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ABSTRACT 

 
FingerCode has been shown to be an effective 
representation to capture both the local and global 
information in a fingerprint. However, the performance of 
FingerCode is influenced by the reference point detection 
process, and the AAD features cannot fully extract the 
discriminating information in fingerprints. In this paper, 
we first propose a new rotation-invariant reference point 
location method, and then combine the direction features 
with the AAD features to form an oriented FingerCode. 
Experiments conducted on a large fingerprint database 
(NIST-4) show that the proposed method produces a 
much improved matching performance. 

 

1. INTRODUCTION 
 
The fingerprint matching algorithms can be broadly 
classified into two categories: (i) minutiae-based, and (ii) 
filterbank-based. The minutiae-based matching algorithms 
first extract the local minutiae such as ridge endings and 
ridge bifurcations from the thinning image [2][7] or the 
grayscale image [6], and then match their relative 
placement in a given fingerprint with the stored template. 
A number of matching techniques are available in the 
literature including point-based matching [2], graph-based 
matching [1], and string-based matching [7]. Although the 
minutiae-based matching is widely used in fingerprint 
verification, it has problems in efficiently matching two 
fingerprint images containing different number of 
unregistered minutiae points. Further, it does not utilize a 
significant portion of the rich discriminatory information 
available in the fingerprints. The filterbank-based 
matching algorithm [3][4][5] uses a bank of Gabor filters 
to capture both local and global information in a 
fingerprint as a compact fixed-length FingerCode, which 
is suitable for matching and storage. The fingerprint 
matching is based on the Euclidean distance between two 
corresponding FingerCodes. Thus, it overcomes some of 

the problems with the minutiae-based matching 
algorithms. 

However, the original feature extraction algorithm [5] 
assumes that the fingerprints are captured in a vertical 
position. While the reference point location method works 
well for vertically oriented fingerprints, it fails to 
precisely locate the reference point after the original 
fingerprint is rotated. In this paper, we propose a new 
rotation-invariant reference point location method. 
Furthermore, the AAD feature in the previous work [5] 
does not utilize the direction information that 
characterizes the oriented flow pattern of ridges and 
valleys in a fingerprint. In order to improve the overall 
matching performance, we combine the AAD features 
with the corresponding direction features to generate an 
oriented FingerCode. Experimental results obtained from 
a standard fingerprint database (NIST-4) confirm the 
effectiveness of the proposed method. 
 

2. ORIGINAL FINGERCODE 
 

The original FingerCode generation and matching 
process [5] can be summarized in the following steps: 

1. Locate the reference point and determine the region 
of interest for the fingerprint image; 

2. Tessellate the region of interest centered at the 
reference point. The region of interest is divided into 
a series of B concentric bands and each band is sub-
divided into k sectors (B = 5 or 7, depending on the 
image size; k = 16); 

3. Normalize the region of interest. The gray values in 
every sector are normalized to a specified constant 
mean M0 and variance V0, thus to remove the effects 
of sensor noise and gray level deformation due to the 
finger pressure differences; 

4. Filter the region of interest in eight different 
directions using a bank of Gabor filters, thus produce 
a set of eight filtered images. The tuned Gabor filters 
enhance the ridges and valleys that are oriented at 
the same angle as the filter and suppress the ridges 
and valleys oriented at other angles; 
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5. Compute the average absolute deviation from the 
mean (AAD) of gray values in each of the 80 sectors 
for every filtered image to form the FingerCode; 

6. Rotate the features in the FingerCode cyclically to 
generate five templates corresponding to five 
rotations (±45o, ±22.5o, 0o) of the original fingerprint 
image, thus to approximate the rotation-invariance; 

7. Rotate the original fingerprint image by an angle of 
11.25o and generate its FingerCode. Another five 
templates corresponding to five rotations are 
generated in the same way as Step 6; 

8. Match the FingerCode of the input fingerprint with 
each of the ten templates stored in the database to 
obtain ten matching scores. The final matching score 
is the minimum of the ten matching scores, which 
corresponds to the best matching of the two 
fingerprints. 

 
3. REFERENCE POINT LOCATION 

 
The reference point is the center of the region of interest. 
Locating the reference point is an essential step that can 
influence the matching accuracy. The reference point 
detection algorithm developed in [5] has been shown to be 
more effective than most previous methods. However, we 
find that it is sensitive to fingerprint rotation. In this work, 
we develop a new reference point location algorithm that 
is rotation invariant. Our reference point location 
algorithm includes the following steps: 

1. Compute the directional image using the same 
algorithm as in [5]. Let D be the smoothed 
directional image with D(i, j) representing the local 
ridge direction at pixel (i, j); 

2. Initialize a label image L with the same size of D. L 
will be used to indicate the reference point; 

3. As shown in Fig. 1, for each pixel (ic, jc) in D, define 
a local region S centered around (ic, jc). Assign the 
corresponding pixel in L the value of the following 
summation: 

          ∑
∈

−=
Sji

dtcc jijijiL
),(

)),(),(cos(),( θθ  

        where θd(i, j) represents the local ridge direction of a 
pixel (i, j) in S, θt(i, j) is the direction perpendicular 
to the line linking (i, j) and  (ic, jc). If (ic, jc) is the 
center of the ridge curves, θd and θt will be similar at 
most points within S, thus will produce a high value 
in L; 

4. Search for the maximum value M1 and the secondary 
maximum value M2 in L. If M2 is over 0.95 times of 
M1, there may be a double loop in the fingerprint 
image, so we assign the coordinates of the midpoint 

of the line M12 as the reference point; otherwise, we 
assign the coordinates of M1 as the reference point. 
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Figure 1. Region S is centered around pixel (ic, jc). Pixel (i, j) is 
within the region S. θt and θd represent the tangent direction and 
the local ridge direction of pixel (i,j), respectively. 

Figure 2 and 3 show some results of our reference 
point location algorithm. The new algorithm can locate 
the reference points for fingerprint images of different 
classes. However, the algorithm may fail to locate the 
reference point for the fingerprint with very poor quality 
as shown in Fig. 3 (the last image). The examples shown 
in Fig. 4 illustrate the rotation-invariance of our algorithm 
compared with the algorithm in [5]. 

 
Figure 2. Examples of the reference point location results for 
different fingerprint classes. 
 

4. ORIENTED FINGERCODE 
 
The normalized region of interest is filtered using a bank 
of Gabor filters. The typically used Gabor filter [3][4][5] 



is an even symmetric real-valued Gabor filter. It has the 
following general form in the spatial domain: 
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where f is the frequency of the sinusoidal plane wave 
along the direction θ with respect to the x-axis, and δx’ and 
δy’ are the standard deviations of the Gaussian envelope 
along x’- and y’-axis, respectively. The filterbank consists 
of eight Gabor filters, each differing in orientation θ only 
(f = 0.1, reverse of the average inter-ridge distance; δx’, δy’ 
= 4.0, about half of the average inter-ridge distance.). The 
eight values of θ are 0o, 22.5o, 45o, 67.5o, 90o, 112.5o, 
135o, and 157.5o. Thus, the filtering process produces a 
set of eight filtered images. 

 
Figure 3. Reference point location results of the fingerprint pairs 
of different quality. (Top row: fingerprint pairs of high quality; 
middle row: fingerprint pairs of moderate quality; bottom row: 
fingerprint pairs of poor quality.) 

 
Figure 4. Examples to illustrate the rotation-invariance of our 
algorithm (top row) compared with the algorithm in [5] (bottom 
row). 

       Let Fm (m = 0, 1, … , 7) be the mth filtered image. We 
define a new 2-D feature vector for each sector si (i = 0, 1, 
…, 79) in Fm as Vim. The magnitude value of Vim is the 
average absolute deviation from the mean (AAD) as 
defined in [5]; and the angle of Vim is the dominant local 
ridge direction in sector si. The features in all the sectors 
constitute a sub-FingerCode for the filtered image Fm. The 
collection of all the eight sub-FingerCodes is defined as 
the oriented FingerCode. Similar to [5], to approximate 
the rotation invariance, we cyclically rotate the features 
and the image to generate ten templates. The matching is 
based on the Euclidean distance between two 
corresponding FingerCodes. Let Vim and Vjm represent the 
vector features for the two corresponding sectors in the 
mth sub-FingerCode. Then, the Euclidean distance 
between two FingerCodes is defined as follows: 
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Note that there is an ambiguity of π in the local ridge 
direction, i.e., local ridges oriented at π/4 and 5π/4 cannot 
be differentiated from each other. If the intersecting angle 
between Vim and Vjm is larger than ninety degrees, we 
reverse one of them to obtain a smaller distance. 
Experimental results show that using the oriented 
FingerCode gives a better performance than using AAD 
features only. Since the local ridge direction information 
is computed at the reference point location stage, the 
addition of the local ridge direction as a new feature will 
have almost no effect on the matching time. 



5. EXPERIMENTS 
 
Experiments are conducted on a standard fingerprint 
database NIST-4, which contains a set of 2000 fingerprint 
image pairs (512x512, 256 gray levels, 500 dpi). Each 
fingerprint pair has two different rolled impressions of the 
same finger. We remove some fingerprints if their 
reference points are too close to the edge of the image. 

To test the performance of the oriented FingerCode, 
we first implement a filterbank-based fingerprint matching 
system using the original approach [5]. Here, we replace 
the reference point location algorithm with the new 
algorithm discussed in Section 3. The dataset is then 
processed using the implemented system. 
        We then replace the FingerCode generation module 
with the new algorithm to compute the oriented 
FingerCode. The same dataset is again processed. Each 
test fingerprint image is matched with all the other 
fingerprints in the database. If the Euclidean distance 
between two FingerCodes is below a threshold, we make 
the decision that “the two fingerprint images are 
matched”; otherwise, we say, “the two fingerprint images 
come from different fingers”. The matching is labeled 
correct if the matched pair is from the same finger and 
incorrect, otherwise. The genuine acceptance rate (GAR) 
and the false acceptance rate (FAR) corresponding to a 
distance threshold are computed according to these 
labeled matching results. The overall matching 
performance can be measured by a receiver operating 
characteristic (ROC) curve, which plots GAR against 
FAR at different operating points (distance thresholds). 
Each point on the curve corresponds to a special distance 
threshold. In the experiments, we use the Gabor filters 
with various f and δx’, δy’. Figure 5 illustrates the 
performance improvement of the new approach. The 
dashed line represents the performance of the original 
approach [5], while the solid line shows the performance 
of the new approach. From the results, we can see that the 
new approach outperforms the original approach over a 
wide range of FAR values, especially at low FAR values. 
 

6. CONCLUSION 
 
In this paper, we have presented an improved method for 
filterbank-based fingerprint matching, which utilize both 
the AAD features and the direction features available in 
the fingerprints. Experimental results obtained from a 
large fingerprint database (NIST-4) show that the addition 
of the direction features leads to a substantial 
improvement in the overall matching performance. 
Moreover, the proposed reference point location method 
is robust and rotation-invariant for fingerprint images. 
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Figure 5. ROC curves comparing the performance of the new 
FingerCode with the original FingerCode on the NIST-4 
database. 
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