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improved Fokker-Planck model for the joint scalar, scalar gradient PDF 

R. 0. Fox 
College of Engineering, Kansas State University. Manhattan, Kansas 66506 

(Received 27 February 1992; accepted 30 June 1993) 

I The joint scalar, scalar gradient probability density function (PDF) of an inert nonpremixed 
scalar diffusing in a one-dimensional system of random-sized lamellas is investigated by 
numerical simulation. The form of the scalar PDF, at a given RMS value, is nearly identical to 
that predicted by direct numerical simulation (DNS) of scalar mixing in isotropic turbulence 
and the mapping closure, and the moments of both the scalar and the scalar gradient suggest 
that their limiting marginal PDF are Gaussian. The joint scalar, scalar gradient PDF is found 
to be restricted to a bounded region in the scalar-scalar gradient plane, whose form is 
independent of the initial mixing ratio. These results are incorporated into the Fokker-Planck 
(FP) model for the joint scalar, scalar gradient PDF, and the improved model shows good 
agreement with numerical simulation data. An extension of the FP model that includes random 
stretching of the scalar gradient in isotropic turbulence is formulated. 

I. INTRODUCTION 

The probability density function (PDF) approachlp2 is 
finding increased application in the computation of turbu- 
lent reactive flows.J4 One of the principal reasons behind 
this trend is the fact that, even for highly nonlinear reac- 
tions, the reaction rate expression appears in closed form in 
the PDF governing equation.3 Nevertheless, the turbulent 
molecular mixing terms arising from diffusive terms in the 
fundamental balance equations must be closed. As has 
been noted elsewhere, these terms are dominated by the 
statistics of the scalar gradient.7 Hence, greater knowledge 
of the form of the joint scalar, scalar gradient PDF is 
crucial in the development of adequate closures for turbu- 
lent molecular mixing.7.8 

Experimental evidence for large Schmidt number tur- 
bulent flows’-” and direct numerical simulation (DNS) 
data12 suggest that the bulk of the scalar dissipation occurs 
in a complex and highly intertwined set of layer-like 
structures.g-” These results further suggest the viability of 
nontraditional approaches for modeling the turbulent mo- 
lecular mixing process such as the one-dimensional ( 1-D) 
linear eddy model13 or the lamellar systems 
approach.*+i4*’ Following this line of reasoning, FOXING’ 
recently introduced the Fokker-Planck (FP) model for 
the joint scalar, scalar gradient PDF of multiple, reactive 
scalars derived based a simple physical model for scalar 
transport. 

The FP model, unlike the mapping closure,“’ can be 
easily incorporated into the Monte Carlo algorithms em- 
ployed for practical PDF computations2 Nonetheless, al- 
though the FP model predicts forms for the scalar PDF 
similar to those found by DNS of scalar mixing in isotropic 
turbulencez2 and by the mapping closure,21’23 it was noted 
that DNS data for the joint scalar, scalar gradient PDF 
was needed to improve the model.8 The goal of the present 
study is to use numerical simulation data for inert scalar 
diffusion in a 1-D lamellar system to further refine the FP 
model and to improve its ability to predict the evolution of 
the joint scalar, scalar gradient PDF. 

Lamellar systems have been studied extensively by at 
least two groups. Muzzio et al. “-16 have studied numeri- 
cally systems of reactive lamellas, and found that the dis- 
tribution of lamella thicknesses attains a self-similar form 
for almost all initial conditions. Sokolov and Blumen,‘8’1g 
employing an analytical approach to study the same sys- 
tem, have derived conditions on the initial lamella thick- 
ness distribution that ensure self-similarity, and found an 
analytical expression for the self-similar lamella thickness 
distribution. Moreover, the latter two authors have in- 
voked the central limit theorem to show that the limiting 
scalar PDF is Gaussian,” just as it is in the case of scalar 
mixing in isotropic turbulence.“’ This finding is confirmed 
in the present study, and, as expected, the intermediate 
forms of the scalar PDF are shown to be nearly identical to 
those found by DNS of scalar mixing in isotropic 
turbulence.“” 

The relevance of the pure diffusion case to turbulent 
scalar mixing studies has been pointed out by several 
authors.24-26 For example, since pure diffusion represents 
an important limiting case, any viable molecular mixing 
closure should be able to predict the joint PDF in this 
limit. More compelling, however, is the fact that the map- 
ping closure, which has been shown to yield excellent 
agreement with DNS data, is as equally applicable to one- 
dimensional (1-D) diffusion as it is to isotropic turbulence. 
The effect of latter enters the mapping closure through a 
time resealing that leaves the form of the scalar PDF un- 
changed at a given RMS value. 

Although no direct comparisons to isotropic turbu- 
lence DNS data are made in this study, an extension to the 
FP model to include the effect of turbulent stretching is 
proposed. Comparisons with turbulence DNS have been 
reported elsewhere,27 with good agreement shown between 
the predicted scalar dissipation rate and the DNS data. 
Like in the mapping closure, the turbulent stretching term 
in the FP model primarily affects the rate of scalar dissi- 
pation and not the from of the marginal scalar PDF. 

The remainder of this work is arranged as follows. In 
Sec. II, the original FP model is reviewed, an improved 
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version is formulated, and an extension to include the effect 
of turbulent stretching is given. A discussion of the numer- 
ical approachs employed (numerical and Monte Carlo sim- 
ulations) is provided in Sec. III. Section IV is devoted to 
the presentation and comparison of the numerical simula- 
tion data and FP model predictions for relevant statistical 
quantities, and for the marginal and joint PDF. Conclud- 
ing remarks appear in Sec. V. 

II. THE FOKKER-PLANCK MODEL 

Using scalar mixing in lamellar structures as a para- 
digm for turbulent molecular mixing in general, Fox20p8 has 
derived coefficients for the FP model for the joint scalar 
(4>, scalar gradient (Y) PDF. (Hereinafter, it will be as- 
sumed that the bounded scalar field has been resealed so 
that -1~4~1, and ($2) and (4) will be used to denote 
the scalar variance and scalar gradient variance, respec- 
tively, even when the means (4) and (Y) are nonzero.) 
The FP model is expressed in terms of the normalized 
scalar (V) and the normalized magnitude of the scalar 
gradient (2) , defined by 

(1) 

and 

I‘u-(WI 1c, 
z=Jyp-=q-!’ (2) 

(For notational convenience, the magnitude of Y - (W) 
will be denoted by 1c, and referred to simply as the scalar 
gradient.) 

As discussed in Sec. II D, models are required for the 
scalar RMS and the scalar gradient RMS, 4’ and $‘, or, 
equivalently, for (#Jo) and (@). Fox* has studied the prop- 
erties of the FP model and shown, for example, that the 
limiting joint scalar, scalar gradient PDF is bivariate 
Gaussian, and that the scalar PDF evolves through forms 
similar to those seen in DNS22 and the mapping closure.23 

A. Original formulation 

The original FP model is most easily expressed in 

terms of U and X, where V=UX and Z = V,/m’. For 
a physical interpretation of these new variables, consider 
the simple case of equivolume mixing ( ($) =O.O) with a 
single length scale (e.g., lamella of equal thickness). For 
this case, let 4,,(t) [ = -4min( t) <l] denote the maximum 
value of the scalar at time t, and define X=$/4,,, and 
U=&,,,/$‘. In the limit of large t, it is easily shown that, 
for this system, 

q=; B,.x(t)cos( y) =i A&t) l,/i-=? 
where L is the lamella thickness. The definitions of V and 
Z in terms of U and X then follow. Note that for this case, 
U has a delta PDF (e.g., it is nonrandom), and 

fxW=--q$?. 
The joint PDF of V and 2 is thus uniformly distributed on 
a unit circle in the V-Z plane. 

In order to model the evolution of the joint PDF for 
the case of a distribution of length scales, Fox8 proposed a 
bivariate FP equation, 

-= -$ ~4Au)fu,xl +f g lI~v(~)fu,xl 
af u,x 

at 

-g [Ax(x)fu,xl +$ g2 [Bx(x)fu,xl 

+& (Bu,xfu,x)9 
with coefficients 

A&)=4yn2[(l/u)-uu], 

Ax(x) = -4&x, 

BiAu> =W& 

Bx(x) =8$( 1 --x2), 

and B v,x=O, where y is a model constant. U is now 
treated as a random variable, whose PDF is chosen so that 
the limiting joint PDF of V, and Z is bivariate Gaussian. 

Despite the apparent good fit of the predicted scalar 
PDF to those produced by DNS, Fox* found that other 
statistics, such as the scalar variance dissipation correlation 
function, defined by 

p=(V2Z2)-1, (3) 

are poorly predicted by the model. These results can be 
improved considerably by modifying the coefficients as 
shown below to account for the form of the joint PDF at 
small t. 

B. Improved FP model for equivolume mixing 

The initial stages of mixing occur in noninteracting 
diffusion layers that are described by the well-known solu- 
tion to the 1-D diffusion equation on an infinite interval: 

$=erW), t= -J-G? 
where D is the molecular diffusion coefficient. Note that 
this expression is independent of the lamella thickness; 
thus, it holds for both the single length scale and the dis- 
tributed length scale cases. Using this result, one finds 

+=&dt>exp[ - (erf-’ 4121, 

where lClrnax (t) = l/ &%. Of greater interest, however, is 
the fact that this expression can be closely approximated 

by 
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FIG. 1. Magnitude of the scalar gradient, $, versus scalar, q5. Solid line: 
$=2 exp[- (erf’q5)‘]. Dotted line: #=2( 1 -qSzjo.8033. 

where a=[l+exp( -0.5)]22~0.8033, as can be clearly 
seen in Fig. 1 [wherein qmax( t) = 2.01. 

This result suggests that the scalar gradient can be 
closely approximated for all t by a function of the form 

* y=------= 
*Inax 

(1 -p)wV), 

with a( l)=[l+exp( -OS)]/2 and a(x) -0.5 as x-0 
(i.e., the original model). Indeed, using the exact solution 
for the single length scale case, plots of In Y vs ln( 1 -X2) 
have been found to yield essentially straight lines. From 
the slopes of these lines at ln( 1 -X2) = - 1 the following 
functional form has been found for a(x): 

a(x) =i( 1 +eyo.‘x~e), (4) 

with ye= 26/3 z 8.667. 
The improved FP model for equivolume mixing thus 

again treats U and X as random variables, but finds V and 
Z from 

v= ux 

and 

In the latter expression, z,,(t) is a function that must be 
modeled. By definition, the maximum value of 4’ U is unity 

and FL, occurs at X=0; hence 

A model for &,,, that includes turbulent stretching is de- 
veloped in Sec. II D. 

Modcjied FP coeflcients. The predictions of the FP 
model can be further improved by adopting the following 
modified FP coefficients: 

Bx(-W,f) =2K(t)Yl (t)&(X,#‘U,f) 
(l-x2) 

u2 ’ 

and B,,=O, where 

g*(x) =xye (6) 

and 

(7) 

is the scalar dissipation rate. The functions y1 (t) and y2( t) 
are found by forcing the second moments of V and Z to be 
unity. Likewise, g2 is found by forcing the drift coefficient 
for Z to be linear. 

The motivation for choosing these forms is as follows. 
First, as shown in Sec. IV, the joint scalar, scalar gradient 
PDF is bounded, implying that U is bounded. The function 
g1 (4’~) is unity when 4 attains it maximum or minimum 
value; hence B, is null at the extremal values. Thus the 
random process for U has a natural boundary at 
u= l/&28 The original FP model required the application 
of external boundary conditions. Second, both Ax and Bx 
have been modified by the factor 1/u2. This ensures that in 
the limit where 4’ -0, V, and Z will obey independent 
Ornstein-Uhlenbeck processes.28 The joint PDF will then 
be independent, bivariate Gaussian, as seen in Sec. IV. 
Finally, the scalar dissipation rate, I, is the used as the 
inverse “correlation time” for scalar fluctuations. This is 
the “natural” choice, since it appears in the scalar variance 
decay equation (Sec. II D). 

The functional form of g2 is determined by requiring 
that the FP equation for Z have a drift coefficient, AZ, 
linear in z and independent of u. For example, if g, is 
chosen to be 

gzku) = 
1+(2a--1)[3/2(t)/“/l(t)l(l-X2)[1--81(y)l 

1-(2a-1)x2 
(8; 

then treating a as constant and defining 

hl(t) =%hlamax(4’)2a 
111’ ’ 

yields29 

/iy(U,t) = --K(t)& 

A,(z,tj = - [hK(t) --In I;t]z, 

By(w,t) =2K(t){Yl(t) (1 -x2)g2(x,+,t) 

+rz(t)x”[l-gl(~‘u)l}, 

&dw,t) =8a*dt) yl(t) 2x2gdX,qU,t> 

u2( 1 --u2) 

-trz(t)$ MWI), 

Axku,f) = -K(th(f) ;, and 
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-Y*(t982W’w9~ f ; 

wherein u and x are implicit functions of v and z and In ii 
is the time derivative of In h, . 

In the limit where a-+0.5 (i.e., as $‘-+O), gi($‘u) 40, 
g2(x,y,t) -+ 1, and the FP coefficients become 

A&L&t)=-K(t)& 

Az(z,t) = - [K(t) --In XJZ, 

Bviw,t9 =2K(t) [?‘I+ (yrydx2], 

and 

The functions yr (t) and y2 (t) are determined by forc- 
ing both ( V2) and (Z2) to be unity for all t. For the 
limiting case just considered where a= 0.5, (Z2 In hl> -) 0 
(cf. Sec. II D); thus, these constraints yield y1=y2=1. 
The resultant FP equation then describes a bivariate, inde- 
pendent, Ornstein-Uhlenbeck process as noted earlier. 

For the general case, a pair of linear equations in y1 
and r2 results from 

0=2@dV,t9 V)+(Bv( V,Zt9), 

0=2(Az(ZW) + lBz( V,Zt9 ). 

For example, the case where a is constant yields 

r1(t>- 
(2a~-{Z2 ln h,))&-4a'~& 

4~‘K~~,~d32&9 

and 

y2(t9 = 

_- (2CYK-{z2 hl h1))/?2+4dK& 
~~~_~ --.~ 

4~2K(~~&/37.&9 ’ 

where 

(109 

(119 

z2x2 
L34= (u2(lmx2) g203'U,t9 . 

> 

C. Improved FP model for nonequivolume mixing 

The nonequivolume mixing case ( (#)#O) is initially 
(small t) very similar to the equivolume mixing case, since 
both can be approximated by diffusion layers. However, as 
time progresses, &,, ( t) # - #min ( t) ; thus, another vari- 
able in addition to U and X will be needed to describe t/ in 
terms of I$. Note that, by definition, 

u=hnax(t9 -Anin(t9 
24’ * 

We shall define the new variable 4* by 

4*=$4nax(f) +hnin(t9 
2 * 

In the equivolume mixing case, 4*=0. Finally, we shall 
extend the definition of X to the present case by setting 

,-+4*- v I (4) -4* 
@lJ u $‘U * 

For notational convenience, denote the conditional expec- 
tation of X given U by (X 1 U) . Then, since ( VI U) =0, 

v== U[X- (Xl U)]; 

hence 

(9) -Ip* 
WlU)= #,U * (129 

Knowing $* for given 4’ U and (4) is thus equivalent to 
knowing (X 1 U) . 

Study of the exact solution to the 1-D diffusion equa- 
tion for the single length scale case reveals that $ can be 
closely approximated by 

where 

4'U 
a max=a v 

i 1 

and 

KU 
amin = a 

( ) I++* * 

(13) 

(149 

Expressing Z in terms of U and X, the motivation for their 
new definitions becomes clear: 

Z=zma,(t) [$‘U( l-X)lamax[$‘U( l+X)lam% 

i.e., this expression is identical to that used in the equivol- 
ume mixing case, where (X 1 U) -0 and omin=omax. The 
FP coefficients given in Sec. II B should thus still be appli- 
cable after modifying A, to account for (Xl U)#O, as dis- 
cussed below. A functional form is also be needed for 

(Xl m. 
The limiting values of #* are known: C#J* -0 for t=O 

($‘U=l), and $J*+($) for t-++ CO ($‘U-+O). In be- 
tween, c$* can be parametrized in terms of (4) and 4’ U, as 
shown in Fig. 2. Thus (Xl U) can be treated as a known 
function of (4) and $‘U. For example? for (4) = -0.5, (p* 
is closely approximated by 

For notational purposes, for fixed ($), define 
h,(s) = (XI#‘U=s) so that 
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FIG. 2. Here c$* vs &U. Solid line: (4) =--0.2. Dotted line: -0.5. 
Dashed line: -0.8. Dash-dotted line: -0.9. 

h (s)=w-Pw)I~) 
2 

s 

For the nonequivolume mixing case, (Xl V)#O; thus 
A, must be modified. Letting AX have the form 

&(X,U,t) =K( t&l (t) ‘fife 

the functional form of g3( u,t) can be found by forcing 
A V( v,t) = -I u as before. This yields 

2u2 93(UJ) = l-- 
i ) 79(t) 

rh2($‘U) +~‘uh,(~tu, ] 

FIG. 3. Top: The evolution of the scalar RMS, 4’. for 1-D diffusion 
equation. Bottom: The evolution of the (fl). Solid line: Fkpivolume mix- 
ing. Dashed line: Nonequivolume mixing. Dotted line: FP model. 

+Y2W 

rl(t> W[~2(4’4 +~‘ui;,(&4 1 

x[l-gl(#‘u)l, (16) 

wherein h2 and A2 are the first and second derivatives of h2, 
respectively. 

The functional form of g2 must be determined, as done 
in Sec. II B, by forcing AZ(z,t) to be linear in z and inde- 
pendent of u. Likewise, y1 and y2 will be modified by terms 
involving g3 . 

D. Models for 4’(f), t/‘(f), and fClm&) 

In order to complete the FP model, functional forms 
are needed for 4’ (t), t/‘(t), and tjmax(t). These will be 
derived for two cases: pure diffusion and isotropic turbu- 
lence. For both cases, the scalar variance ( ($2) =+‘2) for 
an inert scalar can be found, given (3) from 

d@“) 
-=--2~($2)=--2K(t)(#2). dt (17) 

Thus models are needed only for (II;“) and r,&,, . 

1. Pure diffusion 

For this case, Sokolov and Blumen18 have shown, 
based on the form of the Green’s function solution to the 
1-D diffusion equation, that in the limit of large t, 

It follows from Pq. (17) that in the same limit, 

K(t) +; 

or 

w2> -At G2>. 

Using these results, two possible models for (+2) can be 
formulated. 

First, using K(t) as the characteristic time for scalar 
gradient dissipation yields the following model for (3) for 
the pure diffusion case: 

d(@) -= --2q&) w>, dt (18) 

where Cti=3 in the 1-D diffusion case. This model is com- 

pared with numerical simulation data in Fig. 3. 
Alternatively, since (c) is closed in the PDF formu- 

lation, and, in the limit of large t, (c) -+ 3 (3)‘, ( r,j2) can 
be modeled by 

d(@) <Ic;‘> 
-=-3q-py’ dt 
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where CZ = 1 in the 1-D diffusion case. The model con- 
stants can be determined for the 3-D diffusion case given 
knowledge of the limiting dependence of (3) on t. 

As noted previously, z,,,= $~~~.Jr,!t’. Thus, since r,!~’ can 
be found from Eq. ( 18)) a model is needed for r,!~,,~. For 
the pure diffusion case in the limit of large t, 
OZ,&J(~~(O)) --t/c(t) + 1/4t. This behavior can be mod- 
eled by the following differential equation: 

44nax 
---=-(cc,-1)K,,,(t)~~,,, dt 

where 

is a scalar dissipation rate based on the maximum scalar 
gradient. As noted earlier, this model should also apply to 
the 3-D diffusion case. 

Notice that Eqs. (18) and (19) have the same form. 
Reformulating the models in terms of K and K,,, yields 
identical expressions: 

and 

&nax 
-= --2(C+- l)KZmax. 

dt (22 

Using these expressions in Eq. (9) yields 

In1;1=(c,-2~)K--(C~-l)KK,,,. 

Thus, In xi + 0 in the limit where ar+OS, so that 
(2’ In hi) =hr hi-O, as stated earlier. 

2. Isotropic turbulence 

The mass conservation equation for a passive, inert 
scalar 4 is 

W -E= 
Dt 

From this expression, one finds the following equation the 
magnitude of the scalar gradient: 

W2 
x= 2 D$i dzyfx . -- 2$1gij$,/, 

I d 

where eil is the strain rate tensor. For isotropic turbulence, 
the first of these expressions yields Fq. ( 17),2 while the 
second yields 

dW2> 
--=2D($i V$i> -2(@Fij$ji)* 

dt 

Neither of the terms on the right-hand side of this expres- 
sion are closed. The first describes molecular mixing and 
the second, turbulent stretching of the gradient. 

The gradient stretching term can be modeled by intro- 
ducing the turbulence relaxation rate, w(x,t) =e(x,t)/ 
k(t), defined in terms of the pseudodissipation rate, 

aui f3uj 
e(x,t) =v - - , 

dxj axj 

where Y is the kinematic viscosity; and the turbulent ki- 
netic energy, k(t). Note that E is a random variable, but k 
is not. Pope and Chen3’ have derived a stochastic model 
for w that yields excellent agreement with DNS data. Their 
model is formulated in terms of an Ornstein-Uhlenbeck 
process for ,y = In (w/( w) ) whose FP coefficients are 

2atj 
B,(t) =-y-- > 

X 

where g(t) is the variance of x and TX= l/CX(w> is an 
integral time scale. 

In the FP model, the scalar gradient drift coefficient, 
Ati, will be extended to include gradient stretching by the 
addition of a bilinear term of the form C,O$J. Leaving the 
form of molecular mixing term unchanged, the models for 
the variances conditioned on the “stretching history,” 
{w(s):O<s<t}, become 

(23) 

and 

d(v%, 
-= -2C~~(t)(~),+2C,W(t)(1(12),, dt (24) 

where fro(t) = D(I+!?)~($~>,. The unconditional vari- 

ances, ( I$~) and (42> can be found from the conditioned 
ones, ($2)o and ( $2>w, by averaging over the “stretching 
histories,” {w(s):~<s=G}. Equation (18) for the pure dif- 
fusion case is recovered by setting w(t) =O. 

Note that due to the appearance of the factor 

w(t) <3>,, correlations between o and II, can be important 
in determining the local mixing rate. The values of the 
model constants have been determined by Fox et aL2’ US- 

ing DNS data for an isotropic initial scalar field in forced 
isotropic turbulence: C+=6.7 and C;,===4.7. 

Adding the gradient stretching term to Eq. (21), the 
model for K, becomes 

$f=z[cmCO(tj - (cJt-- I)K,]Ko. 

This form is similar to one derived for J cf ms by 
Gao31 in his study of non-Gaussianity induced by random 
stretching in the mapping closure. In Gao’s model, ir) (t) in 
Eq. (25) is replaced by a Wiener process. Gao notes that J 
will be deterministic in the absence of turbulence (w =O), 
and lognormal in the absence of diffusion ( D=O). 

For the isotropic turbulence case, the FP model is ex- 
pressed in terms of conditional normalized variables de- 
fined as in Eqs. (1) and (2), but with ($2)w and (II;“), 
used in place of (4”) and (3), respectively. The FP coef- 
ficients given earlier are likewise modified by replacing K(t) 
with K,(t). In the limit of large t, the conditional PDF for 
# and $J are thus again Gaussian, but with variances that 
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are “stretching history” dependent. The unconditional 
PDF can be found by averaging over the “stretching his- 
tories” and may exhibit non-Gaussian behavior.31 

Isotropic turbulence will also affect ~~~~~ This effect 
can be modeled by adding the gradient stretching term to 
Eq. (22): 

dK,ax 
-==21:~,o(t)-((~~t-1)K~,,]K,,,. dt 

The model for &,, follows from this expression 

44nax 
-=[[C,o(t)-((~--)K,,,l~~,,. 

dt 

(26) 

Note that r,&,,, , like (+2)o, is a random variable whose 
value again depends on the “stretching history” of the fluid 
particle. In particular, since w can fluctuate to very large 
values, &, at any t will have no upper bound, as is the 
case for pure diffusion (cf. Sec. IV C). 

For the limiting case where w can be treated as time 
independent, Eq. (25) yields the following expression for 
K(~ in the limit of large t: 

G 

K”--1m w* 
(28) 

The limiting value of the unconditional scalar dissipation 
rate is then given by 

The mechanical-to-scalar time-scale ratio22732 
R=2~/(~)=2C~‘(C~-l)=~.65. This value __ 

is thus 
is 50% 

smaller than the DNS value of 2.K2” The difference is due 
to the neglect of correlations between 4 and w(t). 

Defining the ratio of the scalar dissipation rate to its 
limiting value as K,, one finds 

d’% 
77=2c,(d (1 -K&r, 

which yields 

K,(t) = 
K,(o) 

K,(O) + [ l-K,.(0)]e-2c~(o)t’ 

From this expression, it is clear that the scalar dissipation 
rate will approach its asymptotic value monotonely at a 
rate determined by (0). Moreover, if K~( 0) < 1, {T,!?) will 
pass through a maximum at t* found by solving 
K,.(P) = 1 - l/C,. However, if K,.( 0) > 1, ( q2) will decrease 
monotonely. This behavior is illustrated in Fig. 4. Such a 
dependence on initial conditions has been observed in DNS 
simulations.22.33 Similar behavior should also be observed 
when (w) (but not o) is time independent. 

Finally, the unconditional limiting PDF of the scalar 
can be investigated for the case where o is time indepen- 
dent. In the limit of large t, the conditional scalar is Gauss- 
ian with ($2),=e-2@o’, where c”=CJ(C+-1). More- 
over, defining the scaled even-order moments by 

.!! 
? 

0.011 I. , . I 
0.0 0.5 1 .o 1.5 2.0 

t 

FIG. 4. Top: The evolution of the scalar RMS, 4’, for isotropic turbu- 
lence with i’=(o>t. Bottom: The evolution of the <@) for isotropic 
turbulence. Solid line: K~CO)=I. Dashed line: K,(O) < 1. Dotted line: 
K?(o) > 1. 

F2*,4=fg, 
it can easily be shown that 

F -Wz)! W 2n@“r,) (2n)!@(ns) 
2n.9 

-- 
n!zn (e-2@9n = n!2” Q(s)~ s=-2C*t’ I 

where Q(s) is the moment generating function of w. 
As an example, consider the case where w has a 

gamma distribution with mean (w} and parameter r: 

f&)(w)= r’ a 

r-1 

- - e-4o) 

r(r) b)’ * 

For this case, the moment generating function can be 
found analytically: Q(s) = ( 1 - (w)s/r) -7 Thus, the sca- 
lar flatness factor is given by 

(1 +2C(w)t/r)2’ 

F4d=3 (1+4C*(o)t/r)’ ’ 

and, in the zero-variance limit where r--t + CO, the Gauss- 

ian value of 3 is obtained. For smaller values of r, the 
flatness factor will be larger than the Gaussian value. 
Gao3’ has derived a gamma PDF for w and arrived at 
similar conclusions concerning the effect of turbulent 
stretching on the scalar PDF. 

340 Phys. Fluids, Vol. 6, No. 1, January 1994 R. 0. Fox 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.40 On: Wed, 30 Apr 2014 16:16:56



E. Time-dependent scalar bounds 

A phenomena seen in DNS studies of scalar mixing 
noted by several authors26*24,34 is the fact that the extremal 
values of the scalar field move toward the mean after a 
constant initial period. It is related to the largest length 
scale present in the DNS (both for pure diffusion and tur- 
bulence). As is obvious from the discussion in Sec. II B, 
the upper and lower bounds of the scalar field will be 1 and 
- 1, respectively, only as long as lamella exist that are well 
described by a noninteracting diffusion layer approxima- 
tion. Such lamella correspond to the largest structures in 
the initial scalar field, and their size is limited by the sep- 
aration between the smallest resolvable scales and the larg- 
est scales in the simulation. 

For mixing in real nonpremixed flows, where large- 
scale structures in the scalar field, can be on the order of 
millimeters or centimeters, the need for inclusion of this 
effect in the FP model is questionable. Nevertheless, it can 
be easily incorporated into the model by defining a time- 
dependent upper bound for qSU [say p(t)], and replacing 
g1($‘u) with gJ$‘u/p( t)]. A model would then be needed 
for ,u (t). For nonpremixed reactive flows in which reaction 
takes place in the nonpremixed state, the governing equa- 
tion for p would also need to include the effect of reaction. 

F. Improved FP model for binary mixing 

In summary, the improved FP model for a bounded 
scalar ( - 1<4< 1) and its gradient for the mixing of two 
nonpremixed fluids is given by 

(p=&Y+ w>, (29) 

Y=$r+ W, (30) 

$=$J& (31) 

Y= U[X-- {Xl U) 1, (32) 

z=z,,,(t)[~~U(1--X)]~~~~[~:u(l+X)]~~~”, (33) 

where r is a isotropic random unit vector (rjrj= 1 ), and U 
and X obey a bivariate FP equation with coefficients 

(34) 

9 (35) 

Bdw) =2K,(t)Y2(t) [ 1 --g&& jl, (36) 

B,&,%t) =2K,(t)?‘l (t)&(X,&d 
(l-x”) 

---z---’ (37) 

B,,=O. (38) 

The functions %,ax, o,in, K,, YI , 3/z, go, g2, gs, (Xl W, 

and zmax are found, as described previously [Eqs. (4)- 

(16)]. The models for c):(t), q:(t), and qbmax(t) are given 
in Sec. II D. Note that, unlike the original FP model (Sec. 
II A), the FP coefficients contain no model constants (i.e., 
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y). In addition to these expressions, the Pope and Chen 
stochastic model for w3’ must be included for the case of 
isotropic turbulence. 

III. NUMERICAL APPROACH 

The validity of the improved FP model can be inves- 
tigated by comparing the predicted joint scalar, scalar gra- 
dient PDF with ones generated by numerical simulation. 
The simplest test case is diffusion of a 1-D nonpremixed 
random scalar field. This case will be considered here. The 
case of scalar mixing in forced isotropic turbulence has 
been considered elsewhere.” 

A. 1-D diffusion equation 

The general solution to the 1-D diffusion equation on 
the unit interval can be expressed in terms of its Fourier 
transform coefficients.‘8 However, in general, the lamella 
thickness, L, and its correlation with the scalar and scalar 
gradient are of interest for lamellar systems’ and cannot be 
conveniently expressed in terms of the transformed solu- 
tion. Thus, an explicit, constant-increment, finite-difference 
scheme14 with periodic boundary conditions on the unit 
interval and 220= 1 048 576 nodes has been used. The time 
step employed in the simulations is Ar= (Ax)“/6, where 
Ax=2-’ and r= Dt. The scalar mean, (#J), is a conserved 
quantity. Results for two cases will be presented here: 
equivolume mixing (i.e., Sec. II B), and nonequivolume 
mixing with (4) = -0.5 (i.e., Sec. II C). 

1. Initial conditions 

The initial scalar field consisted of a series of up and 
down step functions between the values of - 1 and + 1. 
The spatial distance between each step was a random vari- 
able, whose mean value is the mean lamella thickness. For 
equivolume mixing, the initial random scalar field was gen- 
erated using 213 random integers between 0 and 220 to fix 
the ste 

P 
locations. The random integers were computed 

from 2 3 uniform random numbers by multipling them by 
220 and rounding to the nearest integer. It follows from the 
properties of the Poisson process that the distances be- 
tween steps constructed in this manner were independent 
and exponentially distributed. 

For nonequivolume mixing, the mean distance between 
steps for += - 1 .was three times larger than for $= + 1. 
The volume of fluid for which initially 4 = - 1 was thus 
three times larger than the volume for which $= + 1. 
Again, using 213 random integers between 0 and 220, the 
step locations were determined for this case by letting the 
distance between two random integers represent the 
smaller volume, while the larger volume was represented 
by the distance up to the third random integer that fol- 
lowed. The latter, being sums of independent exponential 
random variables, are independent gamma random vari- 
ables. This pattern was repeated until all 213 random inte- 
gers were exhausted. Note that in the nonequivolume mix- 
ing case the average lamella thickness is two times larger 
than in the equivolume mixing case. 
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2. Statistics and Iamella depletion 

For the results reported here, the lamella thickness is 
not a variable of interest and, thus, zero-crossing tracking 
algorithms will not be discussed. The PDF and relevant 
statistics have been estimated using ensemble averages 
based on samples of size 215 randomly selected from the set 
of 2” nodes at fixed time intervals. (There is little addi- 
tional information that can be gained by using all 220 
nodes, since points at proximate spatial locations are 
highly correlated.) The scalar and its gradient at the sam- 
ple nodes were the only output from the simulation. The 
scalar gradient has been computed from the scalar field 
using a first-order, finite-difference formula. The accuracy 
of the estimates of the moments and of the PDF depends 
strongly on the number of lamella used in the simulation 
and decreases with increasing time due to lamella depletion 
[i.e., the length scale increases with time resulting in a 
smaller effective sample as the spatial correlation in- 
creases). 

In this study, the lamella number was initially very 
large (up to 213 = 8 192) and, hence, the time evolution of 
all statistics could be accurately computed without averag- 
ing over several runs. However, as is noted in Sec. IV C, 
when the scalar RMS value falls below approximately 0.35, 
the lamella number drops off quickly and the joint PDF 
show distinct traces of the underlying lamellar structure. 
Since it is ultimately related to the separation between the 
smallest resolvable scales and the largest scales in the sim- 
ulation, this phenomena will also be present in the numer- 
ical simulation of the 3-D diffusion equation, such as those 
reported elsewhere.5T26 It is avoided in forced isotropic 
turbulence simulations by the balancing effects of turbulent 
stretching (decreases length scales) and diffusion (in- 
creases length scales). One must therefore be careful when 
interpreting pure diffusion results for small values of the 
scalar RMS. Such results will only be significant when 
averaged over a large ensemble of simulations generated by 
independent initial scalar fields. 

B. Monte Carlo simulation of the FP model 

Note that, by definition, U(0) = 1 and 4*(O) =O; thus, the 
numerical procedure is well defined. 

The Monte Carlo simulation of stochastic differential 
equations ( SDEs) (e.g., Langevin equations) has been dis- 
cussed extensively elsewhere.” The simulation of a FP 
equation proceeds analogously once it has been recast into 
the form of SDES.~~*~ As seen in Sec. II F, the FP model is 
formulated in terms of a FP equation for U and X, wherein 

BU,X and BX,U are null. The corresponding SDEs are 
thus28*29 

2. Implementation of step 3 

dU=Au(u,t)dt+ JBU(u,t)dW&t), 

dX=Ax(x,u,t)dt+ ,,@&%bW,y(t), 

wherein Wu and W, are independent Wiener processes. 
The Monte Carlo simulation of the FP model has been 

carried out using a large number (N=215=32,768) no- 
tional particles. The numerical procedure involves six 
steps: 

Although the time-dependent functions (y,, y2, and 
g2) are well defined, they involve complicated expected 
values of U and X that quickly decay to their limiting 
values. In order to avoid computing these functions on 
every time step, two simplifications will be introduced: 
Set g2=i for all t; and set y1 ct> =y2(t) 

= l/[l- (X’g, (4’U))], so that (B,) =2K( t). Recall that 
the values of these parameters were originally set to ensure 
that the the first two moments of V and Z remain constant. 
Thus, if these simplifications are employed, the moments 
must be verified, and, if needed, corrected on each time 

step. 

3. Initial conditions 

( 1) Given $J and Y, find V and 2 from Eqs. ( 1) and Initial values for (p and $ have been generated by 

(2); equally spaced samples ( 215) from the exact solution to the 

(2) using V and Z, invert Eqs. (32) and (33) to find 
lJ and X; 

(3 ) Advance U and X according to their SDEs (Sec. 
II F); 

(4) advance #, t/Y, and r,&,, according to their differ- 
ential equations (Sec. II D); 

(5) find V and Z, given U and X, from Eqs. (32) and 

(33); 
(6) find 4 and Y, given V and Z, from Eqs. (29)- 

(31). 
The only steps that create potential difficulties are 2 

and 3: step 2 because inverting Eq. (33) is nontrivial, and 
step (3) because the time-dependent functions appearing 
in the FP coefficients are complicated expected values of 
functions of U and X. 

1. Implementation of step 2 

Inversion of Eq. (33) is nontrivial for two reasons: 
when amaxfffmin, U can be found from V and Z only by a 
time-consuming numerical method; and even when 

amax=amin * these exponents are functions of U [Eqs. ( 13) 
and ( 14)]. These difficulties can be treated as follows. 

(i) For nonequivolume mixing, replace Q,, and ami, 
with a*=i(a! max +omin) in Eq. (33), SO that it becomes 
Z=zm,,(t)[(@q2( l-X2)]~*@‘? 

(ii) During one time step, treat q5’U in a*($’ U) 
and +*( ($)+$‘U) as constant, i.e., a*=a*[c$‘U(t)] 
=a*[+‘U(t-dt)], and v*=U(XI u>=(($>-#*)/q 
is constant. 

Step 2 can then be carried out in closed form: 

d 1 2 

( ) 

l/C@ 

u= ( v+v*~2+~ 
zmax(t) 

and 

Vf v* 
eu. 

342 Phys. Fluids, Vol. 6, No. 1, January 1994 R. 0. Fox 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.40 On: Wed, 30 Apr 2014 16:16:56



0 2 4 6 6 10 
7 

0.0 0.2 0.4 0.6 0.8 1.0 

l-<#‘>/<$zO> 

FIG. 5. The evolution of the (&/4(3) for the 1-D diffusion equation. 
Solid line: Equivolume mixing. Dashed line: Nonequivolume mixing. 
Dotted line: FP model. 

1-D diffusion equation with periodic boundary conditions 
evaluated at r= Dt= lo-” (4’=0.984 for the equivolume 
mixing case). 

4. Iso tropic turbulence 

Although results for this case are not be presented 
here, the Monte Carlo simulation of isotropic turbulence 
proceeds as above, but with the addition of the SDE for w 
given by Pope and Chen:30 

Jm=Aa,(w,t) + dW,(t). 

Thus each notional particle will carry with it random vari- 
ables 4, $, and. w. 

IV. MODEL VALlDATlON 

The improved FP model derived in Sec. II can be val- 
idated by comparing predicted statistics to the numerical 
results for the 1-D diffusion equation. Three types of pre- 
dicted quantities will be compared: expected values such as 
#‘, flatness factors, and superskewness; marginal PDF of 4 
and $; and the joint PDF of 4 and 9. 
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FIG. 6. The evolution of the scalar variance dissipation correlation func- FIG. 8. Top: The evolution of the scalar flatness factor, F6,+ for the 1-D 

tion, p, for the I-D diffusion equation. Solid line: Equivolume mixing. diffusion equation. Bottom: The evolution of the scalar gradient flatness 

Dashed line: Nonequivolume mixing. Dotted lines: Improved FP model. factor, Fe,* for the 1-D diffusion equation. Solid line: Equivolume mixing. 

Asterisk: Original FP model for the equivolume mixing case. Dashed line: Nonequivolume mixing. Dotted lines: FP model. 
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FIG. 7. Top: The evolution of the scalar flatness factor, F4,+, for the 1-D 
diffusion equation. Bottom: The evolution of the scalar gradient flatness 
factor, F4,* for the 1-D diffusion equation. Solid line: Equivolume mixing. 
Dashed line: Nonequivolume mixing. Dotted lines: FP model. 

0.0 0.2 0.4 0.6 0.8 1.0 
l-<#‘>/<r$=O> 

0.0 0.2 0.4 0.6 0.8 1.0 
l-<$i’>/<@& 

Phys. Fluids, Vol. 6, No. 1, January 1994 R. 0. Fox 343 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.40 On: Wed, 30 Apr 2014 16:16:56



3.01.“““““““““““‘1 3.0 l---------l 
2.5 - 

2.0 - 

2 1.6 - 
/‘\ 

1.0 
j \ 
:,.-.\ ‘,, 

.b 

; ,,,, Q,,*; 
OJ- 8 

‘b,\ 

- p. ,p:‘....... 
- 

, ,i : 

0.0 ,,‘.l 

r:.:.&_ ;; 

\ i, 

-1.6 -1.0 -0.6 0.0 0.6 1.0 1.5 
Scalar 

-1.6 -1.0 -0.6 0.0 0.6 1.0 1.6 

Scalar gradient 

3.0 yj 

2.5 - 
2.0 - 

;“.. 
1.0 

y 
/ ‘?. 

\ 

,,,( \-::--;r’,,; 
‘.. 

;j-.‘“‘?,;. 

‘.,. . l$, 
.\ :’ 

0.6 L *p-..\-+, . ~ . ..! 
-,‘,,’ ‘1 . ..‘.........’ . . . . ‘.*, .\ __ 

0.0 
(,. +: 

“\;‘?, \ 
., . . . 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Scalar 

FIG. 9. The scalar PDF for the equivolume mixing case. Top: The 1-D 
diffusion equation at 4’=0.725 (solid), 0.596 (dotted), 0.501 (dashed), 
U.397 (dash-dot), and 0.301 (dash-dot-dot-dot). Bottom: FP model at 
d’zO.693 (solid), 0.623 (dotted), 0.507 (dashed), 0.413 (dash-dot), 
0.304 (dashdot-dot-dot). 

PIG. 10. The scalar gradient PDF for the equivolume mixing case. Top: 
The 1-D diffusion equation at 4’=0.725 (solid), 0.596 (dotted), 0.501 
(dashed), 0.397 (dash-dot), and 0.301 (dash-dot-dot-dot). Bottom: 
The FP model at $‘=0.693 (solid), 0.623 (dotted), 0.507 [dashed), 
0.413 (dash-dot), and 0.304 (dash-dot-dot-dot). 

A. Expected values 

Plots of scalar RMS (4’) vs r= Dt from the 1-D dif- 
fusion equation are shown in Fig. 3. The FP model results 
found by solving Eqs. (17) and ( 18) are also shown. The 
model predictions are satisfactory both for small and large 
r. Plots of (3) also show good agreement between the FP 
model and the 1-D diffusion equation. From Eq. (21) it 
can easily be shown that for large t, ($2)/4(J12) --, Dt for 
the FP model. This is in good agreement with the 1-D 
diffusion equation (Fig. 5). 

The scalar variance dissipation correlation function 
[Eq. (3)], p, is shown in Fig. 6. For the equivolume mixing 
case, the FP model slightly overpredicts the 1-D diffusion 
result; however, the rate of increase is well predicted. All 
the error is generated in the initial period, where the scalar 
dissipation rate is very large. For the nonequivolume mix- 
ing case, the FP model predictions are initially very good, 
but the agreement deteriorates as 1$‘-+0. This is due, at 
least in part, to the simplifications made in Sec. III C to 
simplify Eq, (33). In any case, the improved FP model’s 
predictions of p are superior to the original model, as can 
be seen in Fig. 6. 

The flatness factors for the scalar and the scalar gra- 
dient, defined, respectively, by 

W-Gm4) 
F4.#= (&)2 

and b 

w4> 
F4.“=(3>2 ’ 

are shown in Fig. 7. The FP model shows satisfactory 
agreement with the equivolume mixing case, but underpre- 
diets F4,# for the nonequivolume mixing case. Note that all 
curves appear to be approaching the Gaussian limiting 
value of three. 

Similar observations apply to the superskewness, de- 
fined by 

W-(W) 
F6.4= ($93 

and 

<*9 
F6,$=p-j3 ’ 

shown in Fig., 8. Here, the Gaussian limiting value is 15. 
The underpredictions in the nonequivolume mixing case 
are no doubt again due to the simplifications made in Sec. 
III B to allow the inversion’of Eq. (33). 
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FIG. Il. The scalar PDF for the nonequivolume mixing case. Top: The FIG. 12. The scalar gradient PDF for the nonequivolume mixing case. 
1-D diffusion equation at ~$‘=0.701 (solid), 0.598 (dotted), 0.499 Top: The 1-D diffusion equation at $‘=0.701 (solid), 0.598 (dotted), 
(dashed), 0.400 (dash-dot), and 0.300 (dash-dot-dot-dot). Bottom: 0.499 (dashed), 0.400 (dash-dot), and 0.300 (dashdot-dotdot). Bot- 

The FP model at &=0.732 (solid), 0.589 (dotted), 0.480 (dashed), tom: The FP model at 4’=0.732 (solid), 0.589 (dotted), 0.480 (dashed), 
0.391 (dash-dot), and 0.288 (dash-dot-dot-dot). 0.391 (dash-dot), and 0.288 (dash-dot-dot-dot). 

Similar comparisons of the higher-order scalar mo- 
ments can be made with DNS data for isotropic turbu- 
lence. However, since extensive comparisons have been 
made elsewhere between the mapping closure and DNS, it 
suffices to note that the mapping closure is equally appli- 
cable to 1-D diffusion as it is to DNS. The good agreement 
between the mapping closure and DNS thus carries over to 
the 1-D diffusion equation results presented here when 
plotted in terms of the scalar variance. (This fact has been 
exploited by others for the 3-D diffusion case.24) The only 
quantities that will be very different in the isotropic turbu- 
lence case are the variances (cf. Fig. 3 and Fig. 4), and 
these control only the rate of “collapse” of the joint PDF 
but not its form. 

B. Marginal PDF 

The scalar PDF for equivolume mixing appear in Fig. 
9 and the similarity between the 1-D diffusion equation and 
FP model results is remarkable. Moreover, as expected, 
both agree quite well with the mapping closurez and 
DNS.22 Since the underlying physics is different in each 
case, the fact that all produce very similar scalar PDF 
suggests that the form is essentially controlled by the dif- 

fusion process. This is also the conclusion that Gao and 
O’Brien7 arrived at for the cases of very large and verys- 
mall Schmidt number based on time scales arguments. 

The PDF of the scalar gradient, resealed as 
$*=@‘/$‘, is shown in Fig. 10. It can be seen that ini- 
tially the scalar gradient PDF is sharply peaked at the 
center, but that it also has extremely long tails. As time 
progresses, the scalar gradient PDF passes through a py- 
ramidal shape (which corresponds to the inverted parabola 
shape for the scalar PDF) before moving toward a Gauss- 
ian form. Except for the height of the center peak during 
the initial period, this behavior is well predicted by the FP 
model. 

The scalar PDF for nonequivolume mixing appear in 
Fig. 11 and the similarity between the 1-D diffusion equa- 
tion and FP model results is again quite good, especially 
considering the simplifications introduced in Sec. III B. 
Similar remarks apply to the scalar gradient PDF shown in 
Fig. 12. The principal difference between the FP model and 
the I-D diffusion equation is the behavior of the scalar 
PDF near the boundary at - 1, where the model overpre- 
diets the PDF. This overprediction leads to the underesti- 
mation of the flatness and superskewness, as seen in Figs. 7 
and 8. 
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FIG. 13. Scatter plots of the scalar and the magnitude of the scalar 
gradient for the equivolume mixing case. Top: The 1-D diffusion equation 
at &=0.725. Bottom: The FP model at $‘=0.693. 

FIG. 14. Scatter plots of the scalar and the magnitude of the scalar 
gradient for the equivolume mixing case. Top: The 1-D diffusion equation 
at $‘=0.301. Bottom: The FP model at 4’=0.304. 

C. Joint scalar, scalar gradient PDF 

The number of data points available are insufficient to 
generate good estimates of the joint scalar, scalar gradient 
PDF. Instead, scatter plots of the scalar (4) and the mag- 
nitude of the scalar gradient (@*) for the equivolume mix- 
ing case are shown in Fig. 13 for $‘zO.7. Although it is 
not possible to directly compare the heights of the PDF in 
terms of the general shape of the support of the joint PDF, 
the agreement between the FP model and 1-D diffusion 
equation is excellent. As expected for the pure diffusion 
case, the scalar gradient is bounded above by 
~,,,( 1 -@)e.soss (cf. Fig. 1). In the initial stages, &,, is 
on the order of $’ and thus has a strong effect on the shape 
of the joint PDF. The concentration of points near the 
upper boundary thus corresponds to fluid particles that are 
still well approximated by diffusion layers. 

model predicts a higher concentration of points near 
(- 1,O) than is seen with the 1-D diffusion equation. This 
is consistent with the results found for the marginal scalar 
PDF discussed above. Again, this discrepancy is no doubt 
due in large part to the simplification introduced in Sec. 
III B. 

V. CONCLUSIONS 

Scatter plots at a later time where 4’ ~0.3 are shown in 
Fig. 14. For this case, +z, = $max+‘/$’ z 1, and thus has 
little effect on the shape of the joint PDF. Note, however, 
that the 1-D diffusion equation result now consists of many 
points lying on observable curves instead of randomly scat- 
tered points. This effect is due to lamella depletion and 
becomes more and more pronounced as $’ decreases. 

An improved formulation of the FP model governing 
the joint scalar, scalar gradient PDF has been derived and 
shown to agree well with numerical simulations for non- 
premixed 1-D diffusion for the equivolume mixing case. 
The predicted evolution of the marginal and joint PDF 
show good agreement with the numerical simulation data. 
For the nonequivolume mixing case, the agreement was 
satisfactory, but not as good as in the equivolume mixing 
case, a fact due primarily to the simplification introduced 
in Sec. III B to make the model numerically tractable (i.e., 
setting amax =cY~~“=Ix*). AS pointed out in the Introduc- 
tion, the pure diffusion case studied here is relevant to 
turbulent scalar mixing studies, both as a limiting case and 
due to the fact that the marginal scalar PDF is nearly the 
same for pure diffusion and for isotropic turbulence. 

Scatter plots for the nonequivolume mixing case are For binary mixing in the pure diffusion case, the joint 
shown in Pig. 15 at 4’ z 0.5. The agreement between the PDF of the scalar and the magnitude of the scalar gradient 
FP model and 1-D diffusion equation is good, but not as is bounded above by a curve corresponding to a diffusion 
good as in the equivolume mixing case. In particular, the layer approximation. This boundary strongly affects the 
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initial form of the joint PDF. Its influence on the limiting 
form, however, is minimal and the joint scalar, scalar gra- 
dient PDF evolves toward a bivariate, independent Gauss- 
ian PDF for the pure diffusion case. Inclusion of this 
boundary for other initial conditions (e.g., mixing nonpre 
mixed zones with more than two initial concentrations) in 
the pure diffusion case will be nontrivial, since it will be 
generated by the superposition of more than one diffusion 
layer. 

The extension of the FP model to isotropic turbulence 
has been formulated and involves a random gradient 
stretching term in the scalar gradient drift coefficient. Ini- 
tial comparisons of the FP model with forced isotropic 
turbulence DNS data has been presented elsewhere.27 The 
additional gradient stretching term can lead to very large 
gradients. Thus, except near time zero, the joint scalar, 
scalar gradient PDF will not be bounded above in isotropic 
turbulence. Moreover, the difficulties noted above in the 
pure diffusion case associated with correct representation 
of the boundary should be mitigated by the lack of its 
importance in the isotropic turbulence case. 

The ability of the FP model coupled with the Pope and 
Chen model for m3’ to model DNS results for isotropic 
turbulence will be tested in future work. As discussed in 
Sec. III B, inclusion of the SDE for o is straightforward, 
involving only the addition of a third random variable for 
each notional particle in the Monte Carlo simulation. 

However, for complete validation of the FP model, higher- 
resolution DNS data than is usually available will be 
needed in order to adequately resolve the three-variable 
joint PDF. (Fox et al. ” have used 1283 DNS to study 
two-variable joint PDF, but found three-variable PDF to 
be inadequately estimated at this resolution.) 

Closing the PDF balance equation at the level of the 
scalar gradient allows for a direct treatment of the gradient 
stretching term. This is one of the primary motivations for 
formulating the FP model for the joint scalar, scalar gra- 
dient PDF instead of for only the scalar PDF. In compar- 
ison with turbulence moment closures, the FP model is 
thus analogous to a k--E model, predicting both the scalar 
“kinetic energy” and the scalar dissipation rate. When the 
closed terms for chemical source terms are added, the FP 
model can be used to study the effect of reactions on the 
scalar microscale, which is an important parameter in non- 
premixed combustion modeling. 

In order to be useful for wide-scale application in pdf 
modeling of reactive flows, further work is needed to assess 
the FP model’s ability to predict the joint scalar, scalar 
gradient PDF for more complex mixing cases. For exam- 
ple, cases that involve backmixing of partially mixed fluid 
will undoubtably require further modifications in the FP 
coefficients. In any case, given the acknowledged 
potentiaP3 of PDF methods for the computation of reac- 
tive flows in engineering and the key role played by turbu- 
lent molecular mixing models in their practical implemen- 
tation, further research to develop improved mixing 
models should be vigorously pursued. 
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