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Abstract. This paper describes new techniques for fast correlation at-
tacks, based on Gallager iterative decoding algorithm using parity-check
equations of weight greater than 3. These attacks can be applied to any
key-stream generator based on LFSRs and it does not require that the
involved feedback polynomial have a low weight. We give a theoretical
analysis of all fast correlation attacks, which shows that our algorithm
with parity-check equations of weight 4 or 5 is usually much more effi-
cient than correlation attacks based on convolutional codes or on turbo
codes. Simulation results confirm the validity of this comparison. In this
context, we also point out the major role played by the nonlinearity of
the Boolean function used in a combination generator.

1 Introduction

Stream ciphers form an important class of secret-key encryption schemes. They
are widely used in applications since they present many advantages: they are
usually faster than common block ciphers and they have less complex hardware
circuitry. Moreover, their use is particularly well-suited when errors may occur
during the transmission because they avoid error propagation. In a binary ad-
ditive stream cipher the ciphertext is obtained by adding bitwise the plaintext
to a pseudo-random sequence s, called the running-key (or the key stream). The
running-key is produced by a pseudo-random generator whose initialization is the
secret key shared by the users. Most attacks on such ciphers therefore consist in
recovering the initialization of the pseudo-random generator from the knowledge
of a few ciphertext bits (or of some bits of the running-key in known-plaintext
attacks).

Linear feedback shift registers (LFSRs) are the basic components of most
key-stream generators since they are appropriate to hardware implementations,
produce sequences with good statistical properties and can be easily analyzed.
Different classes of key-stream generators can be distinguished depending on the
techniques used for combining the constituent LFSRs [16]: combination genera-
tors, filter generators, clock-controlled generators . . . . In all these systems, the
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secret key usually consists of the initial states of the constituent LFSRs. The se-
cret key has then

∑n
i=1 Li bits, where Li denotes the length of the i-th LFSR and

n is the number of involved LFSRs. Any key-stream generator based on LFSRs
is vulnerable to correlation attacks. These cryptanalytic techniques introduced
by Siegenthaler [20] are “divide-and-conquer” methods: they exploit the exis-
tence of a statistical dependence between the running-key and the output of one
constituent LFSR for recovering the initialization of each LFSR separately. The
secret key can then be recovered with only

∑n
i=1 2Li tests.

A classical method for generating a running-key is to combine n LFSRs by a
nonlinear Boolean function f . Such a combination generator is depicted in Fig-
ure 1. For combination generators, the original correlation attack presented by
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Fig. 1. Combination generator

Siegenthaler can be prevented by using a correlation-immune combining func-
tion [19]. In this case, the running-key is statistically independent of the out-
put of each constituent LFSR; any correlation attack should then consider sev-
eral LFSRs together. More generally, a correlation attack on a set of k LFSRs,
namely LFSR i1, . . . , LFSR ik, exploits the existence of a correlation between the
running-key s and the output σ of a smaller combination generator, which con-
sists of the k involved LFSRs combined by a Boolean function g with k variables
(see Fig. 2). Since Pr[sn 6= σn] = Pr[f(X1, . . . , Xn) 6= g(Xi1 , . . . , Xik)] = pg,
this attack only succeeds when pg < 0.5. The number k of involved LFSRs should
then be strictly greater than the correlation immunity order t of the combining
function f . This cryptanalysis therefore requires that all 2

Pt+1
j=1 Lij initial states

be examined; it becomes infeasible when the correlation-immunity order t of the
combining function is high.

The fast correlation attack proposed by Meier and Staffelbach [9, 10] relies
on the same principle but it avoids examining all possible initializations of (t+1)
LFSRs together. Let us again consider the sequence σ produced by LFSR i1, . . . ,
LFSR ik combined by g. The sequence σ obviously corresponds to the output of
a unique LFSR of length L; the length and the feedback polynomial P of this
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Fig. 2. Correlation attack involving k constituent LFSRs

LFSR can be derived from the feedback polynomials of the constituent LFSRs.
Note that L ≤ g(Li1 , . . . , Lik) where the function g is evaluated over integers.
Equality notably holds when the feedback polynomials of the involved LFSRs are
primitive and when their degrees are coprime [17]. Any subsequence of length N
of σ is then a codeword of a linear code C of length N and dimension L defined by
the feedback polynomial P . The running-key subsequence (sn)n<N can then be
seen as the result of the transmission of (σn)n<N through the binary symmetric
channel with error probability (or crossover probability) p = Pr[sn 6= σn]. The
attack therefore aims at recovering L consecutive bits of σ (i.e., the initial state
of the equivalent LFSR) from the knowledge of N bits of s. This can be done by
decoding (sn)n<N relatively to C.

From the attacker’s point of view, the main problem is to make the crypt-
analysis feasible even if a small number N of bits of the running-key (or of the
ciphertext) is known. Shannon’s channel coding theorem [18] gives a theoretical
lower bound on N depending on the error-probability p: N ≥ LC(p), where
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Fig. 3. Model for a fast correlation attack
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C(p) is the capacity of the binary symmetric channel with error-probability p,
i.e., C(p) = 1 + p log2(p) + (1 − p) log2(1 − p). Unfortunately no efficient gen-
eral decoding algorithm is known for achieving the channel capacity. This means
that practical correlation attacks require that the known running-key sequence
be much longer than this theoretical bound. Any improvement of fast correlation
attacks then consists in finding an efficient decoding procedure for the code C,
when N is as close as possible to Shannon’s limit.

Meier and Staffelbach attack [10] uses the iterative decoding process due
to Gallager for low-density parity-check codes [3]. Any polynomial P 2i

actually
provides a parity-check equation for C as far as its degree is less than N . It
follows that the received sequence (sn)n<N can be decoded with Gallager algo-
rithm when the feedback polynomial P has a low weight and when the error
probability p is not too high. Several minor improvements of this original attack
were proposed in [21, 12, 1, 13, 15] but these papers did not introduce any im-
portant modification of the basic underlying concepts. Johansson and Jönsson
recently proposed two new techniques for fast correlation attacks: the main idea
is to derive from (sn)n<N a sequence which can be seen as a corrupted version
of a word of a convolutional code [6] or of a turbo code [7]. These new attacks
increase the highest achievable error probability p for given values of L and N
(L is the length of the LFSR generating σ and N is the number of known bits of
the running-key). Moreover, they do not require that the feedback polynomial P
have a low weight. We here show that Gallager iterative decoding algorithm
with parity-check equations of weight 4 or 5 is usually much more efficient than
all previous attacks: it successfully decodes very high error probabilities with a
feasible time and memory complexity, and it does not require that the feedback
polynomial P have a low weight. As an example, for a LFSR of length L = 40
and an error-probability p = 0.3, the best previously known attack [7] requires
the knowledge of N = 40, 000 bits of s whereas our algorithm with parity-check
equations of weight 5 is successful with only 9, 770 bits.

The paper is organized as follows. Section 2 focuses on the particular case
of combination generators. Here, we prove that the lowest possible Hamming
distance between a fixed t-resilient function and any Boolean function with (t +
1) variables is achieved by an affine function. It follows that the nonlinearity
of the combining function plays a major role in the resistance of a combination
generator to correlation attacks. The rest of the paper presents a new general
method for fast correlation attacks which can be applied to any type of key-
stream generators based on LFSRs. The preprocessing step and the decoding
step of the algorithm are respectively described in Section 3 and 4. Section 5
gives a theoretical analysis of the recent attacks proposed by Johansson and
Jönsson. Most notably, we point out that our attack using parity-check equations
of weight 4 or 5 has better performance than the attacks based on convolutional
codes or on turbo codes. Section 6 finally presents some simulation results which
confirm the validity of the previous comparison.
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2 Approximation of a t-Resilient Function by a Function
with t + 1 Variables

This section is devoted to the special case of combination generators. It fo-
cuses on the choice of the Boolean function g which is used for combining
the k LFSRs involved in the correlation attack (see Fig. 2). The attack will
be even more efficient that the correlation between the running-key s and the
sequence σ is high. This equivalently means that Pr[sn 6= σn] should be as
small as possible. The Boolean function g with k variables should then mini-
mize pg = Pr[f(X1, . . . , Xn) 6= g(Xi1 , . . . , Xik)]. Moreover, since the length of
the equivalent LFSR considered in a fast correlation attack is usually given by
L = g(Li1 , . . . , Lik), it is obviously required that the degree of g be not too high.

We first recall some basic properties of Boolean functions (see e.g. [8], [11]
and [2] for details). In the following,Fn denotes the set of all Boolean functions
with n variables, i.e., the set of all functions from Fn

2 into F2. A Boolean function
is balanced if its output is uniformly distributed; balancedness is then an obvious
requirement for combining functions. A Boolean function f ∈ Fn is t-th order
correlation-immune if the probability distribution of its output is unaltered when
any t input variables are fixed [19]. Balanced t-th order correlation-immune func-
tions are called t-resilient. Note that a t-th order correlation-immune function
is k-th order correlation-immune for any k ≤ t. From now on, the correlation-
immunity order of a function f then refers to the highest integer t such that f is t-
th order correlation-immune. The Walsh transform of a Boolean function f ∈ Fn

is the Fourier transform of the corresponding sign function χf(x) = (−1)f(x):

∀u ∈ Fn
2 , χ̂f (u) =

∑
x∈Fn

2

(−1)f(x)(−1)u·x

where x · y denotes the usual dot product between two n-bit vectors x and y.
The Walsh coefficient χ̂f(u) estimates the Hamming distance between f and the
affine function u · x + ε, ε ∈ F2:

Pr[f(X1, . . . , Xn) 6= u ·X + ε] =
1
2
− (−1)ε

2n+1
χ̂f(u) .

The nonlinearity of f , NL(f), corresponds to its Hamming distance to the set
of affine functions:

NL(f) = 2n−1 − 1
2

max
u∈Fn

2

|χ̂f(u)| .

We now consider the combination generator depicted in Figure 1 and we
assume that the combining function f is t-resilient. The running-key produced by
the combination generator is then independent of any set of t constituent LFSRs.
The smallest number of LFSRs involved in a correlation attack is therefore t+1.
We now prove that, in this case, the Boolean function g with (t + 1) variables
which provides the best approximation to f (i.e., which minimizes pg) is an affine
function.
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Theorem 1. Let f be a t-resilient function with n variables and let T be a subset
of {1, . . . , n} of cardinality (t+1), T = {i1, . . . , it+1}. The lowest possible value
over all g ∈ Ft+1 of

pg = Pr[f(X1, . . . , Xn) 6= g(Xi1 , . . . , Xit+1)]

is achieved by the affine function

g(xi1 , . . . , xit+1) =
∑
i∈T

xi + ε

with ε = 0 if χ̂f(1T ) > 0 and ε = 1 otherwise, where 1T denotes the n-bit vector
whose i-th component equals 1 if and only if i ∈ T .

Moreover, we have

min
g∈Ft+1

pg =
1
2
− 1

2n+1
|χ̂f(1T )| .

Proof: For any vector x ∈ Fn
2 , x = (y, z) refers to the decomposition of x with

respect to T , i.e., y is the (t + 1)-bit vector composed of all xi, i ∈ T . Let pT (y),
y ∈ Ft+1

2 , denote the probability pT (y) = Pr[f(Y, Z) = 1|Y = y]. For any
g ∈ Ft+1 we have

pg = Pr[f(Y, Z) 6= g(Y )]

=
∑

y∈g−1(0)

Pr[f(Y, Z) = 1|Y = y] +
∑

y∈g−1(1)

Pr[f(Y, Z) = 0|Y = y]

=
∑

y∈g−1(0)

pT (y) +
∑

y∈g−1(1)

(1− pT (y)) .

It follows that pg is minimal if and only if

g(x) =
{

0 if pT (x) < 1/2,
1 if pT (x) > 1/2 .

(1)

Note that the value of g(x) can be arbitrarily chosen when pT (x) = 1
2 . For any

j ∈ T , ej denotes the (t+1)-bit vector whose all coordinates are zero except the
j-th one. For any y ∈ Ft+1

2 and any j ∈ T , we have

pT (y) + pT (y + ej) = Pr[f(Y, Z) = 1|Y = y] + Pr[f(Y, Z) = 1|Y = y + ej ]
= 2 (Pr[f(Y, Z) = 1|∀i ∈ T, Yi = yi]Pr[Yj = yj ]+

Pr[f(Y, Z) = 1|∀i ∈ T \ {j}, Yi = yi, Yj 6= yj ]Pr[Yj 6= yj ])
= 2Pr[f(Y, Z) = 1|∀i ∈ T \ {j}, Yi = yi] = 1

where the last equality comes from the fact that f is t-resilient and that the
set T \ {j} has cardinality t. Let g ∈ Ft+1 be such that pg is minimal. Since
pT (x)+pT (x+ej) = 1 for any x ∈ Ft+1

2 and for any j ∈ T , Condition (1) implies
that

g(x) + g(x + ej) ≡ 1 mod 2
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when pT (x) 6= 1
2 . Moreover, we can assume that this relation is satisfied for any

x ∈ Ft+1
2 , because the value of g(x) can be arbitrarily chosen when pT (x) = 1

2 .
It follows that, for any x ∈ Ft+1

2 ,

g(x) = g(0) +
∑
i∈T

xi .

Since g is an affine function, pg is given by

pg =
1
2
− (−1)g(0)

2n+1
χ̂f (1T ) .

This probability is then minimized when (−1)g(0) and χ̂f (1T ) have the same
sign. ut

It follows that, in a fast correlation attack involving (t +1) LFSRs, the same
combining function g minimizes both the error probability pg and the length
of the LFSR generating σ. In this context, the feedback polynomial P of this
equivalent LFSR is the least common multiple of the feedback polynomials Pi

of the considered LFSRs [22]. Note that we generally have P =
∏

i∈T Pi since
all these feedback polynomials are usually primitive. The running-key s can be
seen as the result of the transmission of the sequence σ generated by this LFSR
through the binary symmetric channel with error probability

p =
1
2
− 1

2n+1
|χ̂f(1T )| .

A similar cryptanalytic method applies to a ciphertext-only attack. In this
case, we make use of the redundancy of the plaintext sequence m, i.e., Pr[mn =
0] = p0 > 1/2. The attack now considers that the ciphertext sequence c re-
sults of the transmission of σ through the binary symmetric channel with error-
probability

p = Pr[cn 6= σn] =
1
2
− (2p0 − 1)

2n+1
|χ̂f(1T )| .

Theorem 1 points out the importance of the nonlinearity of the combining
function f : any known-plaintext correlation attack on (t + 1) LFSRs should de-
code an error probability p ≥ NL(f)/2n. The use of highly nonlinear combining
function may then prevent this attack. In this case, an acceptable error prob-
ability can only be obtained when (t + 2) constituent LFSRs are involved and
when the degree of g is at least 2. But this dramatically increases the length of
the equivalent LFSR and it makes any correlation attack infeasible.

3 Generating Parity-Check Equations

We now come back to the general cryptanalysis of any key-stream generator
based on LFSRs. A fast correlation attack aims at recovering L consecutive bits
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of σ from the knowledge of N bits of s (see Fig. 3). We use that any N -bit subse-
quence of σ is a codeword of a linear code C of length N and dimension L defined
by the feedback polynomial P . The preprocessing step of the attack then consists
in generating some parity-check equations for C (i.e., linear relations involving
some bits of (σn)n<N) in such a way that they provide an efficient decoding
procedure. Here, we use a fast decoding algorithm due to Gallager [3] for low-
density parity-check codes. In this context, the preprocessing step consists in
searching for all linear equations involving d bits of the sequence (σn)n<N :

σn +
d−1∑
j=1

σij = 0 .

These equations exactly correspond to the polynomials Q(X)P (X) of weight d
and of degree at most N , where P is the feedback polynomial of the LFSR
generating σ. The cyclic structure of LFSR sequences implies that the set of
all parity-check equations of weight d involving σi does not depend on i. It is
therefore sufficient to find all polynomials Q(X)P (X) of weight d whose constant
term equals 1. These polynomials can be found with the following algorithm:

– Compute all residues qi(X) = Xi mod P (X) for 1 ≤ i < N and store their
values in a table T defined by

∀0 ≤ a < 2L, T [a] = {i, qi(X) = a} .

– For each set of d− 2 elements of {1, · · · , N − 1}
compute A = 1 + qi1(X) + . . . + qid−2(X)
for any j ∈ T [A], 1 + Xi1 + . . . + Xid−2 + Xj is a multiple of P of
weight d.

The number of operations required by this algorithm is then roughly(
N − 1
d− 2

)
∼ Nd−2

(d− 2)!
.

We can also use an algorithm based on a “birthday technique” as suggested in [10,
Section 5]. This consists in storing in a table the values of all linear combinations
of bd−1

2
c residues qi(X). The complexity of this algorithm is only

(
N

d d−1
2 e
)

but

it requires L
(

N
b d−1

2 c
)

bits of memory. For d > 4 the choice of the algorithm used
in the preprocessing step then highly depends on the available memory amount.
Similar techniques for finding low-weight parity-check equations are presented
in [14].

We now want to estimate the number of such parity-check equations of
weight d. Let us first assume that P is a primitive polynomial in F2[X] of de-
gree L. Then the number m(d) of polynomials Q(X) = 1+

∑N
i=1 qiX

i of weight d
such that P divides Q is approximatively

m(d) ' Nd−1

(d− 1)!2L
. (2)
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This approximation is motivated as follows: when d is small, the number of
multiples of P of weight d and of degree at most 2L− 1 can be approximated [8,
p. 129] by

A =
2(d−1)L

d!
.

Let us now assume that the probability pd that P divides a polynomial of
weight d is uniform. We then deduce that

pd =
A(

2L−1
d

) ' 1
2L

.

We similarly obtain that

m(d) = pd

(
N − 1
d− 1

)
' Nd−1

(d− 1)!2L
.

Simulations for d ≤ 6 show the accuracy of this approximation when N
is not too small. Moreover its validity does not depend on the weight of P .
As an example the following table compares our approximation with the exact
values of m(3) for two polynomials of degree 17: P1(X) = 1 + X3 + X17 and
P2(X) = 1+X2 +X4 +X5 +X6 +X8 +X9+X10 +X11+X13 +X14+X15 +X17.

N 3000 4000 5000 6000 7000 8000
m1(3) 38 61 95 131 183 238
m2(3) 36 67 95 127 185 243

approximation 34 61 95 137 187 244

Since this approximation is also accurate when P is a product of primitive poly-
nomials, we will now use Formula (2) as an approximation of the number of
parity-check equations of weight d involving the i-th bit of (σn)n<N . For the
polynomial of degree 40 considered in [6], P (X) = 1 + X + X3 + X5 + X9 +
X11 +X12 +X17 +X19 +X21 +X25 +X27 +X29 +X32 +X33 +X38 +X40, we
obtain 9607 parity-check equations of weight 4 for N = 400, 000 and 400 parity-
check equations of weight 5 for N = 10, 000. For these values of N , Formula (2)
gives m(4) = 9701 and m(5) = 379.

4 Decoding Procedure

Using the previous parity-check equations we recover (σn)n<N from (sn)n<N

using Gallager soft-input/soft-output decoding algorithm [3, 4]. It relies on the
evaluation, for all 0 ≤ i < N , of the probability that σi equals 1 conditional on
the known sequence (sn)n<N and on the event S that all parity-check equations
involving σi are satisfied. As usual in soft decoding algorithms, all probabilities
are expressed in terms of log-likelihood ratios: the log-likelihood ratio of a binary
random variable X, L(X), is defined as

L(X) = log
Pr[X = 0]
Pr[X = 1]

.
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The sign of L(X) corresponds to a hard decision on X (sign(L(X)) = (−1)X);
its magnitude |L(X)| is the reliability of this decision. Here, we have that

L(σi|(sn)n<N , S) = L(σi|(sn)n<N) + L(S|σi, (sn)n<N) .

The second term of the right hand member of this equation can be evaluated
with the following approximation (see e.g. [5])

L(
k∑

i=1

Xi) =

(
k∏
i

sign(L(Xi))

)
min

1≤i≤k
|L(Xi)| .

The decoding procedure is then as follows:

– Initialization: for all i from 0 to N − 1, L[i] = log 1−p
p .

– Until convergence, repeat:
For all i from 0 to N − 1

L′[i] = (−1)siL[i].
for any parity-check equation involving σi, written as σi+

∑
j∈J σj = 0,

L′[i]← L′[i] +

∏
j∈J

(−1)sj

min
j∈J

L[j] .

For all i from 0 to N − 1, si ← sign(L′[i]) and L[i]← |L′[i]|.
The number of parity-check equations required for convergence of this decoding
procedure highly depends on their weight d. Figures 4 and 5 present simulations
results for L = 21 (P (X) = 1 + X2 + X3 + X5 + X10 + X11 + X12 + X14 +
X21). Figure 5 clearly shows that the performance of the attack increases with
the weight of the parity-check equations. For p = 0.4, the attack requires the
knowledge of 16800 bits of s for d = 3, 2200 bits for d = 4 and 1100 bits for
d = 5.

Simulations actually provide the following approximation of the minimum
value of m(d) for convergence (see Fig. 4):

m(d) ≥ Kd

Cd−2(p)
(3)

where Cd−2(p) is the capacity of the binary symmetric channel with error-
probability pd−2 = 1

2 (1 − (1 − 2p)d−2), i.e. Cd−2(p) = 1 + pd−2 log2(pd−2) +
(1− pd−2) log2(1− pd−2). Kd ' 1 if d ≥ 4 and K3 ' 2. Combining (2) and (3)
we obtain that the correlation attack with parity-check equations of weight d is
successful if the number of known bits of s is at least

N = 2αd(p)+ L
d−1 with αd(p) =

1
d− 1

log2

[
(d− 1)!

Kd

Cd−2(p)

]
. (4)

This formula points out that the influence of L decreases when we use higher-
weight parity-check equations. When m(d) satisfies (3) the decoding procedure
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Fig. 4. Number of parity-check equations of weight d per bit required for convergence
(L = 21)

requires at most 10 iterations. The algorithm then performs approximatively
5(d− 1)m(d)N operations in average. The amount of involved memory is com-
posed of (d− 1)m(d) computer words for storing the parity-check equations and
of 2N computer words for storing of the sequence (sn)n<N and the corresponding
soft values (L[n])n<N .

5 Comparison with Previous Correlation Attacks

We first compare our attack with the correlation attack using convolutional codes
described in [6]. This attack associates a convolutional code with memory B to
the code C stemming from the LFSR with feedback polynomial P . The embedded
convolutional code is defined by all parity-check equations involving σn and d−1
bits of σ outside positions n− 1, . . . , n− B:

σn +
B∑

i=1

βiσn−i +
d−1∑
j=1

σij .

Johansson and Jönsson focus on the case d = 3. Using the algorithm described
in [6] all these equations can be found with roughly Nd−2

(d−2)!
operations. Exactly

as in Formula (2) the number of such parity-check equations involving the i-th
bit of σ is approximatively given by

mB(d) =
Nd−12B

(d− 1)!2L
.
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The decoding step of the attack now consists in deriving a sequence r from
(sn)n<N . Decoding r with respect to the convolutional code then provides L
consecutive bits of σ. By construction most bits of the corrupted sequence r
satisfy

Pr[rn 6= σn] =
1
2
(1− (1− 2p)d−1) = pd−1 .

This obviously implies that the decoding procedure can not be successful if
the transmission rate of the convolutional code R is greater than the capacity
of the binary symmetric channel with error probability pd−1. The simulation
results presented in [6] actually provide the following maximum value of R for
convergence of Viterbi algorithm:

R ≤ Cd−1(p)
K′

where K′ is a constant which slightly depends on L (we obtain K′ = 3 for L = 21
and K′ = 2.5 for L = 40). Since R = 1/(mB(d) + 1) we deduce the following
convergence condition for Viterbi algorithm:

mB(d) ≤ K′

Cd−1(p)
− 1 . (5)

The number of known bits of s required by a correlation attack using a convo-
lutional code with memory B is then

N = 2βd(p)+
(L−B)

d−1 with βd(p) =
1

d− 1
log2

[
(d− 1)!

K′

Cd−1(p)

]
. (6)
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The decoding step using Viterbi algorithm performs 2BmB(d)(L + 10B) opera-
tions.

Figure 6 compares the number of bits of s required for a correlation attack
using Gallager decoding algorithm with d = 3, d = 4 (Formula (4)) and for
the attack using Viterbi algorithm with d = 3, B = 18 (Formula (6)). It points
out that the use of Gallager algorithm with d = 4 provides better performance
than the use of Viterbi algorithm with d = 3 and B = 18. Moreover, this
advantage increases for growing p and L. As an example, we now compare our
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Fig. 6. Number of bits of s required by Gallager algorithm and by Viterbi algorithm

attack with d = 4 and the attack using a convolutional code which was presented
in [6](d = 3). Let N be the minimum number of bits of the running-key which are
required by our attack for a given value of p. The correlation attack using Viterbi
algorithm only succeeds for these values of N and p when mB(3) ≥ K′m(4),
i.e., B ≥ log2(N) since K′ ' 3. This high value of B makes the complexity
of the decoding step with Viterbi algorithm higher than for our attack: the
number of operations required for decoding is multiplied by B + L

10 . Moreover,
the memory requirement makes the decoding step intractable for large values
of B (B can not exceed 20 or 30 in practice). The only advantage of the attack
based on convolutional codes is the lower complexity of the preprocessing step:
in our attack the number of operations performed for finding the parity-check
equations is multiplied by N

2 . But this part of the attack is performed once for
all while the decoding step should be repeated for each new initialization of
the system. A similar comparison can be made for higher weight parity-check
equations. Note that, as pointed out by Formula (6), the advantage of increasing
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the memory B in the attack based on convolutional codes decreases for higher
values of d. Moreover, the value of d in the attack based on convolutional codes
is limited due to the time complexity of Viterbi algorithm. Gallager algorithm
should therefore be preferred in most situations.

A recent improvement [7] of the attack based on convolutional codes consists
in using M parallel convolutional codes with memory B which all share the
same information bits. This does not strongly modify the results of the previous
comparison. When a turbo code is used, the number of operations performed by
the decoding procedure is 6M2BmB(d)(L+9B) and the memory requirement is
roughly the same than in Viterbi algorithm. The processing step now performs
around (L + 9B)M Nd−2

(d−2)! operations.

6 Simulation Results

We now present some simulation results of our attack based on a LFSR of
length L = 40 with feedback polynomial P (X) = 1 + X + X3 + X5 + X9 +
X11 + X12 + X17 + X19 + X21 + X25 + X27 + X29 + X32 + X33 + X38 + X40 .
This polynomial was used for all simulations in [12, 6, 7]. The results obtained by
Gallager algorithm with parity-check equations of weight 4 and 5 are presented
in Figure 7.
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As an example, the following table compares the maximum error-probabilities
achieved by the different correlation attacks when N = 400, 000 bits of s are
known:

our attack [6] (Viterbi) [7] (turbo)
d = 4 d = 3, B = 15 d = 3, M = 8, B = 13

maximum error
probability p 0.44 0.40 0.41

For N = 400, 000 and p = 0.44, the preprocessing step and the decoding step
of our attack took respectively 9 hours and 1.5 hour on a DEC alpha workstation.
Note that the attack based on convolutional codes with d = 4 and B = 16 can
achieve p = 0.482, but it requires 253 operations. This error-probability can be
achieved by our attack with d = 5 and with only N = 360, 000 bits of s. In this
case, the number of operations required by the decoding step is 252.

Similarly, the correlation attack based on turbo codes achieves p = 0.3 for
40, 000 known bits of s (with B = 15 and M = 16) [7]. We here correct the same
error-probability with only 9, 770 bits using parity-check equations of weight 5.
In this last case, the preprocessing step takes roughly 30 hours, and the decoding
step takes 12 seconds.

7 Conclusions

We have shown that the fast correlation attacks using Gallager iterative decoding
algorithm with parity-check equations of weight 4 or 5 are more efficient than
the attacks based on convolutional codes or on turbo codes. The performance
of our algorithm is only limited by the time complexity of the preprocessing
step; however, it is important to note that this part of the attack has to be
performed once for all. The different techniques proposed by Johansson and
Jönsson could also use higher-weight parity-check equations but the induced
improvement is strongly limited by the memory requirement of the decoding
procedure. Gallager algorithm should therefore be preferred in most situations.
The previous theoretical analysis provides all necessary choices of parameters
for practical implementations.
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