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Abstract—In this paper, we propose an improved filter 

selection method using Welch’s t-test based on 

discriminative filter bank common spatial pattern 

(DFBCSP). Existing DFBCSP used the Fisher ratio in order 

to find out discriminative filters. However, the Fisher ratio 

can be used to know only comparative value of 

distinguishability but may not become a meaningful 

criterion to reject null hypothesis. As a reasonable 

alternative, we have introduced the Welch’s t-test to find out 

not only contributory but also redundant filters used to 

classify features efficiently. Experimental results show that 

the classification accuracy increased by 1.28% on average 

when using the proposed filter selection method. 

 

Index Terms—Brain-Computer Interface (BCI), 

Electroencephalography (EEG), Common Spatial Pattern 

(CSP), Discriminative Filter Bank Common Spatial Pattern 

(DFBCSP), Welch’s t-test 

 

I. INTRODUCTION 

Brain-Computer Interface (BCI) is a direct 

communication system between a human brain and a 

computer without any conventional input devices. In 

order to obtain useful information from brain signals, 

most of BCI systems use scalp electroencephalography 

(EEG) because of its feasibility. EEG is the measurement 

of an electrical signal induced by neuron activity. 

Because EEG usually represents some patterns related to 

subject’s intention, BCI utilizes these useful features 
including important information. Especially, motor 

imagery conducted by imagining hand or foot movement 

has been an important part of studies in BCI research [1]-

[3]. The performance of the BCI system mainly depends 

on the classification accuracy of motor imagery. 

However, there are some difficulties in achieving high 

classification accuracy. First, EEG patterns are slightly 

different from each other. Personal EEG features show 

different patterns individually in frequency domain as 

well. This subject-specific difference may cause the 

performance degradation in non-adaptive BCI systems. 
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Hence, BCI needs to acquire subject-specific frequency 

features. Second, EEG has extremely low spatial 

resolution [4] as compared with other neuroimaging 

technology, such as magnetic resonance imaging (MRI) 

and positron emission tomography (PET), because of the 

conductivity of scalp. At multi-channel environment, low 

spatial resolution makes it hard to analyze EEG patterns 

and to decide correct subject’s intention. Therefore, it is 
essential to apply spatial filtering technique in order to 

solve this problem. Common spatial pattern (CSP) has 

been extensively investigated, especially in the field of 

constructing a spatial filter that maximizes the difference 

in variance of each motor task [5]-[8]. However, CSP has 

a shortcoming that the proper frequency band 

discriminating two tasks should be manually found 

through repeated experiments. To simplify this manual 

processing method, modified BCI systems were proposed 

by introducing sub-band common spatial pattern 

(SBCSP) [9], filter bank common spatial pattern 

(FBCSP) [10], and discriminative filter bank common 

spatial pattern (DFBCSP) [11]. 

The process of automatic frequency-band selection 

was proposed in DFBCSP, where more informative 

frequency bands were found in accordance with subjects 

by calculating the signal power and the Fisher ratio in 

each band. However, DFBCSP involved fixed number of 

filters, resulting in fixed feature dimensions. However, to 

enhance the classification accuracy in using DFBCSP, the 

number of filters is needed to be properly varied 

whenever subjects or EEG data are changed. To find the 

proper number of filters, additional analysis is required to 

investigate the classification accuracy according to the 

number of filters. This inconvenient process is not 

suitable for machine-learning based BCI systems. In this 

paper, to solve this problem, Welch’s t-test [12] is 

introduced to automatically decide the proper number of 

filters. In addition, the proposed BCI system improves the 

classification accuracy by selecting suitable feature 

dimensions and removing redundant frequency bands. 

This paper is organized as follows. Section II 

introduces the common spatial pattern (CSP) algorithm, 

the discriminative filter bank common spatial pattern 

(DFBCSP) and the proposed DFBCSP system including 
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Welch’s t-test. The simulation results are presented in Section III. Finally, conclusions are drawn in Section IV. 
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Figure 1.  Block diagram of the discriminative filter bank common spatial pattern. 
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Figure 2.  Block diagram of the proposed discriminative filter bank common spatial pattern. 

II. METHODS 

A. Common Spatial Pattern (CSP) [5] 

The Common spatial pattern (CSP) algorithm is 

effective in constructing an optimal spatial filter that 

discriminates two classes of EEG signals by 

diagonalizing two spatial covariance matrices 

simultaneously [5]. Each normalized spatial covariance 

matrix can be obtained by  

 trace

T

i i
i T

i i


X X

C
X X

                         (1) 

where 
i

X ( N T ) is an  EEG signal matrix and {1,  2}i  

is the motor imagery task such as foot or hand movement. 

N is the number of channels and T is the length of EEG 

samples in time. For obtaining each group of EEG signal 

to be efficiently separated, the averaged spatial 

covariance matrix 
i

C  is calculated by averaging each 
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group of spatial covariance matrix. Using these averaged 

spatial covariance matrices, a composite spatial 

covariance matrix is obtained by 

1 2c
 C C C                        (2) 

The composite matrix 
c

C is factored as T

c c c c
C S Λ S  

where 
c

S  is an eigenvector matrix and 
c
Λ is a diagonal 

matrix of eigenvalues. Using a whitening transformation 

matrix 1 T

c c

A Λ S , each averaged spatial covariance 

matrix is transformed as 

1 1

TE AC A  and 
2 2

TE AC A           (3) 

Because 
1E  and 

2E  have common eigenvectors, 
1E  

and 
2E  are also factored as

1 1

TE MΛM  

And 
2 2

TE MΛ M  and 
1 2 Λ Λ I                            (4)  

where M  is an eigenvector matrix and 
i
Λ  is a diagonal 

matrix of eigenvalues. In (4), eigenvalues in 
1Λ  are 

assumed to be sorted in descending order. Since the sum 

of two eigenvalue matrices is an identity matrix, the 

eigenvector corresponding to the largest eigenvalue in 
1Λ  

has the smallest eigenvalue in
2Λ and vice versa. Using 

this property, the eigenvector matrix M  is useful for 

classifying each task. Some eigenvectors with large 

eigenvalues in 
1Λ  or 

2Λ  can be  used for extracting 

feature vectors of  test EEG signals. Since the most 

discriminative eigenvectors are the first and last columns 

of M ( N N ), submatrix 'M ( 2N m ) can be determined 

by extracting the first m columns and the last m columns 

of M .  

Finally, the projection matrix W  is obtained by  

T W A M                           (5) 

And the decomposition of a test EEG signal X  is 

calculated by 

TZ W X                            (6) 

Since the X  is projected onto the spatial filter W , the 

feature vectors used for classifying two tasks can be   

calculated by the p-th row vector  ( 1, 2, ,2 )
p

p mz  of 

signal Z . The feature vector 
1 2 2[ , , , , , ]T

p m
v v v vv  

can be obtained by 
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1
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var
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j

j
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z

z

                   (7) 

The projection matrix W  is also obtained by 

minimizing the Rayleigh quotient of the spatial 

covariance matrices to achieve high discriminability of 

EEG data 
1X  and 

2X  [13]. The projection matrix W  can 

be briefly estimated by 

1

2

trace( )
arg max

trace( )

T

T


W

W C W
W

W C W

               (8) 

where 
i

C  is the averaged covariance matrix of EEG data 

i
X . 

B. Discriminative Filter Bank Common Spatial Pattern 

(DFBCSP) [11]  

DFBCSP was proposed to find the subject-specific 

frequency band which discriminates one task from the 

other as in Fig. 1 [11]. To find discriminative frequency 

band adaptively, filter bank is introduced to CSP-based 

BCI system. Filter bank is made up of twelve band-pass 

filters covering 6-32Hz. Each filter ( )
j

h n  (j=1,∙∙∙, 12) has 

4Hz pass-band and is laid to overlap 2Hz with adjacent 

other filter’s pass-band.  

To find out subject-specific frequency bands, the 

average power of EEG signal, 
,i j

P can be obtained from 

2

, ,

1

1
( [ ])

T

i j i j

n

P x n
T 

                        (9) 

where 
,i j

x  is jth band-pass filtered EEG signal and T is 

the number of the samples. The Fisher ratio
j

F , which 

means how much the tasks are well distinguished, can be 

obtained by  

2

1 2

2 2

1 2

( )
j

X X
F

s s





                      (10) 

where 
i

X is the sample mean of 
,i j

P  and 2

i
s is the sample 

variance of
,i j

P . Out of twelve filters, K filters ( ( )
k

d n , 

k=1,∙∙∙,K) which have the largest Fisher ratio are selected 

to establish discriminative filters. In [11], K was 

determined to four as shown in Fig. 1.  

C. Welch’s T-Test [12] 

T-test is used to verify a hypothesis if the test statistic 

of null hypothesis follows t-distribution. Especially, 

Welch’s t-test is used to verify the null hypothesis which 

assumes that two populations have same sample mean 

[12]. The p-value is a probability of obtaining a test 

statistic on condition that null hypothesis is true. If the p-

value is less than significance level, generally 0.05 or 

0.01, null hypothesis is rejected. 

D. DFBCSP Using the Welch’s T-Test 

DFBCSP used the Fisher ratio to find out some filters 

which contribute to the performance improvement. In this 

paper, we propose the Welch’s t-test to find out whether a 

filter is contributory or unnecessary according to its p-

value compared with the significance level which is used 

as a threshold for searching redundant filters. It is natural 

that the number of useful filters is changed whenever 

subject and training data are changed. Fig. 2 shows the 

block diagram involving the proposed frequency band 

selection method. Unlike the fixed number of filter banks 

in [7], the number of required filter banks, K in Fig. 2, 

varies with the band selection criterion based on the p-

value of each filter and significance level 𝛼. The number 
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of discriminative filters K is an integer value in 1 ≤ K ≤ 6. 

To calculate a p-value, test statistic as in (11) and degree 

of freedom as in (12) can be obtained by [12] 

1 2

2 2

1 2

1 2

X X
t

s s

T T






                        (11) 

2
2 2

1 2

1 2

4 4

1 2
1 22 2

1 2

s s

T T

s s

T T


 

 
 

 
   

   
   

                   (12) 

where 
i

X  is sample mean, 
2

i
s  is sample variance, 

i
T  is 

the number of samples and 1
i i

T   . T-distribution 

varies according to degree of freedom which can be 

obtained from (12).  

III. SIMULATION RESULTS 

BCI competition III data set IVa [5] was used to verify 

the performance of the proposed method. EEG signal was 

measured from five subjects named 'aa', 'al', 'av', 'aw', 

and 'ay'. Each subject was indicated to conduct right hand 

and foot imagery when the cue appeared on the monitor 

screen and 280 trials were performed for each subject. 

EEG data were extracted from 7 electrodes near the 

sensorimotor area, i.e., F3, F4, C3, Cz, C4, P3 and P4. 

Support Vector Machine (SVM) [14] was used to classify 

the feature vector. In order to precisely estimate the 

performance of the BCI system with the fixed number of 

filters (conventional) and the variable number of filters 

(proposed), 10ⅹ10-fold cross-validation was used [11]. 

TABLE I.  PERFORMANCE COMPARISON WITH DFBCSP AND 

THE PROPOSED DFBCSP (MEAN±STANDARD DEVIATION) 

Subject 

Classification Accuracy (%) 

DFBCSP 

Number of 

Filter banks 

K 

The proposed 

DFBCSP 

Number  

of Filter banks 

K 

aa 82.43±6.90 4 83.50±6.58 2.34±0.90 

al 91.75±5.55 4 92.61±5.13 5.06±0.53 

av 56.86±8.81 4 58.75±8.85 3.18±0.67 

aw 82.98±6.77 4 84.37±6.28 3.2±1.5 

ay 90.61±5.17 4 91.79±4.91 4.6±1.46 

 

The resulting classification accuracy and the number of 

filters used to classify feature vectors are in Table I. For 

all of subjects, classification accuracy was increased. For 

'al' and 'ay', the numbers of filters increased as 5.06 and 

4.6, respectively. However, for 'aa', ‘av’ and 'aw', the 

number of filters decreased as 2.34, 3.18 and 3.2, 

respectively. These results show that the proposed 

DFBCSP selects proper filters and these filters 

discriminate two tasks more efficiently. 

IV. CONCLUSION 

In this paper, Welch’s t-test was employed to DFBCSP 

instead of the Fisher ratio for determining the number of 

filters. As a result, the classification accuracy increased 

by 1.28% on average. The proposed DFBCSP improved 

the performance of the EEG-based BCI system by 

removing unnecessary filters which have a larger p-value 

than the significance level. Consequently, the results of 

this study confirm that the proposed DFBCSP contributes 

to finding out proper feature dimensions and 

discriminative frequency features, resulting in classifying 

tasks more correctly. 
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