 25.1 43.1 25.8 6.6 25.9 41.4
RON384++ (Kong et al., 2017) VGG-16 384 × 384 FALSE 15 27.4 49.5 27.1 - - -
DSSD321 (Fu et al., 2017) ResNet-101 321 × 321 FALSE 9.5 28.0 46.1 29.2 7.4 28.1 47.6
RetinaNet 400(Lin et al., 2017b) ResNet-101 ~640 × 400 FALSE 12.3 31.9 49.5 34.1 11.6 35.8 48.5
RefineDet320(Zhang et al., 2018) VGG-16 320 × 320 FALSE 38.7 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet320(Zhang et al., 2018 ResNet-101 320 × 320 TRUE - 38.6 59.9 41.7 21.1 41.5 47.6
Ours VGG-16 320 × 320 FALSE 33.4 33.5 52.4 35.6 14.4 37.6 47.6
Ours VGG-16 320 × 320 TRUE - 38.9 59.1 42.4 24.4 41.5 47.6
Ours ResNet-101 320 × 320 FALSE 21.7 34.3 53.5 36.5 14.8 38.8 47.9
Ours ResNet-101 320 × 320 TRUE - 39.7 60.0 43.3 25.3 42.5 48.3

YOLOV3 (Redmon and Farhadi 2018) DarkNet-53 608 × 608 FALSE 19.8 33.0 57.9 34.4 18.3 35.4 41.9
SSD512* (Liu et al., 2016) VGG-16 512 × 512 FALSE 22 28.8 48.5 30.3 10.9 31.8 43.5
DSSD513 (Fu et al., 2017) ResNet-101 513 × 513 FALSE 5.5 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet500 (Lin et al., 2017b) ResNet-101 ~832 × 500 FALSE 11.1 34.4 53.1 36.8 14.7 38.5 49.1
RefineDet512 (Zhang et al., 2018) VGG-16 512 × 512 FALSE 22.3 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet512 (Zhang et al., 2018) ResNet-101 512 × 512 TRUE - 41.8 62.9 45.7 25.6 45.1 54.1
CornerNet (Law and Deng 2018) Hourglass 512 × 512 FALSE 4.4 40.5 57.8 45.3 20.8 44.8 56.7
CornerNet (Law and Deng 2018) Hourglass 512 × 512 TRUE - 42.1 57.8 45.3 20.8 44.8 56.7
Ours VGG-16 512 × 512 FALSE 18 37.6 56.6 40.5 18.4 43.4 51.2
Ours VGG-16 512 × 512 TRUE - 42.9 62.5 47.7 28.0 47.4 52.8
Ours ResNet-101 512 × 512 FALSE 15.8 38.8 59.4 41.7 20.5 43.9 53.4
Ours ResNet-101 512 × 512 TRUE - 43.9 64.4 48.0 29.6 49.6 54.3

RetinaNet800 (Lin et al., 2017b) Res101–FPN ~1280 × 800 FALSE 5 39.1 59.1 42.3 21.8 42.7 50.2
Ours VGG-16 800 × 800 FALSE 11.8 41.0 59.7 45.0 22.1 46.5 53.8
Ours VGG-16 800 × 800 True - 44.2 64.6 49.3 29.2 47.9 55.1
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4.3. Evaluation Metrics

In our previous studies [52–58], we computed metrics such as the F-measure (FM),
precision, and recall. The FM is the weighted average that balances the measurements
between the precision and recall rates. The precision is the ratio of the number of correctly
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predicted positive observations to total number of predicted positive observations. The
recall is the ratio of the number of correctly predicted positive observations to total number
of observations in the actual class, as indicated in Equation (4). The following equations
can be used to calculate the average precision and recall rates of face recognition methods:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(4)

where TP denotes the number of true positives, FP denotes the number of false positives,
and FN denotes the number of false negatives.

The FM is calculated using Equation (5), which considers both the precision and recall:

FM =
2× precision× recall

precision + recall
(5)

The average FM, recall, and precision of the proposed method were 95.6%. False
detection occurred in 4.4% of cases by poor lighting or low-quality images. Wearing of
facial masks has been indispensable during the COVID-19 pandemic, and, at the same
time, it made the process of facial recognition more difficult [59]. The range of the model
accuracy was between 0 and 1, and the metric estimation scores reached their best values at
1. An evaluation of our method and other recently published face detection and recognition
methods is presented in Table 4.

Table 4. Quantitative accuracy results of face detection and recognition methods.

Algorithm Precision Recall FM Average

Faster R-CNN 0.834 0.939 0.902 0.891

CoupleNet 0.968 0.881 0.921 0.923

Mask R-CNN 0.801 0.877 0.883 0.853

CornerNet 0.911 0.904 0.912 0.909

YOLOv3 0.941 0.929 0.932 0.934

Proposed method 0.954 0.958 0.956 0.956

Furthermore, we assessed the false positive findings of the selected approaches. As
seen in Figure 8, the proposed method had the fewest mistakes (error rate). Additionally, the
highly efficient multi-scale inference strategy detectors significantly reduced face detection
and classification errors. Overfitting was a major concern during training, and it affects
nearly all deep learning models. We tried to reduce overfitting risk using data augmentation
methods to increase the training data and applying feature selection techniques by choosing
the best features and removing the useless/unnecessary features [60–64].
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5. Conclusions

In this work, we introduced a novel deep learning-based face detection technique. In
addition, we used it essentially includes two components: first, a region-offering network
(RON) for producing a list of area proposals that, in all likelihood, include faces or regions
of interest (RoIs); and second, a prediction network for classifying an area of the image into
faces and refining the bounds of these areas. These components contribute common param-
eters to the feature extraction convolution layers, enabling this architecture to perform face
detection tasks at a competitive rate. We used the WIDER FACE dataset to train our model,
while the results show that our method is a strong choice for face identification because
it can achieve higher accuracy with minimal model size and effective computation. In
experiments, we used two popular datasets, such as WIDER FACE and FDDB. Specifically,
on the WIDER FACE benchmark, our proposed method achieves AP of 41.0 at speed of
11.8 FPS with a single-scale inference strategy and AP of 44.2 with a multi-scale inference
strategy, which are results among one-stage detectors. Then, we trained our model during
the implementation using the PyTorch framework, which provided an accuracy of 95% for
the faces, which are successfully detected. The results show that our method is a strong
choice for face identification because it can achieve higher accuracy with minimal model
size and effective computation.

Future tasks include solving blurry image problems under dark conditions and in-
creasing the accuracy of the approach. We plan to develop a small real-time model with
a reliable landmark-based face emotion recognition performance employing a variety of
datasets in 3D CNN, 3D U-Net, and YOLOv environments.
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