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Improved Fermi operator expansion methods for fast electronic
structure calculations
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Linear scaling algorithms based on Fermi operator expansions~FOE! have been considered
significantly slower than other alternative approaches in evaluating the density matrix in Kohn–
Sham density functional theory, despite their attractive simplicity. In this work, two new
improvements to the FOE method are introduced. First, novel fast summation methods are
employed to evaluate a matrix polynomial or Chebyshev matrix polynomial with matrix
multiplications totalling roughly twice the square root of the degree of the polynomial. Second, six
different representations of the Fermi operators are compared to assess the smallest possible degree
of polynomial expansion for a given target precision. The optimal choice appears to be the
complementary error function. Together, these advances make the FOE method competitive with the
best existing alternatives. ©2003 American Institute of Physics.
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I. INTRODUCTION

Polynomial expansions of matrix functionsf (X) have
been widely applied in the context of linear scaling ele
tronic structure algorithms for energies and forces1–4 and for
spectral properties like the density of states~DOS!, as well as
response functions and optical spectra.5–12 In other areas of
computational condensed matter physics and chemistry,
also frequently encounters matrix functions, such as
time-evolution operatore2 iHt,12,13 the partition function
e2bH,6,14,15 the Heaviside step functionQ(m2H), and the
Green’s function 1/(E2H).5 In principle, these matrix func-
tions can be exactly evaluated as

f ~H!5U f ~h!U† ~1!

since a Hermitian matrixH can always be diagonalized by
unitary transformation,U†HU5h. Diagonalization of a ma-
trix scales asO(N3), whereN is the dimension of the matrix
H. It is undesirable to diagonalize the matrix when the s
tem size is big, or in addition, the matrixH is very sparse
and massively parallel computing is required. When a po
nomial expansion of the matrix function is employed, o
can exploit sparse matrix multiplications to evaluate
products entering the matrix polynomials. The resulting co
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putational effort can, in principle, increase only linearly wi
the dimension of the matrix. Here we focus on the appli
tion of the matrix polynomial approximation in linear scalin
electronic structure algorithms.

It is well established that molecular calculations wi
atom centered basis functions can be carried out in com
tational times that scale linearly with system size in the la
system limit.16–19Linear scaling is achieved by using Gaus
ian orbitals in Kohn–Sham DFT calculations, variants of t
fast multipole method for the Coulomb problem,20–27 linear
scaling numerical quadrature evaluation for purely lo
exchange-correlation potential28–30 and various diagon-
alization-free methods to bypass theO(N3) Hamiltonian di-
agonalization bottleneck.1–5,31–45The physical basis of thes
linear scaling methods is utilization of spatial locality or th
principle of ‘‘the nearsightedness of equilibrium systems,’’46

which states that the properties of a certain observation
gion comprising one or a few atoms are only weakly infl
enced by factors that are spatially far away from the obs
vation region.

One class of linear scaling algorithms for constructi
the density matrix is based on a direct, polynomial repres
tation of the density matrixr̂ in terms of the Hamiltonian

operatorĤ ~or its representation in terms of Wannier fun
tions! via the Heaviside step function or Fermi–Dirac fun
tion or the sign matrix function and take advantage of
il:
7 © 2003 American Institute of Physics
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decay properties ofĤ ~and overlapS!. To obtain linear scal-
ing one has to cut off exponentially decaying quantities wh
they are small enough. In the following we review a fe
examples which employed matrix polynomials or Chebysh
matrix polynomials to obtainr.

A polynomial expansion ofr was employed to derive a
Lanczos method within the occupied subspace,47 whereas
Goedecker and Colombo2 developed a projection method fo
the computation of the finite temperature total energies
forces with orthonormal local basis sets within the fram
work of tight-binding theory. The algorithm is based on t
fact that the finite temperature density matrix can be writ
as the Fermi–Dirac function of the Hamiltonian, which c
be expanded in terms of Chebyshev matrix polynomials~of
the Hamiltonian!. This yields a representation of the dens
as a function of the local Hamiltonian so that it can be eva
ated on a computer. It was generalized to nonorthorgo
basis sets,31 allowing the nonvariational computation o
band-structure energies, density matrix, and forces for
tems with nonvanishing gaps. Baer and Head-Gordon48,49

further improved the method for electronic structure calcu
tion on large molecular systems. A related approach has b
proposed in which a kernel polynomial method was e
ployed to find the smoothest Chebyshev approximation
the Heaviside step function subjected to a finite numbe
expansion terms.1 The density of states~DOS! can also be
expanded based on a kernel polynomial method.1,5,6 The
DOS and Fermi projection operator are approximated by
expansion of Chebyshev polynomials. This method prove
be valuable in the case of small energy gaps.

The exponential parameterization ofr in the atomic or-
bital ~AO! basis3,4 utilizes unitary transformations of an in
tial idempotent density matrix and has been employed
optimize the density matrix and thus the energy. This
proach had previously been used in the molecular orb
basis. In the AO basis, it has been shown to be an effic
linear scaling algorithm.43 In this method, a new trial densit
matrix r is parameterized as a unitary transformation of
idempotent matrix from previous steps, i.e.,r5e2DSr0eSD

5(n50
` @(21)n/n! #D̂nr0 . HereD̂r05@D,r0#S . This unitary

transformation can be evaluated via matrix polynomials inD.
Linear scaling can be achieved because the density m
and Hamiltonian operator are both sparse in the AO rep
sentation.

Purification algorithms33,37 have excellent performance
compared to other linear scaling methods. Palser
Manolopoulos33 suggested an algorithm for expanding t
single-particle density matrix in terms of the Hamiltonia
operator. The method involves the purification of a spec
ized initial density matrix, which can be done either cano
cally ~at a fixed electron countN) or grand canonically~at a
fixed chemical potentialm!. Niklasson34 further developed
the algorithm based on higher order purification polynomi
with stationary end points in@0, 1#, which can reduce the
number of matrix multiplications required. A family of pur
fication transforms was proposed by Holas.50 The nth puri-
fication transformation is a polynomial in the initial densi
matrix.
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As the above examples show, in several diagonalizati
free methods, the quantities of interest are expanded
matrix polynomials or Chebyshev matrix polynomials,
that only matrix multiplications and additions are require
However, to obtain the density matrix by the above metho
one has to perform many matrix multiplications. In straigh
forward evaluation of a matrix polynomial of degreeN,
which may be a few hundreds or even thousands, one ha
evaluateN21 matrix multiplications. For example, in th
Chebyshev Fermi–Dirac operator expansion~CFOE!
method, one has to evaluate a few hundreds or even th
sands of matrix multiplications in order to achieve an ene
accuracy of about 1025 a.u. at the Hartree–Fock~HF! or
density functional theory~DFT! level. Thus, it is well estab-
lished that the FOE is not an economic method for S
density matrix evaluation in the traditional quantum chem
try framework compared to the other linear scaling metho
Detailed comparisons of computational times have b
given in Refs. 51 and 52 with relatively low accuracy calc
lations using a semiempirical method for systems with
large highest occupied molecular orbital–lowest occup
molecular orbital~HOMO–LUMO! gaps. By contrast, the
FOE method is viewed as effective in linear scaling tig
binding calculations where relatively lower order polynom
als (;50) are required.16 It also has the advantage that floa
ing point operations can be cast as matrix–vector rather t
matrix–matrix multiplications. This permits one to avo
generating intermediate matrices which are less sparse
the Hamiltonian. It also means one can avoid storing
entire density matrix.

In the context of application to linear scaling DFT o
Hartree–Fock calculations, the problem is to find a rapi
convergent expansion or fast resumming methods which
minimize the number of matrix multiplications, since th
cost of matrix multiplications completely dominates the co
of matrix additions in evaluating matrix or Chebyshev mat
polynomials. In Ref. 53, we presented fast effective resu
ming methods for matrix polynomials and Chebyshev ma
polynomials which significantly reduces the number of m
trix multiplications. In this paper, we apply these algorithm
to accelerate the FOE method. A significant reduction
computational time is obtained by this implementation.
employing the locality of the density matrix and Fock matr
and their matrix products, linear scaling is achieved. T
resulting computational time is comparable with other e
cient linear scaling methods, such as canonical purifica
~CP!,33 the curvy-step method,43 and the sign matrix
algorithm44,45 for ab initio SCF calculations.

The paper is arranged as follows: In Sec. II, we brie
describe a fast algorithm53 to resum matrix polynomials and
Chebyshev matrix polynomials. A brief review of the FO
method is given in Sec. III. An optimal projection function
chosen to express the density operator for insulators. Re
assessing the choice of representation for the Fermi ope
and the performance of the fast summation method are g
in Sec. IV. Finally, we conclude in Sec. V.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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II. A FAST METHOD FOR RESUMMING MATRIX
POLYNOMIALS AND CHEBYSHEV MATRIX
POLYNOMIALS

A matrix polynomial of degreeN is a function of the
form,

f ~X!5(
i 50

N

aiX
i . ~2!

a0 ,a1 ,..., aN are the coefficients. Alternatively, any functio
that is approximated by a power series, over the inter
@21,1# can be approximated by a linear combination
Chebyshev polynomials,

f ~X!5(
i 50

N

ciT i~X!, ~3!

where X is a matrix with eigenvalues in the interva
@21,1#, andT i(X) is the Chebyshev polynomial of degreei .
Conventionally,X i andT i(X) are obtained via the calculate
X i 21 andT i 21(X) andT i 22(X) matrices, respectively. Thus
a total of N21 matrix multiplications are required. Thre
fast methods for resumming matrix polynomials and Che
shev matrix polynomials have been described in detai
Ref. 53. The central strategy of these algorithms is the h
archical decomposition of matrix polynomials into ma
blocks and to reuse multiple intermediate quantities to
duce the matrix multiplications. We will employ theAN11
3AN11 scheme, i.e., algorithm III in Ref. 53 to resu
Chebyshev polynomials. This algorithm for resumming m
trix polynomials is similar to that first described in Ref. 54.
simple description of the algorithm is given here.

The algorithm requires three steps to be performed.
first we divide the polynomial of degreeN into SP subpoly-
nomials (SP5 int(AN11)1res), i.e.,
f
s

h
of
n
od

to

i-
n
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f ~X!5 (
m50

N

amXm

5 (
i 50

N121

āi
0X i1 (

n52

SP

X~n21!3nl(
i 51

Nn

āi
n21X i . ~4!

Each subpolynomial except the first and last one includesnl
terms (Nn5nl5 int((N11)/AN11), 1,n,SP). The first
one and last one includenl11 andN2(SP21)3nl terms,
respectively. Here res51 if N.nl3 int(AN11), otherwise
res50. Then in the second step we calculate and save
necessarynl21 matricesX2,X3,...,Xnl and write Eq.~4! in
a more efficient way as

f ~X!5 (
i 50

N121

a% i
0X i1XnlH (

i 51

N2

a% i
1X i

1XnlH (
i 51

N3

a% i
2X i1¯1XnlH (

i 51

NSP

a% i
SP21X iJ J J ~5!

to reduce the number of matrix multiplications. The thi
step is to add all terms in Eq.~5! together. The coefficients
can be easily obtained from those ofai as āi

n5ai 1n3nl , a% i
n

5āi
n .
To resum a general polynomial of degreeN, the algo-

rithm requires a total number of matrix multiplications give
by

^M &5nl1SP22. ~6!

For example, to resum a polynomial of degree 25 by t
algorithm, we write the polynomial as
f ~X!5(
i 50

25

aiX
i

5(
i 50

5

āi
0X i1X5(

i 51

5

āi
1X i1X10(

i 51

5

āi
2X i1X15(

i 51

5

āi
3X i1X20(

i 51

5

āi
4X i

5(
i 50

5

a% i
0X i1X5H (

i 51

5

a% i
1X i1X5H (

i 51

5

a% i
2X i1X5H (

i 51

5

a% i
3X i1X5(

i 51

5

a% i
4X iJ J J . ~7!
als.

eri-
ula-
on
-
no-
t al-

with
ial
As Eq. ~7! shows, we need to calculate a total number o
matrix multiplications, which includes forming 4 matrice
X2, X3, X4, X5 and another 4 matrix multiplications whic
arise from the subdivision of the polynomial. The total
matrix multiplications required by our algorithm is substa
tially less than the 24 required by the conventional meth
For a matrix polynomial of higher degreeN, the number of
matrix multiplications required by this algorithm tends
approximately 2AN.

These algorithms for summing simple matrix polynom
als can be easily adapted to accelerate the summatio
8

-
.

of

other matrix series, such as Chebyshev matrix polynomi
Since the eigenvalues ofX lie in the range@21,1# in Cheby-
shev polynomials, Chebyshev approximations are num
cally very stable and are less susceptible to error accum
tion than the equivalent power series in finite precisi
floating point arithmetic.55 Thus, in the context of linear scal
ing electronic structure methods, Chebyshev matrix poly
mials have been proposed as a more stable and efficien
ternative to simple matrix polynomials.2,48,49,56 Some
differences arise from the recursion relations associated
Chebyshev matrix polynomials. The Chebyshev polynom
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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of degree i , T i , is defined by the following recursion
relations:55

T0~X!5I , T1~X!5X, T2~X!52X22I ,

Tn1m~X!52Tn~X!Tm~X!2Tun2mu~X!. ~8!

Thus, the coefficients of the expansion and polynomials w
be changed during the division. Equation~4! is changed to

f ~X!5 (
n51

SP

f n~X!

5 (
i 50

N121

c̄i
0T i~X!1 (

n52

SP

T~n21!3nl~X!(
i 51

Nn

c̄i
n21T i~X!

5 (
i 50

N121

c% i
0T i~X!1Tnl~X!H (

i 51

N2

c% i
1T i~X!1¯

1Tnl~X!H (
i 51

NSP

c% i
SP21T i~X!J J . ~9!

HereNn is the length of thenth subpolynomial. The coeffi-
cients change according to the following recurrences,

c̄i
n5H 2c~SP21!3nl1 i n5SP21 and 1< i<NSP;

2cn3nl1 i2 c̄nl2 i
n11 1<n,SP21 and 1< i ,nl;

ci2
1
2c̄nl2 i

1 n50 and 0< i ,nl;

and c̄nl
n 52cn3nl112 c̄nl

n12 (1,n,SP22), c̄nl
0 5cnl2

1
2c̄nl

2 ,
and c̄i

SP2150 (i .NSP). The coefficient$c% i
n% can be calcu-

lated based on the relation,

c% i
n5 (

m>n

SP21

c̄i
mAn,m . ~10!

HereA is aSP3SP matrix, which is evaluated according t

Am,n5H 2Am21,m21 if m5n;

2Am21,n212Am,n22 if mÞn and m<n22,...,0

if n>3, and A0,051, A1,151, A2,252, A0,2521, and all
other elements of the matrixA are equal to 0. The number o
matrix multiplications required to resum a Chebyshev po
nomial is equal to that for resumming a matrix polynomial
the same degree.

III. CHEBYSHEV FERMI PROJECTION OPERATOR
EXPANSION METHOD

We shall explore the use of the fast resummation al
rithm described above to accelerate Chebyshev Fermi pro
tion operator expansion~CFOE! method. We give a simple
description of the method, including the question of wh
representation to use for the Fermi operator.

The one electron density operator is defined by

r̂~r ,r 8!5(
i

niF i~r !F i* ~r 8!, ~11!
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whereni is an occupancy number, equal to 1 or 0. Sincer̂ is
a projector onto the space spanned by theNe ~number of
electrons! lowest energy orbitals, it is equivalent to a ste
function,

r̂5Q~m2Ĥ !. ~12!

A Heaviside step function can be defined as any of the
lowing limits:57

Q~m2Ĥ !5 1
2 limb→` erfc~2b~m2Ĥ !!, ~13!

5 limb→`

1

11e2b~m2Ĥ !
, ~14!

5 limb→`F1

2
1

1

p
tan21~bp~m2Ĥ !!G , ~15!

5 limb→` e2e2b~m2Ĥ)
, ~16!

5 1
2limb→`@11tanh~b~m2Ĥ !!#, ~17!

5 limb→`H 1
2e

b~m2Ĥ ! for Ĥ>m,

12 1
2e

2b~m2Ĥ ! for Ĥ<m.
~18!

Here erfc(x) is the complementary error function andm is the
chemical potential, which is defined by the number of ele
trons,

Tr@ r̂#5Ne . ~19!

The elements of the density matrixr are defined as

ra,b5^faur̂ufb& ~20!

in the basis set$fa%. Thus, we may express the densi
matrix at zero temperature asra,b5^fauQ(m2Ĥ)ufb&.
However, for systems with nonvanishing HOMO–LUM
gap, a sufficiently large but finite value ofb can be em-
ployed. After all, for an insulator, the only requirement o
the electronic weight distribution is that it should be one
the valence-band region and zero in the conduction-band
gion. In the band gap, it can vary smoothly from one
zero.58 Thus, the zero temperature density matrix may
accurately approximated by any of the following functio
with a finite value of b for systems with nonvanishing
HOMO–LUMO gaps:

r' 1
2 erfc~2b~m2H!! ~CEF!, ~21!

'
1

11e2b~m2H! ~FD!, ~22!

'F1

2
1

1

p
tan21~bp~m2H!!G ~atan!, ~23!

'e2e2b~m2H!
~exp!, ~24!

' 1
2@11tanh~b~m2H!!# ~ tanh!, ~25!

'H 1
2e

b(m2H) for H>m,

12 1
2e

2b~m2H! for H<m ~ two!.
~26!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We plot these functions withb525 and 50 in Fig. 1. All
functions have values in the range@0, 1# and approach 0 and
1 smoothly nearm. All functions except the expression o

e2e2b(m2H)
are antisymmetric. The complementary err

function approaches zero and one faster than other funct
for a givenb value. From Fig. 1, we also observe that as
increase of the value ofb, the functions approach 0 and
faster.

We employ the FOE method to obtain the one-elect
reduced density matrix at theab initio HF/DFT levels, using
Gaussian nonorthogonal atom-centered basis sets.59 The FOE
method has been generalized to nonorthogonal basis sets31,60

such that the overlap matrixS is involved in the expression
of r. Alternatively we may keep the expression forr un-
changed by transforming the AO Fock matrixFAO and the
AO density matrixrAO to an orthonormal basis usingH
5L21HAO(L21)T and r5LTrAOL , where LL T5S, the
overlap matrix. Usually, the transformation is obtained
Cholesky decomposition.55,61,62

The Fermi–Dirac function@Eq. ~22!# has been used in
Refs. 2, 47–49, 51, 52, and 61 to approximate the electro
weight distribution of metals at finite temperature or insu
tors at zero temperature. The density matrixr is approxi-
mated by a Fermi–Dirac function with a finite value ofb,
which is expanded as a finite order Chebyshev polynomia
the effective Hamiltonian matrix~Fock matrix!,

r5S i 50
N ai~bs ,ms!T i~Hs!. ~27!

Here ms5(m2Ē)/DE, bs5bDE, N is the degree of the
polynomial andai are the expansion coefficients, which c
be obtained by using the fast Fourier transform.48 Hs is the
scaled and shiftedH matrix, defined so that its eigenvalue

FIG. 1. A plot of the six different finiteb approximations to the step func
tion, contained in Eqs.~21!–~26!. The functions are each plotted for a fixe
b value of 25.0~upper panel! and 50.0~lower panel!. The function which
approaches 0 and 1 fastest will provide the most accurate representatio
a given value ofb.
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lie in the interval@21,1#. This scale and shift is performe
because Chebyshev polynomials are defined within this
terval. If DE5Emax2Emin is the eigenvalue spread, andĒ
5(Emax1Emin)/2 is the average ofEmax andEmin , thenHs is
given by

Hs5
H2Ē

DE
. ~28!

Emin and Emax are the minimum and maximum eigenvalu
of the Hamiltonian~Fock! matrix H.

Actually all functions in Eqs.~21!–~26! can be expanded
into finite order Chebyshev polynomials. Generally for
given value ofb, functions which approach one and ze
more slowly will require larger values ofb to satisfy a de-
sired accuracy for the electronic weight distribution. Th
they may need more polynomial terms to converge the
pansion series afterb is chosen to obtain a desired accura
in the density matrix. For a metal,b51/kT, and thusb is
connected to a real temperature, while in insulators,b
}1/de and thus depends on the HOMO–LUMO gap,de
5ELUMO2EHOMO, of the system.48 The value ofb controls
the proximity of the projection function to the true densi
matrix. At a specified precision 102D, b can be choosen
according to the following equations:

Fm,b1
~EHOMO!>12102D

and

Fm,b2
~ELUMO!<102D, ~29!

b takes the larger value ofb1 ,b2 . By choosing the smalles
allowed value ofb this way, it is still large enough to satisf
the specified precision ofr. The values ofb are different for
different projection functionsFm,b(F). For example,b
.2D loge

10/de, A2D loge
10/de, andD loge

10/de for FD @Eq.
~22!#, CEF @Eq. ~21!#, and tanh@Eq. ~25!# functions, respec-
tively. In Sec. IV, we compare the properties of these fun
tions and present the degree of polynomials needed for
different functions in order to satisfy the energy precisi
1025. We will find that the length of the polynomial corre
sponding to the complementary error function is shorter th
the others.

m should be determined by enforcing the electron co
of the system@see Eq.~19!#. The accuracy ofm controls the
accuracy of the density matrix. SinceTn does not depend on
m, one may perform a calculation of several density matri
which correspond to different trial chemical potentials
Refs. 48, 51, and 52 have suggested. But it may not be
to save a lot of matrices. Alternatively, for insulators,

m5
EHOMO1ELUMO

2
~30!

should be a good choice~in fact optimal for the antisymmet
ric functions!. For metals, one may employ the finite diffe
ence approximation of Eq.~19! to find the correctionDm,

Dm5
DNe

TrS (n50
N21 ]an

]m
Tn~X! D . ~31!

for
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Thenm1Dm is employed for density matrix evaluation.16 In
this work, we adopt Eq.~30! for m.

The parametersbs , ms , andHs depend on eigenvalue
Emin , Emax, EHOMO, andELUMO of H. One has to calculate
these quantities. In this work, these parameters are calcu
by a linear-scaling sparse real symmetric matrix Lanc
algorithm.63,64The Lanczos algorithm~LA ! is used to repeat
edly improve an approximate solution until it reaches su
cient accuracy. The conventional LA is good enough for
genvalues on the extreme edges of the spectrum
frequently is not very good for interior eigenvalues. Th
latter situation can be changed completely when the itera
is driven not byH itself but with a spectral filter, a speciall
designed function ofH, denoted f (H). For example, the
method termedshift and invert, uses the filterf (H)51/(E
2H).64 This method has the highly desirable effect
throwing the eigenvalues ofH that lies nearE to the extreme
edges of the spectrum. In order to generate the next Lan
vectorQj 11 , one has to calculate the vector-matrix multip
cation f (H)Qj5Vj . We follow the shift-and-invert strateg
of Ericsson,64 to solve the equation (H2E)Vj5Qj for Vj

instead of calculating 1/(E2H) explicitly. Obtaining these
eigenvalues involves only matrix–vector products rat
than matrix multiplications, so the cost of these steps is sm
compared to the subsequent solution for the density ma
and matrix diagonalization as Table II shows.

Onceb andm are computed, we then choose a degree
polynomial such that the sufficient precision is obtaine
This degree,N, is obtained by stopping evaluation of th
series when theNth terms satisfy a stopping criterion
uai 21u.uai u and uai u,T2. T2 should be two or three power
of ten smaller than 102D. For example, if one hopes to hav
precision 102D for the density matrix, thenT2 should be set
to 102D22.

IV. RESULTS

When the one-electron density matrix is expanded i
Chebyshev polynomials of the Fock matrix, it can be eas
obtained by sparse matrix multiplication and addition, sin
the density matrix and the Fock matrix in a Gaussian ba
set have finite decay ranges. A blocked sparse matrix m
plication scheme is employed for our matrix multiplic
tions.65 In this scheme large nonzero submatrices are
tained by forming many-atom blocks. These blocks are
tained by a boxing scheme, where the system is spat
partitioned into many boxes with each box containing ma
atoms. This division of the system is the same as is use
some tree code methods.26 While the fraction of negligible
submatrices is lower than the actual elemental sparsity,
blocking scheme benefits from the use of highly-optimiz
level-3 basic linear algebra subroutines~BLAS! for large
submatrix multiplications. These large-block multiplicatio
also ultimately result in the reduction in CPU time for spa
matrix multiplications. When the density matrix is express
as a Chebyshev polynomial of the Fock matrix, theTn(H)
matrices are symmetric. Thus, we can employ symme
sparse matrix multiplications and additions, which can
duce CPU time by roughly 30% compared to unsymme
matrices.
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We have implemented the fast methods for resumm
matrix and Chebyshev matrix polynomials into a develo
ment version ofQ-CHEM.66 In the following we present tim-
ings for our new algorithm to explore its performance re
tive to conventional diagonalization methods. A
calculations are for the problem of evaluating the dens
matrices with a converged accuracy of 1025. All other parts
of the calculations, such as Fock matrix building, are e
cluded from the timings. The calculations are for two clas
of model systems: one-dimensional linear alkanes and t
dimensional water clusters. Two different basis sets~STO-3G
and 6-31G** ) are used to examine basis set effects on
performance of the algorithm. All timings were obtained u
ing a development version of theQ-CHEM program package66

on a 375 MHZ IBM Power-3 workstation~Model 270!.
Here we are interested in evaluating the density matrix

zero temperature and for insulators. Thus, we can expand
density matrix using any of a series of functions@see Eqs.
~21!–~26!# with finite values ofb, since all these functions
satisfy the requirements of the zero temperature electro
weight distribution for insulators. Table I shows theb values
and degree of polynomial corresponding to different fun
tions. The degree of polynomial for the complementary er
function is shorter than that corresponding to other functio
In Fig. 2, we plot four different finitebs5bDE approxima-

FIG. 2. A plot comparing four different finiteb approximation to the step
function, corresponding to the STO-3G data given in Table I for precis
1025. Each function type~CEF, tanh, FD, and two! has its ownb value
given in Table I. The greater smoothness of the CEF representation pe
use of a polynomial representation of lower degree, as shown in Table

TABLE I. The average values ofb and degree of polynomials (N) and the
number of matrix multiplicationŝM & ~which does not include basis trans
formation and purification! per SCF cycles for linear alkane C60H122 at
BLYP/STO-3G and BLYP/6-31G** . The density matrices are expande
into Chebyshev polynomials based on the complementary error func
Fermi–Dirac function, etc. The deviation of energy is obtained by comp
ing with the energy calculated by direct diagonalization.

Basis Function ^M & N b Error

STO-3G CEF 21 129 9.68 1.2e26

tanh 31 269 21.33 1.1e26

FD 31 269 42.69 1.1e26

exp 39 412 42.69 2.8e26

two 49 695 42.69 2.3e26

atan .62 .1024

6-31G** CEF 42 448 19.33 5.5e26

FD 60 956 95.61 9.3e25
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. The average CPU time for each SCF cycle in obtaining the density matrix for a series of linear alkanes at BLYP/STO-3G and BLYP/6**
level. The geometry is ideal with the C–C bond length of 1.54 Å, C–H bond length of 1.10 Å, andC–C–C bondangle of 109.5°. The CPU time recorde
is only for forming the density matrix. For the FOE method, the density matrix is expanded based on the CEF. The CPU time in the canonical purifica~CP!
method and the fixed trace sign matrix search~FTSMS! method are also shown for comparision. LA is the CPU times spent on each SCF cycles f
calculation ofEmax, Emin , and HOMO–LUMO gap. The sparse block size included 10 carbon atoms in the STO-3G basis and 4 in 6-31G** . ^M & is the total
number of matrix multiplications needed per SCF cycle.

Molecule Basis

^M & FOE ~s!

FOE CP FTSMS LA~s! Total~s! CP ~s! FTSMS ~s! Diag ~s!

C60H122 STO-3G 27 33 33 0.25 1.27 1.18 1.21 1.35
C120H242 STO-3G 27 33 33 0.92 3.45 3.17 3.39 11.03
C180H362 STO-3G 27 33 33 1.51 5.96 5.34 5.46 40.12
C240H482 STO-3G 27 33 33 2.20 8.87 7.95 8.28 91.73

C60H122 6-31G** 47 65 65 2.85 110.43 89.20 101.51 73.70
C120H242 6-31G** 45 65 65 6.90 328.59 222.61 282.83 574.30
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tions to the step function, corresponding to the STO-3G d
given in Table I for precision 1025. CEF, tahn, FD and two
all have their correspondingb value given in Table I. The
greater smoothness of the CEF representation permits u
a polynomial representation of lower degree, as shown
Table I. The Fermi–Dirac function approaches one and z
more slowly than the CEF at same value ofb. Thus, it re-
quires a larger value ofb to satisfy the target precision of th
electronic weight distribution. More polynomial terms a
required to converge the series expansion based on
Fermi–Dirac function, where the series in Eq.~27! is termi-
nated with thei th term if uai 21u.uai u and uai u,T2 .

The average degree of polynomialN and the average
number of matrix multiplicationŝ M & per SCF cycle ob-
tained from a converged density matrix are also shown
Table I. ^M & is obtained by averaging the number of mat
multiplications in each SCF cycle. We note the number
matrix multiplications,;2AN, is far less than the length o
polynomial N. A large increase in the polynomial length
noted when the basis set changes from STO-3G to 6-31G**
for linear alkanes, since the Chebyshev polynomial len
for FOE is proportional toDE/de.48 As the basis set is ex
tended,DE increases andde may also decrease so thatN
thus increases. For the target precision 102D, we useD
5min(max(3,n11),5) on the nth SCF cycle. Then the
threshholdT2 , which is employed to terminate the series,
set toT25max(1027,102D23).

We use the CEF to approximate the density matrix in
following calculations since it requires the shortest polyn
Downloaded 18 Mar 2005 to 169.229.129.50. Redistribution subject to AI
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mial length. Table II for the linear alkanes shows compu
tional time versus the number of basis functions for the n
algorithm and for the conventional diagonalization alg
rithm. These calculations are performed at the BLY
STO-3G and BLYP/6-31G** levels. Comparing against th
conventional diagonalization calculations, significant comp
tational savings are observed with the new algorithm
large molecules. Direct evaluation of the matrix function r
quires all the eigenvalues and eigenvectors of the matrixX.
To obtain all of them through a full diagonalization of th
matrix requires a calculation of O(N3) complexity as Table
II shows. Our algorithm can clearly avoid the bottleneck ifX
is sparse. A crossover is noted for systems whose numbe
carbons are about 60 and 120 for STO-3G and 6-31G** ,
respectively. The computational time asymptotically sca
linearly with molecular size. The SCF cycles required
FOE method are exactly equal to that needed by the con
tional diagonalization calculations. The CPU time in ea
SCF iteration is comparable with the canonical purificati
~CP! method and the fixed trace sign matrix search~FTSMS!
approach.45 ~Here we do not employ the damping techniq
suggested in Ref. 45.! The total number of matrix multipli-
cations required by CP and the fixed trace sign matrix sea
approach are the same. FOE requires fewer matrix multi
cations than CP and FTSMS approaches. However, the F
method requires many matrix extra additions as a resul
the fast resummation method. About 1/4 of the CPU time
the resummation of the matrix polynomial is used for mat
additions when the matrices are very sparse~for example, the
uded eigh

TABLE III. The average CPU time for each SCF cycle in obtaining the density matrix is shown for water clusters at the HF/STO-3G and HF/6-31G** levels.
The CPU time recorded is only for forming the density matrix. The density matrix is expanded based on the CEF. The sparse block matrix size inclt
water molecules at the HF/STO-3G level and four water molecules at the HF/6-31G** level.

Molecule Basis

^M & CPU time~s! SCF cycle

CEF CP CEF Diag CP CEF Diag CP

333 STO-3G 27 42 3.48 2.32 4.39 7 7 7
434 STO-3G 27 43 10.94 13.56 13.46 6 6 6
535 STO-3G 26 43 21.81 52.71 30.58 6 6 6
636 STO-3G 27 43 41.95 156.53 58.51 6 6 6

333 6-31G** 43 49 203.26 111.23 169.01 7 7 7
434 6-31G** 43 49 684.12 801.51 445.91 7 7 7
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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matrices of large alkanes at BLYP/STO-3G!. The CPU time
for matrix additions is trivial compared to that for matr
multiplications when matrices are dense~for example, the
matrices of large alkanes at BLYP/6-31G** and water clus-
ters at HF/6-31G** ). In evaluating matrix multiplications
and additions, we employ the symmetric properties of ma
ces and their matrix products in the FOE, CP, and the fi
trace sign matrix methods. Thus the CPU time of the
method is different than Ref. 43. In the above calculatio
we employed the cutoff lengthsL519.56 Å at BLYP/
STO-3G andL555.89 Å at BLYP/6-31G** levels, respec-
tively. The cutoff lengthL519.56 Å is enough for linear
alkanes at BLYP/STO-3G levels since as we increase it fr
L519.56 Å toL558.69 Å, the deviation of energy remain
unchanged in the FOE method as well as the CP metho

Next we check the computational time for a tw
dimensional water cluster built from a unit cell containin
eight water molecules. The average O–O separation is a
2.8 Å. The computational results are shown in Table III. T
calculations are performed at the HF/STO-3G a
HF/6-31G** levels. It is noted that a crossover of CPU tim
occurs around 434 water clusters with both basis sets.
significant CPU time saving is reached by our novel alg
rithm even for two-dimensional water clusters.

In the calculations of Tables I, II, and III, a target prec
sion of 1025 is employed. Next we vary the target precisio
of 102D to check the CPU time versusD for a two-
dimensional 434 water cluster at the HF/STO-3G leve
since the cutoff length and the termination criteria of t
series depend onD. A plot is shown in Fig. 3. It is noted tha
the CPU times in FOE are less than CP. The difference
tween the CPU times in FOE and CP slightly increases as
target precision is increased. It shows that the FOE metho
slightly better than the CP method with a small basis
when higher target precision is needed for the evaluation
the density matrix.

V. CONCLUSIONS

~1! Use of the fast summation methods for Chebyshev m
trix polynomial of degreeN reduces the number of ma
trix multiplications from N21 to roughly 2AN. This

FIG. 3. The average CPU time for each SCF cycle in obtaining the den
matrix is shown for a 434 water cluster at the HF/STO-3G level for dif
ferent target precisions of 102D. The CPU time recorded is only for forming
the density matrix. The density matrix is expanded based on the CEF.
sparse block matrix size included eight water molecules. The solid line is
the FOE method and the dashed line is for the CP method.
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makes the Chebyshev polynomial expansion approac
linear scaling electronic structure calculations compe
tive with the best alternatives.

~2! Various representations for the smoothed step func
have been investigated, and we find that using
complementary error function yields a significant im
provement over the usual Fermi–Dirac function.
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