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Linear scaling algorithms based on Fermi operator expansiB@E) have been considered
significantly slower than other alternative approaches in evaluating the density matrix in Kohn—
Sham density functional theory, despite their attractive simplicity. In this work, two new
improvements to the FOE method are introduced. First, novel fast summation methods are
employed to evaluate a matrix polynomial or Chebyshev matrix polynomial with matrix
multiplications totalling roughly twice the square root of the degree of the polynomial. Second, six
different representations of the Fermi operators are compared to assess the smallest possible degree
of polynomial expansion for a given target precision. The optimal choice appears to be the
complementary error function. Together, these advances make the FOE method competitive with the
best existing alternatives. @003 American Institute of Physics.
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I. INTRODUCTION putational effort can, in principle, increase only linearly with
the dimension of the matrix. Here we focus on the applica-
tion of the matrix polynomial approximation in linear scaling
electronic structure algorithms.

Polynomial expansions of matrix functiorf§X) have
been widely applied in the context of linear scaling elec-
tsroggr;':ru::;ur;t?;g?iigw?gz ]:joernesri]terg;ess'[a?tggfs(;}caésavcglr er It is well established that molecular calculations with

P brop Y ' atom centered basis functions can be carried out in compu-

response functions and optical specit In other areas of tational times that scale linearly with system size in the large
computational condensed matter physics and chemistry, ong 610, ary >y . 9
ystem limit. Linear scaling is achieved by using Gauss-

also frequently encounters matrix functions, such as the . ; ) .
time-evolution operatore™'"t,1213 the partition function 'a" orbitals in Kohn—Sham DFT calculations, variants of the

e~ AH 81415110 Heaviside step functiod (x— H), and the fast multipole method for the Coulomb.probléﬂ"T,ﬂlinear
Green's function 1 —H).® In principle, these matrix func- scaling numerlcal' quadrature sovaluatlon for pur(_ely local
tions can be exactly evaluated as exchange-correlation potentiar®® and various diagon-
alization-free methods to bypass t®¢N?%) Hamiltonian di-
f(H)=Uf(hyu' (1) agonalization bottleneck>3'**The physical basis of these
since a Hermitian matrixd can always be diagonalized by a Iin_ear scaling methodg is utilization of s!o.ati'al locality or the
unitary transformationJ "THU = h. Diagonalization of a ma- Principle of “the nearsightedness of equilibrium systenf§,”
trix scales a®©(N3), whereN is the dimension of the matrix Which states that the properties of a certain observation re-
H. It is undesirable to diagonalize the matrix when the sys9ion comprising one or a few atoms are only weakly influ-
tem size is big, or in addition, the matrkt is very sparse €nced by factors that are spatially far away from the obser-
and massively parallel computing is required. When a polyvation region.
nomial expansion of the matrix function is employed, one ~ One class of linear scaling algorithms for constructing
can exploit sparse matrix multiplications to evaluate thethe density matrix is based on a direct, polynomial represen-
products entering the matrix polynomials. The resulting com1ation of the density matri in terms of the Hamiltonian
operatorH (or its representation in terms of Wannier func-
dAuthor to whom correspondence should be addressed. Electronic maiﬁons) via the Heaviside step function or Fermi—Dirac func-
mhg@Dbastille.cchem.berkeley.edu tion or the sign matrix function and take advantage of the
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decay properties ol (and overlapS). To obtain linear scal- As the above examples show, in several diagonalization-
ing one has to cut off exponentially decaying quantities wherir€€ methods, the quantities of interest are expanded into
they are small enough. In the following we review a few Matrix polynomials or Chebyshev matrix polynomials, so
examp|es which emp|oyed matrix p0|ynomia|s or Chebyshe\ﬁhat onIy matrix multiplications and additions are required.
matrix polynomials to obtaifp. However, to obtain the density matrix by the above methods,
A polynomial expansion op was employed to derive a one has to perform many matrix multiplications. In straight-
Lanczos method within the occupied subsp¥ceihereas forward evaluation of a matrix polynomial of degréé,
Goedecker and Colombdeveloped a projection method for which may be a few hundreds or even thousands, one has to
the computation of the finite temperature total energies andvaluateN— 1 matrix multiplications. For example, in the
forces with orthonormal local basis sets within the frame-Chebyshev Fermi—Dirac operator expansiofCFOB
work of tight-binding theory. The algorithm is based on themethod, one has to evaluate a few hundreds or even thou-
fact that the finite temperature density matrix can be writtersands of matrix multiplications in order to achieve an energy
as the Fermi—'Dirac function of the Hamiltpnian, which Canaccuracy of about I a.u. at the Hartree—FockHF) or
be expanded in terms of Chebyshev matrix polynomiafs  yensity functional theoryDFT) level. Thus, it is well estab-

the Hamiltonian. This yields a representation of the denSitylished that the FOE is not an economic method for SCF

as a function of the local Hamiltonian so that it can be evaIu—cfensity matrix evaluation in the traditional quantum chemis-

ated on a computer. It was generalized to nonorthorgonahy framework compared to the other linear scaling methods.

basis setd! allowing the nonvariational computation of . : . :
. . . Detailed comparisons of computational times have been
band-structure energies, density matrix, and forces for sys-

tems with nonvanishing gaps. Baer and Head-Gafih gi\{en in Rgfs. 51 anq 52 v.vilth relatively low accuracy CB_.|CU-
further improved the method for electronic structure calcula atioNs using a semiempirical method for systems with a
tion on large molecular systems. A related approach has beddf9¢ highest occupied molecular orbital-lowest occupied
proposed in which a kernel polynomial method was em-molecular orbital(HOMO-LUMO) gaps. By contrast, the
ployed to find the smoothest Chebyshev approximation of OF method is viewed as effective in linear scaling tight-
the Heaviside step function subjected to a finite number oPinding calculations where relatively lower order polynomi-
expansion term$.The density of stateDOS) can also be als (~50) are required® It also has the advantage that float-
expanded based on a kernel polynomial methd8iThe ing point operations can be cast as matrix—vector rather than
DOS and Fermi projection operator are approximated by amatrix—matrix multiplications. This permits one to avoid
expansion of Chebyshev polynomials. This method proves tgenerating intermediate matrices which are less sparse than

be valuable in the case of small energy gaps. the Hamiltonian. It also means one can avoid storing the
The exponential parameterization @in the atomic or-  entire density matrix.
bital (AO) basis* utilizes unitary transformations of an ini- In the context of application to linear scaling DFT or

tial idempotent density matrix and has been employed tq4artree—Fock calculations, the problem is to find a rapidly
optimize the density matrix and thus the energy. This aptonvergent expansion or fast resumming methods which can
proach had previously been used in the molecular orbitalinimize the number of matrix multiplications, since the
basis. In the AO b"_iSiS'Sit has been shown to be an efficientost of matrix multiplications completely dominates the cost
linear scaling algorlthr_ﬁ. In this method, a new trial density ot matrix additions in evaluating matrix or Chebyshev matrix
matrix p is parameterized as a unitary trgnsforn;gtlonsff aMolynomials. In Ref. 53, we presented fast effective resum-
idempotent matrix from previous steps, i.p5e”"“poe ming methods for matrix polynomials and Chebyshev matrix

=2 n-ol(—1)"/n!]A"q. HereApo=[A,pols. This unitary  po1ynomials which significantly reduces the number of ma-
transformation can be evaluated via matrix polynomiala.in trix multiplications. In this paper, we apply these algorithms

Linear scaling can be achieved because the density matrgy ,.colerate the FOE method. A significant reduction of

gggtggrlltoman operator are both sparse in the AO reme(:omputational time is obtained by this implementation. By

e . employing the locality of the density matrix and Fock matrix
Purification algorithm&+*" have excellent performance, ploying Y y

com ) ) 8nd their matrix products, linear scaling is achieved. The
pared to other linear scaling methods. Palser an . . . . . )
Manolopoulog® suggested an algorithm for expanding thergsultlpg compu'tatlonal time is comparable V.wth othgr ef.ﬁ_
single-particle density matrix in terms of the Hamiltonian C|ent3I;near scaling methods, such as canonlc_:al purlflc_atlon
operator. The method involves the purification of a special-(cp)'_ thf4scurw-§tgp methotf, a”"! the sign matrix
ized initial density matrix, which can be done either canoni-algorithnt™ for ab initio SCF calculations. _

cally (at a fixed electron courit) or grand canonicallyat a The paper is arranged as follows: In Sec. Il, we briefly
fixed chemical potentiak). Niklasso* further developed describe a fast algoriththto resum matrix polynomials and
the algorithm based on higher order purification polynomialsChebyshev matrix polynomials. A brief review of the FOE
with stationary end points ifi0, 1], which can reduce the method is given in Sec. Ill. An optimal projection function is
number of matrix multiplications required. A family of puri- chosen to express the density operator for insulators. Results
fication transforms was proposed by Hot3& he nth puri-  assessing the choice of representation for the Fermi operator
fication transformation is a polynomial in the initial density and the performance of the fast summation method are given
matrix. in Sec. IV. Finally, we conclude in Sec. V.
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Il. AFAST METHOD FOR RESUMMING MATRIX N
POLYNOMIALS AND CHEBYSHEV MATRIX f(X)= E apX™
POLYNOMIALS m=0

A matrix polynomial of degreeN is a function of the Nt o SP O .
form = > alXxi+ X xnmuxny i, (4)

’ i=0 n=2 i=1

N
f)=2 aX. (2 Each subpolynomial except the first and last one includes

e terms (N, =nl=int((N+1)/yN+1), 1<n<SP). The first

ao ,al . aN are the coefficients. Alternatively, any function one and last one includdl +1 andN— (S P— 1))( nl terms’

that is approximated by a power series, over the intervaespectively. Here resl if N>nlxint(yN+1), otherwise
[-1,1] can be approximated by a linear combination ofres=0. Then in the second step we calculate and save the
Chebyshev polynomials, necessaryl —1 matricesX?,X3,... X" and write Eq.(4) in

a more efficient way as

N
f(X>=i§O ¢ Ti(X), (3)

Np—1 N,
where X is a matrix with eigenvalues in the interval f(X)= >, 5?X'+an|z &X'
[ —1,1], andT;(X) is the Chebyshev polynomial of degriee =0 =t

ConventionallyX' andT;(X) are obtained via the calculated N3 _ Nsp _

X' ~LandT,_;(X) andT;_»(X) matrices, respectively. Thus, +X”'[ > 5?X'+---+X"'[ > é{splx'] J ] (5

a total of N—1 matrix multiplications are required. Three =1 =1

fast methods for resumming matrix polynomials and Cheby- . o )
shev matrix polynomials have been described in detail if® réduce the number of matrix multiplications. The third
Ref. 53. The central strategy of these algorithms is the hierSt€P is o add all terms in E¢S) together;nThe coefficients
archical decomposition of matrix polynomials into many ca_nnbe easily obtained from those&@fasai'=a;nxni, &
blocks and to reuse multiple intermediate quantities to re=~ & - _

duce the matrix multiplications. We will employ théN+1 10 resum a general polynomial of degriie the algo-

x yN+1 scheme, i.e., algorithm Ill in Ref. 53 to resum rithm requires a total number of matrix multiplications given

Chebyshev polynomials. This algorithm for resumming ma-PY

trix polynomials is similar to that first described in Ref. 54. A

simple description of the algorithm is given here. (M)=nl+SP-2. (6)
The algorithm requires three steps to be performed. At

first we divide the polynomial of degré into SP subpoly-  For example, to resum a polynomial of degree 25 by this

nomials EP=int(yYN+1)+res), i.e., algorithm, we write the polynomial as

5 5 5
X+ XY X+ X0 @X XY, @K+ X2 a'X!
[ [ i i=1

5 5 5 5 5
=> gioxi+x5’2 éﬂxi+x5[2 5$x‘+x5{2 é?xi+x521 éf‘xi]”. @)

As Eq. (7) shows, we need to calculate a total number of 8other matrix series, such as Chebyshev matrix polynomials.
matrix multiplications, which includes forming 4 matrices Since the eigenvalues of lie in the rangd —1,1] in Cheby-
X2, X3, X4, X® and another 4 matrix multiplications which shev polynomials, Chebyshev approximations are numeri-
arise from the subdivision of the polynomial. The total of cally very stable and are less susceptible to error accumula-
matrix multiplications required by our algorithm is substan-tion than the equivalent power series in finite precision
tially less than the 24 required by the conventional methodfloating point arithmetic> Thus, in the context of linear scal-
For a matrix polynomial of higher degré¢, the number of ing electronic structure methods, Chebyshev matrix polyno-
matrix multiplications required by this algorithm tends to mials have been proposed as a more stable and efficient al-
approximately 2/N. ternative to simple matrix polynomiatg®4°*® Some
These algorithms for summing simple matrix polynomi- differences arise from the recursion relations associated with
als can be easily adapted to accelerate the summation @hebyshev matrix polynomials. The Chebyshev polynomial
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of degreei, T;, is defined by the following recursion Wheren; is an occupancy number, equal to 1 or 0. Sipde

relations®® a projector onto the space spanned by the(number of
electrong lowest energy orbitals, it is equivalent to a step
ToX)=1, TiX)=X, Ty(X)=2X>—I, function,
Tn+m(x):2Tn(X)Tm(X)_T|n—m\(X)- (8 i):®(ﬂ_|:|) (12

Thus, the coefficients of the expansion and polynomials willA Heaviside step function can be defined as any of the fol-
be changed during the division. Equatié#) is changed to  lowing limits:*’

s° O(pn—H)=3lim,_.. erfo — B(u—H)), (13)
f0= 2 f(X)
n= 1

sP N =limg_., (14)

Np—-1 n P
- 1+e Ale—H)
- .:20 [ Ti(X)+nZZ T(n,l)xm(X);l—"ci T.(X)

1 1 R
—+;tan’1(,87r(,u—H)), (15)

N;-1 N, =limg .| 5
=2 6?Ti(X>+Tn.(><>f2 GTiX)+- - A
=0 =1 : — e Blu—H)
=limg_..e , (16)
Nsp
=SP-1 . ~
+Tn|(X)[Zl Ci Ti(X)} : 9 =3limg_.[1+tanh B(u—H))], 17
HereN,, is the length of thenth subpolynomial. The coeffi- i zePr=H for H= g, 18
I i I =lIm — 00 Y ~
cients change according to the following recurrences, B 1-le A" for A=p.
2C(sP-1)xnl+i n=SP-1 and I<i<Nsp; Here erfck) is the complementary error function apds the
o= ZCan|+i—Enn|+_li 1=sn<SP-1 and I=i<nl; chemical potential, which is defined by the number of elec-
ci— ek n=0 and O<i<nl; trons,
T p]=Ne. (19
andc)=2C,.pi+1—Cny © (1<N<SP-2), Cpi=Cy— 3Cpy. )
andc;” *=0 (i>Ngp). The coefficien{¢]'} can be calcu- The elements of the density matfixare defined as
lated based on the relation, Pas={ Bl Pl bs) (20)
SP-1
_ in the basis se . Thus, we may express the densit
=3 Thm. (10 ul y e Y

m=n matrix at zero temperature aﬁa,3=<¢a|®(ﬂ—ﬂ)|¢ﬁ>.

. . o ) However, for systems with nonvanishing HOMO-LUMO
HereA is aSPx SP matrix, which is evaluated according to gap, a sufficiently large but finite value ¢f can be em-
ployed. After all, for an insulator, the only requirement on
) the electronic weight distribution is that it should be one in
2Am-1n-1"Amn-2 f m#n and m=n-2,....0  the valence-band region and zero in the conduction-band re-
if n=3, andAge=1, A1=1, Ayp=2, Ag,=—1, and al gion. In the band gap, it can vary smoothly from one to

58 ; :
other elements of the matri are equal to 0. The number of ZEr0: tTrlws, the _zerot tder‘tr:peratur? tc:1en?|t|)|/ m_atrp; ma:y be
matrix multiplications required to resum a Chebyshev poly_accura €ly approximated by any ot the toflowing functions

nomial is equal to that for resumming a matrix polynomial ofﬁghMg f[ﬁﬁﬂgalue 9f'8 for systems with nonvanishing
the same degree. B gaps:

2Am_ 1m—1 |f m=n,
Am,n:

p~zerfod —B(u—H)) (CEP), (21)
I1l. CHEBYSHEV FERMI PROJECTION OPERATOR adryrpey =) (FD), (22
EXPANSION METHOD 1t+e
_ We sha_ll explore the use of the fast resummation alg_o- ~ E+ itanfl(,BTr(,u—H)) (atan, (23)
rithm described above to accelerate Chebyshev Fermi projec- 2w
tion operator expansiofCFOBE method. We give a simple —Blu—H)

.. . . . ~n €

description of the method, including the question of what ~ ~@ (exp), (24)
representation to use for the Fermi operator. ~ U1 ttanhB(p—H))] (tanh, (25)

The one electron density operator is defined by
3eP=H) for H=p,

p)=2 nd(NF(r), (0 %[1—1e‘5<“‘H) for H=p (two) (26)
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lie in the interval[ — 1,1]. This scale and shift is performed
because Chebyshev polynomials are defined within this in-
terval. If AE=E . Enin IS the eigenvalue spread, amd

= (EmaxTEmin)/2 is the average &, andE,,, thenHgis
given by

Function

H-E

He="3g

(28)

Emin and E o, are the minimum and maximum eigenvalues
of the Hamiltonian(Fock matrix H.
Actually all functions in Eqs(21)—(26) can be expanded

0.8 CEF— into finite order Chebyshev polynomials. Generally for a
tanh-.- given value of B, functions which approach one and zero
508 more slowly will require larger values ¢8 to satisfy a de-
§0_4 sired accuracy for the electronic weight distribution. Thus
+ they may need more polynomial terms to converge the ex-
0.2 pansion series aftgd is chosen to obtain a desired accuracy

in the density matrix. For a metaB=1/kT, and thusg is

0.1 0.2 connected to a real temperature, while in insulatgss,
«1/6e and thus depends on the HOMO-LUMO gafe

FIG. 1. A plot of the six different finitg3 approximations to the step func- = ELumo ~ Eromo. Of the systent® The value ofg controls

tion, contained in Eqg21)—(26). The functions are each plotted for a fixed the proximity of the projection function to the true density

B value of 25.0(upper pangland 50.0(lower panel. The function which matrix. At a specified precision I@, B can be choosen
approaches 0 and 1 fastest will provide the most accurate representation f&rccordmg to the following equationS'

a given value ofs.
F..5,(Enomo) =1— 10°°

We plot these functions witl8=25 and 50 in Fig. 1. Al and
functions have values in the_ ranf® 1] and approach 0 and Fop (ELumo) <107P, (29)

1 smoothly nearmu. All functions except the expression of 2

e ¢ "“™ are antisymmetric. The complementary error 8 takes the larger value ¢, ,,. By choosing the smallest
function approaches zero and one faster than other functiorfdlowed value ofg this way, it is still large enough to satisfy
for a given value. From Fig. 1, we also observe that as wethe specified precision gf. The values of3 are different for
increase of the value g8, the functions approach 0 and 1 different projection functionsF, 5(F). For example, 8
faster. =2D logi¥ se, /2D logt¥ se, and D logt% Se for FD [Eq.

We employ the FOE method to obtain the one-electror{22)], CEF[Eq. (21)], and tani{Eq. (25)] functions, respec-
reduced density matrix at trab initio HF/DFT levels, using tively. In Sec. IV, we compare the properties of these func-
Gaussian nonorthogonal atom-centered basis’$&tse FOE  tions and present the degree of polynomials needed for the
method has been generalized to nonorthogonal basid'$8ts, different functions in order to satisfy the energy precision
such that the overlap matri& is involved in the expression 10 °. We will find that the length of the polynomial corre-
of p. Alternatively we may keep the expression ferun-  sponding to the complementary error function is shorter than
changed by transforming the AO Fock matfixo and the the others.

AO density matrixp,o to an orthonormal basis using w should be determined by enforcing the electron count
=L Hao(L YT and p=LTppol, where LLT=S, the of the systenjsee Eq(19)]. The accuracy of. controls the
overlap matrix. Usually, the transformation is obtained byaccuracy of the density matrix. Sindg does not depend on
Cholesky decompositiorr:®1:62 M, one may perform a calculation of several density matrices

The Fermi—Dirac functiofEg. (22)] has been used in which correspond to different trial chemical potentials as
Refs. 2, 47-49, 51, 52, and 61 to approximate the electroni®efs. 48, 51, and 52 have suggested. But it may not be best
weight distribution of metals at finite temperature or insula-to save a lot of matrices. Alternatively, for insulators,
tors at zero temperature. The density mafsixs approxi- E YE
mated by a Fermi—Dirac function with a finite value Bf p=—1OMO_ ZLUMO
which is expanded as a finite order Chebyshev polynomial in 2

the effective Hamiltonian matri¢Fock matrix, should be a good choidén fact optimal for the antisymmet-
=3N a(Be.m)T(Hy. 2 ric functiong. For metals, one may employ the finite differ-
p=2i=oai(Bs, 19 Ti(HyY @) ence approximation of Eq19) to find the correctiom u,

AN,

(30

Here us=(u—E)/AE, Bs=BAE, N is the degree of the
polynomial anda; are the expansion coefficients, which can
be obtained by using the fast Fourier transféfni is the
scaled and shiftetd matrix, defined so that its eigenvalues

Ap= (39

_,0a '
i 31370 0
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Thenu+ A is employed for density matrix evaluatidhln ~ TABLE I. The average values g8 and degree of polynomials\) and the
this work, we adopt Eq(30) for u number of matrix multiplicationgM) (which does not include basis trans-

. formation and purification per SCF cycles for linear alkanegl;,, at
The parametergs, us, andH, depend on eigenvalues BLYP/STO-3G and BLYP/6-318 . The density matrices are expanded

Emin+ Emax» Enomo, andE yyo of H. One has to calculate into Chebyshev polynomials based on the complementary error function,
these quantities. In this work, these parameters are calculaté&grmi—Dirac function, etc. The deviation of energy is obtained by compar-
by a linear-scaling sparse real symmetric matrix Lanczod"d With the energy calculated by direct diagonalization.

63,64 ; .
algor!thm. The Lanczps aIgonthr_fLA) is _used torepeat- — pags Function (M) N 8 Error
edly improve an approximate solution until it reaches sulffi

. . . . 6
cient accuracy. The conventional LA is good enough for ei- STO-3G CEF 21 129 968 2
tanh 31 269 21.33 leT
genvalues on the extreme edges of the spectrum but FD 31 269 42 69 146
frequently is not very good for interior eigenvalues. This exp 39 412 42.69 26
latter situation can be changed completely when the iteration two 49 695 42.69 28
is driven not byH itself but with a spectral filter, a specially atan >62  >1024
designed function oH, denotedf(H). For example, the g 31+ CEF a2 448 1933  5&°6
method termedshift and invert uses the filterf (H) = 1/(E FD 60 956 95.61 98 °

—H).%* This method has the highly desirable effect of
throwing the eigenvalues ¢f that lies neakE to the extreme

edges of the spectrum. In order to generate the next Lanczos
vectorQj, 1, one has to calculate the vector-matrix multipli-
cation f(H)Q;=V;. We follow the shift-and-invert strategy

of Ericssor}* to solve the equationH—E)V;=Q; for V; . ) .
instead of calculating 1K—H) explicitly. Obtaining these ngs for our new al_gorlthm Fo epr(_)re !ts performance rela-
i tive to conventional diagonalization methods. All

igenval involv nly matrix—v r pr rather . : .
elgenvaiues olves only mat ector products rathe alculations are for the problem of evaluating the density

than matrix multiplications, so the CQSt of these step; 1S Sma}ﬁnatrlces with a converged accuracy of 20All other parts
compared to the subsequent solution for the density matrix . ) o

o o of the calculations, such as Fock matrix building, are ex-
and matrix diagonalization as Table 1l shows.

luded from the timings. The calculations are for two classes
Oncep andu are computed, we then choose a degree o . . . )
i ! L . of model systems: one-dimensional linear alkanes and two-
polynomial such that the sufficient precision is obtained

. . . ; . ‘dimensional water clusters. Two different basis $8HB0-3G
This degreeN, is obtained by stopping evaluation of the * : .

. ) . o and 6-31G*) are used to examine basis set effects on the
series when theNth terms satisfy a stopping criterion,

la_4|>|a;| and|a|<T,. T, should be two or three powers performance of the algorithm. All timings were obtained us-
=4l ™ 2 12 . ing a development version of tliecHEM program packadé
of ten smaller than 10P. For example, if one hopes to have :

_ D . ) on a 375 MHZ IBM Power-3 workstatiofModel 270.
precision 10~ for the density matrix, thefi, should be set : . . . .
to 10-D-2 Here we are interested in evaluating the density matrix at

zero temperature and for insulators. Thus, we can expand the
density matrix using any of a series of functiosee Egs.
(21)—(26)] with finite values off, since all these functions
When the one-electron density matrix is expanded intcsatisfy the requirements of the zero temperature electronic
Chebyshev polynomials of the Fock matrix, it can be easilyweight distribution for insulators. Table | shows tResalues
obtained by sparse matrix multiplication and addition, sinceand degree of polynomial corresponding to different func-
the density matrix and the Fock matrix in a Gaussian basigions. The degree of polynomial for the complementary error
set have finite decay ranges. A blocked sparse matrix multifunction is shorter than that corresponding to other functions.
plication scheme is employed for our matrix multiplica- In Fig. 2, we plot four different finite8,= BAE approxima-
tions® In this scheme large nonzero submatrices are ob-
tained by forming many-atom blocks. These blocks are ob-

We have implemented the fast methods for resumming
matrix and Chebyshev matrix polynomials into a develop-
ment version of-cHEM.?® In the following we present tim-

IV. RESULTS

tained by a boxing scheme, where the system is spatially

partitioned into many boxes with each box containing many 0.8 CEF_
atoms. This division of the system is the same as is used in tah +
some tree code metho&sWhile the fraction of negligible 506 two —
submatrices is lower than the actual elemental sparsity, the g

blocking scheme benefits from the use of highly-optimized 04

level-3 basic linear algebra subroutin€BLAS) for large 02

submatrix multiplications. These large-block multiplications

also ultimately result in the reduction in CPU time for sparse e o

matrix multiplications. When the density matrix is expressed 01 005 Q 0.05 0.1

as a Chebyshev polynomial of the Fock matrix, ThgH)

matrices are symmetric. Thus, we can employ symmetritE'G- _2. A plot compgring four different finit@ appro>_<imation to the step
sparse matrix multiplications and additions, which can r(:j_furlcstlon, correspc_)ndmg to the STO-3G data given in Table | for precision

. o - 107°. Each function typgCEF, tanh, FD, and twohas its owng value
duce CPU time by roughly 30% compared to unsymmetricyiven in Table I. The greater smoothness of the CEF representation permits

matrices. use of a polynomial representation of lower degree, as shown in Table I.
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TABLE Il. The average CPU time for each SCF cycle in obtaining the density matrix for a series of linear alkanes at BLYP/STO-3G and BLYP/6-31G
level. The geometry is ideal with the C—C bond length of 1.54 A, C—H bond length of 1.10 AC-afid-C bondangle of 109.5°. The CPU time recorded

is only for forming the density matrix. For the FOE method, the density matrix is expanded based on the CEF. The CPU time in the canonical gGfjication
method and the fixed trace sign matrix sea(EMSMS method are also shown for comparision. LA is the CPU times spent on each SCF cycles for the
calculation ofEay, Emin, and HOMO—-LUMO gap. The sparse block size included 10 carbon atoms in the STO-3G basis and 4 iff 6{34Gis the total
number of matrix multiplications needed per SCF cycle.

(M) FOE (s)

Molecule Basis FOE CP FTSMS LAS) Total(s) CP (9 FTSMS(s) Diag (s)

CooH122 STO-3G 27 33 33 0.25 1.27 1.18 1.21 1.35
CioHoa2 STO-3G 27 33 33 0.92 3.45 3.17 3.39 11.03
CigHas2 STO-3G 27 33 33 151 5.96 5.34 5.46 40.12
CoudHaso STO-3G 27 33 33 2.20 8.87 7.95 8.28 91.73
CooH 122 6-31G* 47 65 65 2.85 110.43 89.20 101.51 73.70
CiodH242 6-31G* 45 65 65 6.90 328.59 222.61 282.83 574.30

tions to the step function, corresponding to the STO-3G datanial length. Table Il for the linear alkanes shows computa-
given in Table | for precision 10°. CEF, tahn, FD and two tional time versus the number of basis functions for the new
all have their corresponding value given in Table I. The algorithm and for the conventional diagonalization algo-
greater smoothness of the CEF representation permits use ithm. These calculations are performed at the BLYP/
a polynomial representation of lower degree, as shown iI8TO-3G and BLYP/6-31&" levels. Comparing against the
Table I. The Fermi—Dirac function approaches one and zeraonventional diagonalization calculations, significant compu-
more slowly than the CEF at same value®fThus, it re- tational savings are observed with the new algorithm for
quires a larger value g8 to satisfy the target precision of the large molecules. Direct evaluation of the matrix function re-
electronic weight distribution. More polynomial terms are quires all the eigenvalues and eigenvectors of the matrix
required to converge the series expansion based on thk obtain all of them through a full diagonalization of the
Fermi—Dirac function, where the series in Eg7) is termi-  matrix requires a calculation of ®f) complexity as Table
nated with theith term if |a;_;|>|a;| and|a;|<T,. Il shows. Our algorithm can clearly avoid the bottleneck if
The average degree of polynomisl and the average is sparse. A crossover is noted for systems whose number of
number of matrix multiplicationgM) per SCF cycle ob- carbons are about 60 and 120 for STO-3G and 631G
tained from a converged density matrix are also shown immespectively. The computational time asymptotically scales
Table I.{M) is obtained by averaging the number of matrix linearly with molecular size. The SCF cycles required in
multiplications in each SCF cycle. We note the number ofFOE method are exactly equal to that needed by the conven-
matrix multiplications,~ 2N, is far less than the length of tional diagonalization calculations. The CPU time in each
polynomialN. A large increase in the polynomial length is SCF iteration is comparable with the canonical purification
noted when the basis set changes from STO-3G to 6*81G (CP) method and the fixed trace sign matrix seafeiSMS
for linear alkanes, since the Chebyshev polynomial lengttapproact?® (Here we do not employ the damping technique
for FOE is proportional taAE/5¢.*® As the basis set is ex- suggested in Ref. 46The total number of matrix multipli-
tended,AE increases ande may also decrease so thidt  cations required by CP and the fixed trace sign matrix search
thus increases. For the target precision 40we useD approach are the same. FOE requires fewer matrix multipli-
=min(max(3n+1),5) on thenth SCF cycle. Then the cations than CP and FTSMS approaches. However, the FOE
threshholdT,, which is employed to terminate the series, ismethod requires many matrix extra additions as a result of
set toT,=max(10 7,10 P~3). the fast resummation method. About 1/4 of the CPU time for
We use the CEF to approximate the density matrix in thethe resummation of the matrix polynomial is used for matrix
following calculations since it requires the shortest polyno-additions when the matrices are very spdfeseexample, the

TABLE IIl. The average CPU time for each SCF cycle in obtaining the density matrix is shown for water clusters at the HF/STO-3G and KFI8\v&15
The CPU time recorded is only for forming the density matrix. The density matrix is expanded based on the CEF. The sparse block matrix size iricluded eigh
water molecules at the HF/STO-3G level and four water molecules at the HF/8=3e@el.

(M) CPU timds) SCF cycle
Molecule Basis CEF CP CEF Diag CP CEF Diag CP
3X3 STO-3G 27 42 3.48 2.32 4.39 7 7 7
4x4 STO-3G 27 43 10.94 13.56 13.46 6 6 6
5X5 STO-3G 26 43 21.81 52.71 30.58 6 6 6
6X6 STO-3G 27 43 41.95 156.53 58.51 6 6 6
3X3 6-31G* 43 49 203.26 111.23 169.01 7 7 7
4Xx4 6-31G* 43 49 684.12 801.51 445.91 7 7 7
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20 makes the Chebyshev polynomial expansion approach to
’ linear scaling electronic structure calculations competi-

=15 tive with the best alternatives.
g (2) Various representations for the smoothed step function
g0 have been investigated, and we find that using the
2 complementary error function yields a significant im-
05 provement over the usual Fermi—Dirac function.
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