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A new formulation of the coupled-wave method for two-dimensional gratings is proposed. It is based on math-
ematical and physical results recently obtained for one-dimensional gratings. Numerical evidence obtained
for many different diffraction problems, including dielectric, metallic, volume, and surface-relief gratings,
shows that the new formulation outperforms the conventional one in terms of convergence rates. The specific
case of gratings with very small thickness, for which opposite conclusions on the convergence performance are
obtained, is studied and explained. The methodology can be applied to other numerical techniques that rely
on Fourier expansions of the electromagnetic fields and on grating parameters such as the permittivity and the
permeability. © 1997 Optical Society of America [S0740-3232(97)00108-7]
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1. INTRODUCTION
Recently, the coupled-wave method for describing the dif-
fraction of electromagnetic waves by one-dimensional
(1-D) gratings was revisited. A striking improvement of
the convergence performance was reported for TM
polarization1,2 (magnetic-field vector perpendicular to the
grating vector) and for the general conical mounting
case.1 This improvement was obtained by reformulating
the eigenvalue problem in the grating region. The main
result reported in Refs. 1 and 2 is that the use of the har-
monic coefficients of the relative permittivity or of the in-
verse relative permittivity has a huge impact on the con-
vergence of the coupled-wave methods. Moreover, as
shown in Refs. 1 and 3, it is surprising that the physical
intuition gained from asymptotic situations helps one to
understand the convergence performance of sophisticated
numerical methods. A more mathematical explanation
for the improvement in the convergence rate obtained in
Refs. 1 and 2 was later given by Li.4 More recently, these
results have been exploited by Li and Chandezon5 to im-
prove dramatically the convergence performance of the
coordinate transformation method6 for surface-relief grat-
ings with sharp edges. The net benefit of these works is
that, by now, at least two efficient, stable, and versatile
theoretical tools are available to model 1-D grating dif-
fraction problems for TE (electric-field vector perpendicu-
lar to the grating vector) and TM polarizations and for
conical mountings. In my opinion, other rigorous meth-
ods too may derive profit from the understanding recently
achieved for the coupled-wave method. In this paper, I
try to go further and consider two-dimensional (2-D) grat-
ing geometries. As rigorous methods for the analysis of
2-D gratings are especially demanding in terms of compu-
tational loads, it seems natural to study their modeling in
the spirit of the physical and mathematical understand-
ing developed in Refs. 1, 3, and 4. I focus on the coupled-
wave method7 of 2-D gratings. A new formulation, di-
0740-3232/97/0701592-07$10.00 ©
rectly inspired from the results obtained for the 1-D case,
is proposed, and its performance is discussed.
In Section 2 the new system of differential equations is

presented. As for the 1-D case, the new formulation does
not differ much from the conventional one. Basically, a
free parameter a is introduced in the differential equa-
tions to weigh the relative strengths of the harmonic-
coefficient matrices of the relative permittivity and of the
inverse relative permittivity. To show the efficiency of
the new formulation, various grating diffraction problems
are studied in Section 3. The convergence rates of the
two formulations are compared for volume, surface-relief,
dielectric, and metallic gratings. Based on the results re-
cently obtained for 1-D gratings, qualitative arguments
for understanding the impact of parameter a on the con-
vergence performance are given in Section 4. For the
sake of completeness, the case of thin gratings, for which
opposite conclusions are obtained, is reported. It follows
from the concluding remarks given in Section 5 that in ev-
ery case, except for the specific case of very thin gratings,
the new formulation outperforms the conventional one in
terms of convergence rates and provides an efficient tool
for modeling 2-D grating diffraction problems.

2. NEW EIGENPROBLEM FORMULATION
FOR TWO-DIMENSIONAL GRATINGS
As much has been said about it, the reader is assumed to
be familiar with the mathematical formulation of the
coupled-wave method. Throughout the paper, notations
are those of Refs. 1 and 8. I is the identity matrix, Kx
and Ky are diagonal matrices, E is a Toeplitz matrix
formed by the permittivity harmonic coefficients em,n , A
is a Toeplitz matrix formed by the inverse-permittivity
harmonic coefficients am,n , and S and U are vectors
formed by the space harmonic coefficients of the electric
and magnetic fields, respectively. The grating structure
1997 Optical Society of America
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is assumed to be periodic along the x and y directions
with periods Lx and Ly , respectively. The normal to the
grating boundaries is in the z direction. The first deriva-
tive in the z variable is denoted by a prime, and k0 rep-
resents the magnitude of the incident plane-wave vector
in vacuum. In the new formulation proposed in this pa-
per, the infinite set of first-order differential equations for
the electromagnetic fields is written as

k0
21S Sy8

Sx8
Uy8

Ux8

D 5 VS Sy
Sx
Uy

Ux

D , (1a)

with
tion tends to unity. In that asymptotic case, the 2-D
lamellar grating becomes a 1-D grating with a periodicity
along the x direction. From the work of Ref. 1, we know
that, in order to yield the fastest convergence rates, the
submatrix V2 has to be written as

F K xK y A21 2 K y
2

K x
2 2 E 2K xK y

G
@a 5 1 in Eq. (1b)]. Now let us consider the opposite
situation, in which the fill factor along the x direction
tends to unity. It is easily seen that the submatrix V2
has to be written as

F K xK y E 2 K y
2

K x
2 2 A21 2K xK y

G

V 5 F 0 0 K yE21K x I 2 K yE21K y

0 0 K xE21K x 2 I 2K xE21K y

K xK y aA21 1 ~1 2 a!E 2 K y
2 0 0

K x
2 2 aE 2 ~1 2 a!A21 2K xK y 0 0

G . (1b)
Indeed, second-order differential equations based on Eqs.
(1) can be used for effectively reducing the overall compu-
tational effort.8,9 The square matrix in Eq. (1b) is com-
posed of two submatrices in the upper right and lower left
corners, which are denoted by V1 and by V2 , respec-
tively.
In the conventional formulation, which was recently re-

visited by several authors,8–10 the matrix V is

V 5 F 0 0 K yAKx I 2 K yAKy

0 0 K xAKx 2 I 2K xAKy

K xK y E 2 K y
2 0 0

K x
2 2 E 2K xK y 0 0

G .
(2)

Strictly speaking, there is another conventional formula-
tion. In Ref. 8 the inverse matrix E21 is used in subma-
trix V1 , just as in Eq. (1b). In Refs. 9 and 10 as well as
in earlier studies7,11 matrix A is preferred. It should be
mentioned that the use of matrix E21 or A in submatrix
V1 has a negligible impact on the convergence perfor-
mance of both formulations.12 For the following compari-
son, the matrix V in Eq. (2) is used for the coupled-wave-
method implementation of the conventional formulation.
As for the 1-D case, the difference between the new and

conventional formulations is rather small. In submatrix
V2 of the formulation of Eq. (1b), the inverse matrix
A21 is incorporated through a parameter a. This param-
eter is a real positive number in the interval [0, 1], which
weighs the relative strengths of matrices E and A21 in
V2 . To understand the importance of parameter a on
the convergence performance (a more technical discussion
is given in Section 4), let us consider a 2-D lamellar grat-
ing with rectangular grooves. We denote by fx and fy the
fill factors along the x and y directions, respectively. The
fill factor is defined, along each direction, by the ratio be-
tween the groove width and the period. Let us first con-
sider a situation in which the fill factor along the y direc-
@a 5 0 in Eq. (1b)]. If the adequate submatrices are not
used to model these two asymptotic situations, and espe-
cially if the conventional formulation of Eq. (2) is used, a
slow convergence rate with strong oscillation amplitudes
similar to that reported in Fig. 5 of Ref. 1 will be ob-
served. This simple discussion proves that for 2-D grat-
ings, the differential equations of the coupled-wave
method should depend on the grating geometry. This is
one simple way to understand why parameter a was in-
troduced in the new formulation of Eq. (1b). Two other
interpretations for a will be given in Section 4. Finding
the optimal value of a that provides the fastest conver-
gence rate for a given grating geometry is a difficult task.
However, as will be shown in the next section, a good sub-
optimal value can be easily derived for simple grating ge-
ometries that are generally used in practice.

3. NUMERICAL EXAMPLES
In the numerical examples shown hereafter, a linearly po-
larized electromagnetic wave is obliquely incident at an
arbitrary angle of incidence u and at an azimuthal angle f
upon a grating. The angle between the electric-field vec-
tor and the plane of incidence is denoted c. For c 5 0°
and c 5 90°, the magnetic and the electric field, respec-
tively, is perpendicular to the plane of incidence. The
grating has a thickness h and is surrounded by two semi-
infinite media with refractive indices nI and nII . nI and
nII are related to the incident medium and to the sub-
strate, respectively. For numerical purposes the Fourier
expansions in the grating region and in the surrounding
media are truncated. In the following the truncation is
always operated in a symmetric way; the parameter M
denotes the highest order retained in the x and y direc-
tions (2M is the lowest order retained). M is called the
truncation rank and corresponds to a total of (2M 1 1)2

retained orders.
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The first result concerns a volume grating with a sinu-
soidal modulation of the relative permittivity:

er 5 e0 1
De

2
cos~2px/Lx! 1

De

2
cos~2py/Ly!,

with Lx 5 Ly . For this symmetric structure, it is natu-
ral to impose the condition that the differential equations
(1a) be invariant for the transformations x → y and
y → x. Thus the parameter a introduced in the new for-
mulation has to be equal to 0.5. Results of the compari-
son are shown in Table 1. The numerical values of the
zero-order reflected amplitude coefficients computed with
the two formulations are given as a function of the trun-
cation rank. We first observe that, in this simple case,
convergence is guaranteed for both formulations for a
truncation rank M 5 10, since the exact value of the
complex coefficient can be read as 269.13 1 7.55i (i2

5 21). A careful examination of Table 1 reveals that,
whatever the truncation rank is, the new formulation pro-
vides better estimates than the conventional one does.
Because only nine Fourier coefficients of the relative per-
mittivity are nonzero, this volume grating case is simple
and both formulations perform well. Let us now consider
more complex situations in which the Fourier expansion
of the relative permittivity is slowly converging because of
discontinuities.
The second example concerns a lamellar grating with

cylindrical grooves and equal periods along the x and y di-
rections. The cylinder diameter is denoted by D. Again,
for this symmetrical configuration, a is chosen equal to
0.5. Figure 1 shows the zero-order transmitted intensity
versus the truncation rank for the two formulations
(crosses and circles). Again, a faster convergence rate is
obtained with the new formulation. The third example is
a lamellar grating with square grooves, which was first
studied by Peng and Morris in Ref. 9 because several or-
ders are propagating in the substrate and in the incident
medium. On the whole, 14 orders are nonevanescent.
As in Fig. 7 of Ref. 9, Fig. 2 shows the diffraction efficien-
cies of the (0,0) and (1,0) transmitted diffraction orders
versus the truncation rank M. Especially for the zero-
order, the convergence rate of the new formulation is ex-
cellent: for 4 < M < 20 the zero-order transmitted in-

Table 1. Zero-Order Reflected Amplitude
Coefficients of a Sinusoidally

Modulated Gratinga

M Conventional Formulation (%) New Formulation (%)

1 268.15 1 11.45i 268.50 1 10.16i
2 268.97 1 8.30i 269.04 1 7.99i
3 269.09 1 7.73i 269.11 1 7.66i
4 269.12 1 7.60i 269.12 1 7.58i
5 269.13 1 7.57i 269.13 1 7.56i
6 269.13 1 7.56i 269.13 1 7.55i
7 269.13 1 7.55i 269.13 1 7.55i
8 269.13 1 7.55i 269.13 1 7.55i
9 269.13 1 7.55i 269.13 1 7.55i
10 269.13 1 7.55i 269.13 1 7.55i

aThe parameters are nI 5 nII 5 1, e0 5 16, De 5 15, h 5 l, Lx

5 Ly 5 0.1l, u 5 f 5 c 5 30°, and a 5 0.5.
tensities do not differ by more than 0.1%. The fourth
example concerns a nonsymmetric grating geometry with
parallelepiped grooves. Figure 3 shows the zero-order
reflected intensity as a function of the truncation rank.
For this nonsymmetric case, the periods along the x and
y directions are equal, but the two fill factors strongly dif-

Fig. 1. Zero-order transmitted intensity of a lamellar grating
with cylindrical grooves etched in a substrate of refractive index
nII 5 2. Other grating parameters are nI 5 1, h 5 l, Lx
5 Ly 5 0.1l, D 5 0.5Lx , u 5 f 5 0, c 5 90°, and a 5 0.5.
The dotted curve is obtained with the new formulation for a
5 0.237 and for an incident plane wave polarized along the y di-
rection.

Fig. 2. (0,0) and (1,0) transmitted intensities of a lamellar grat-
ing with square grooves etched in a substrate of refractive index
nII 5 1.5. The grating parameters are those given in the cap-
tion to Fig. 7 of Ref. 9: nI 5 1, h 5 l, Lx 5 Ly 5 1.2l, fx
5 fy 5 0.5, u 5 f 5 0, c 5 90°, and a 5 0.5.



Philippe Lalanne Vol. 14, No. 7 /July 1997 /J. Opt. Soc. Am. A 1595
fer: fx 5 0.1 and fy 5 0.8. A normally incident plane
wave polarized along the y direction is considered, and
the parameter a is given by

a 5 d fyS 1 2
d fx
2 D 1

fyLy

fxLx 1 fyLy
~1 2 d fx!~1 2 d fy!,

(3)

where dx 5 1 if x 5 1 and 0 if not. The choice of Eq. (3)
is not unique and will be discussed in the next section.
We just note that according to the above discussion on the
introduction of parameter a in Eq. (1b), a 5 1 if fy 5 1,
a 5 0 if fx 5 1, and a 5 0.5 if fy 5 fx and Lx 5 Ly (sym-
metric case). In this nonsymmetric case, the best perfor-
mance in Fig. 3 is achieved for the new formulation. The
last example is related to a metallic lamellar grating with
square grooves. The incident medium is air, and the sub-
strate is glass (nII 5 1.5). The high and low optical in-
dices of the grating are nh 5 (3.18 2 4.41i)1/2 and nl
5 1, respectively. So the grooves are metallic and sur-
rounded by air. A comparison of the convergence rates of
the two formulations is shown in Fig. 4, where the absorp-
tion is plotted versus the truncation rank. Again, a
faster convergence rate is obtained with the new formu-
lation.

4. DISCUSSION
In every numerical example provided in Section 3, the
convergence performance of the new formulation is better
than that of the conventional one. Considering, for in-
stance, the numerical results of Figs. 2 and 3, plateaux
are obtained with the new algorithm but not with the con-
ventional one. In these two cases, numerical results are
more accurate with the new formulation and 289 retained
orders (M 5 8) than with the conventional formulation
and 2025 retained orders (M 5 22). It is worth men-
tioning that, strictly speaking, retaining 2025 orders in
coupled-wave-method computations is far beyond any ca-
pability of today’s personal computers. Except in the vol-
ume grating case, in which a conical diffraction problem
was investigated, in every example provided in this pa-
per, symmetry considerations similar to those reported in
Ref. 13 were exploited in the code to take advantage of the
diffraction-problem degeneracy and to reduce memory re-
quirements. Thus 529 orders, instead of 2025, were ac-
tually considered in the computation. Unfortunately,
these symmetry arguments do not hold in general. In
the recent studies of Refs. 9 and 10, for instance, the
maximum truncation ranks used in the tests are only 8
and 12, respectively. Thus the analysis of 2-D gratings is
extremely demanding in computational effort. This is
the reason why any convergence improvement like the
one reported herein has major practical interest.
As the new algorithm presented in this paper is di-

rectly inspired by the 1-D case (see the simple arguments
provided in Section 2 for fx 5 1 or fy 5 1), it is natural to
consider the following question: Can the understanding
that we have from the 1-D case be applied to explain the
convergence improvement observed for the 2-D case and
to choose a good value of parameter a? To my knowl-
edge, two interpretations are available to explain why the
use of matrix E or A21 strongly influences the conver-
gence performance of the coupled-wave method for 1-D
gratings. A physical argument based on the study of the
quasi-static limit is given in Ref. 1. The quasi-static
limit refers to an asymptotic situation in which the grat-
ing period is infinitely small compared with the wave-
length. A more mathematical explanation of the perfor-

Fig. 3. Zero-order reflected intensity of a nonsymmetric lamel-
lar grating with rectangular grooves etched in a substrate of re-
fractive index nII 5 2. Other grating parameters are nI 5 1,
h 5 l, Lx 5 Ly 5 0.1l, fx 5 0.1, fy 5 0.8, u 5 f 5 0, and c
5 90°, and a is given by Eq. (3).

Fig. 4. Absorption of a lamellar grating composed of metallic
grooves with refractive index nh 5 (3.18 2 4.41i)1/2 and depos-
ited on a glass substrate of refractive index nII 5 1.5. Other
grating parameters are nI 5 1, h 5 0.2l, Lx 5 Ly 5 0.5l, fx
5 fy 5 0.6, u 5 f 5 0, c 5 90°, and a 5 0.5.
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mance improvement was given by Li4 for lamellar
gratings. Let us first consider how Li’s analysis can be
applied for 2-D gratings.

A. Boundary Conditions inside the Grating Region
According to Li, for TM polarization of 1-D gratings, the
new formulation converges faster because it uniformly
satisfies the boundary conditions in the grating region,
whereas the conventional formulation does so nonuni-
formly. In other words, the new formulation uniformly
preserves the continuity of the electromagnetic-field
quantities that should be continuous across permittivity
discontinuities of lamellar gratings. Let us consider the
elementary cell depicted in Fig. 5. It corresponds to a
lamellar grating with rectangular grooves. The y compo-
nent of the electric field is perpendicular and tangential
to the S1 and S2 boundaries, respectively. Following the
results of Ref. 4, when writing down the differential equa-
tions so as to match uniformly the boundary conditions in
the grating, we must consider Laurent’s rule (products of
type ESy) for the S1 boundary whereas the inverse rule
(products of type A21Sy) has to be considered for the S2
boundary. In my opinion, it is not possible to formulate
the differential equation of the coupled-wave method in a
spatially dependent manner. Thus, except if it is deeply
revisited and because of the intrinsic nature of 2-D grat-
ings, the coupled-wave method cannot be formulated in a
way such that boundary conditions are uniformly satis-
fied in the grating region. Similar conclusions probably
hold for the differential14 and coordinate transform meth-
ods. In general, it is expected that this result also holds
for any rigorous method relying on a Fourier expansion of
the relative permittivity. However, being aware of the
fact that boundary conditions cannot be matched every-
where, we can apply a compromise by trying to match
them as much as possible on spatial average. To illus-
trate our purpose, let us consider again the grating geom-
etry of Fig. 5. In the unit cell, the surfaces of the vertical
walls parallel to the x axis and to the y axis are 2hfxLx
and 2hfyLy , respectively. Thus the relative weights of
vertical walls parallel to the y axis to the x axis are u
5 fyLy /(fxLx 1 fyLy) and 1 2 u, respectively. On spa-
tial average, the y component Sy of the electric field is
parallel to a vertical wall with a probability u and perpen-
dicular to a vertical wall with a probability 1 2 u. For
the y component Sy of the electric-field vector, products of
type ESy and A21Sy have to be considered with relative

Fig. 5. Unit cell of a 2-D lamellar grating with rectangular
grooves. In this top view, the horizontal and vertical lines, S1
and S2 , represent two surface boundaries of the rectangular
groove.
weights u and 1 2 u, respectively. Thus parameter a
can be read as u. This is the justification of Eq. (3),
which is used for the numerical results of Section 3.
Note that the a value defined in Eq. (3) equals u [d signs
in Eq. (3) are added just to take into account asymptotic
situations for which 2-D gratings become 1-D gratings,
i.e., fy 5 1 or fx 5 1]. A similar derivation holds for the
x component Sx of the electric field. Of course, since the
electric field is supposed to be constant over all of the ver-
tical walls, this consideration, which is based on spatial
average, is only qualitative and provides only a rough ap-
proximation of the optimal value of a.

B. Quasi-Static Limit
Let us now consider how the physical argument of Ref. 1
can be applied for 2-D gratings. In the quasi-static limit,
1-D gratings are strictly equivalent to thin films, and no
evanescent orders have to be considered for their model-
ing. For TM polarization of 1-D gratings, the authors of
Ref. 1 showed that with the conventional formulation, an
accurate description of the quasi-static limit surprisingly
requires that all the evanescent orders are retained in the
computation. They concluded that the conventional for-
mulation is badly conditioned. A similar discussion can
be found in Ref. 15. On the contrary, as can be expected
from the thin-film analogy, the new formulation is well
conditioned, since the effective properties are adequately
described by retaining only the zero orders. To avoid any
confusion with the inverse-problem literature, ‘‘bad condi-
tioning’’ in this paper, as in Refs. 1 and 3, refers to a for-
mulation in which an infinite number of orders is re-
quired to model properly a situation (asymptotic limit)
that can in principle be modeled by retaining only the
zero orders. Similarly, ‘‘good conditioning’’ refers to a
formulation in which the zero orders are sufficient to
model the situation. In the quasi-static limit, the funda-
mental mode propagating in a 1-D grating structure is
simply a plane wave. For 2-D gratings the mode is no
longer a plane wave.13 Thus, because of the intrinsic na-
ture of the diffraction problem, the quasi-static limit of
2-D gratings cannot be properly modeled by retaining
only the zero order. This result holds for rigorous meth-
ods relying on a Fourier expansion of the electromagnetic
field inside the grating region.
However, as in the previous subsection, we can apply a

compromise. Although the electromagnetic field (eigen-
mode in the coupled-wave method) cannot be adequately
represented by retaining only the zero orders in the grat-
ing region, we can impose that the modulus b of the wave
vector of the fundamental mode (eigenvalue in the
coupled-wave method), supported by the periodic struc-
ture for a particular linear polarization of the incident
plane wave, be accurately computed. As shown in Ref. 1,
the convergence performance of a given formulation is
deeply related to its capability of providing b when retain-
ing only the zero orders. In the quasi-static limit, the ra-
tio b/k0 is the effective index of the periodic structure.

13

When only the zero orders in Eqs. (1) are retained, the ef-
fective indices hx and hy for a normally incident plane
wave linearly polarized along the x and y directions, re-
spectively, are
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hx~a! 5 @~1 2 a!e0,0 1 a/a0,0#
1/2, (4a)

hy~a! 5 @ae0,0 1 ~1 2 a!/a0,0#
1/2. (4b)

These expressions can be easily derived by using the
methodology developed in Ref. 13. When we retain only
the zero orders with the conventional formulation of Eq.
(2), the effective indices hx8 and hy8 for a normally incident
plane wave linearly polarized along the x and y directions
are

hx8 5 hy8 5 ~e0,0!
1/2. (5)

As was noted by Grann et al.,16 the effective indices hx8
and hy8 obtained with the conventional formulation are
strongly inaccurate. With the new formulation of Eq.
(1b), parameter a can be seen as a free parameter that
can be chosen17 such that the effective index coincides
with b/k0 for a particular linear polarization. For the
purpose of illustration, let us consider the case of the
lamellar grating with cylindrical grooves considered in
Section 2 for a normally incident plane wave polarized
along the y direction. According to Ref. 13, the effective
index in the quasi-static limit is equal to neff 5 1.130.
This result is obtained for normal incidence and for a
truncation rank equal to 30 (MEMT 5 30 in Ref. 13).
With my personal computer, this computation lasts 5
min. According to Eq. (4b), hy is equal to neff for a
5 0.237. In Fig. 1 the dotted curve represents results
obtained with the new formulation for a 5 0.237 and for
an incident plane wave polarized along the y direction.
Of course, identical results are obtained for a 5 0.763
and a polarization along the x direction. It is noticeable
that the new formulation with a 5 0.237 outperforms the
conventional one and provides a faster convergence rate
than that obtained with the new formulation and a
5 0.5. This is not surprising if we note that the diffrac-
tion problem analyzed in Fig. 1 corresponds to a subwave-
length grating with a small period-to-wavelength ratio
(Lx /l 5 Ly /l 5 0.1). In this case the convergence per-
formance is driven more by quasi-static limit consider-
ations than by arguments based on the uniform matching
of the boundary conditions in the grating region.
In the most general formulation, the matrix V2 in Eq.

(1b) can be written as

V2 5 F K xK y a1A21 1 ~1 2 a1!E 2 K y
2

K x
2 2 a2E 2 ~1 2 a2!A21 2K xK y

G ,
(6)

where a1 and a2 are two real positive numbers in the in-
terval [0, 1]. In that case the couple (a1 , a2) may be
chosen so that both hx and hy coincide with the effective
index for polarization along the x and y directions. This
may be useful when incident plane waves not polarized
along either the x or the y direction are considered. This
paper is not intended to discuss for what values of a in
Eq. (1b) or of (a1 , a2) in Eq. (6) the fastest convergence
rate is obtained for a given diffraction geometry. As can
be seen from the above considerations, which are driven
in terms of effective indices and boundary conditions, this
problem is rather difficult and strongly depends on the
diffraction problem under consideration. It is preferable
to try to learn from one’s own experience, starting from a
suboptimal value of a that can be derived by simple con-
siderations.

C. Small-Depth Limit
In comparison with the strong mathematical argument
based on Fourier-series analysis, the simple consideration
in the quasi-static limit may appear weak. As was
shown for the grating with cylindrical grooves, it is not
exact. Also, in some conflicting situations, the condition-
ing of a given formulation has more impact on the conver-
gence performance than the uniform matching of bound-
ary conditions. As shown in Ref. 3, for 1-D lamellar
gratings and for small enough thicknesses, the conven-
tional formulation converges faster than the new one, al-
though the latter provides a uniform matching of the
boundary conditions. The same phenomenon occurs for
2-D gratings. For small enough thicknesses, the better
performance is obtained with the conventional formula-
tion. This is illustrated in Fig. 6, where the same metal-
lic grating as the one of Fig. 4 is considered for a very
small thickness, h 5 0.005l. Clearly, the worse perfor-
mance with the largest oscillation amplitudes is obtained
with the new formulation of Eqs. (1). This result can be
understood by considering that in the small-depth limit
(h → 0), effective indices of 2-D gratings for a normally
incident plane wave linearly polarized along the x or the
y direction are both equal18 to (e0,0)

1/2. Their values co-
incide with those of the conventional formulation of Eq.
(5) but not with those of the new formulation of Eqs. (4).
More details concerning the specific case of small-depth
gratings can be found in Ref. 3, where the convergence
rates of the coupled-wave and differential methods are
studied for 1-D thin gratings, and in Ref. 18, where the
influence of the depth on the effective properties of sub-
wavelength gratings is considered.

Fig. 6. Same as Fig. 4, except that h 5 0.005l.
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5. CONCLUSION
Through the physical and mathematical understanding
recently gained from the study of 1-D grating diffraction
problems, the coupled-wave method of 2-D gratings is re-
visited. Because of the intrinsic nature of 2-D grating
diffraction problems, the coupled-wave method cannot be
formulated in such a way that the electromagnetic-field
quantities that should be continuous across permittivity
discontinuities remain so. Also, no formulation can pro-
vide an accurate modeling of the electromagnetic field in
the quasi-static limit. By the application of a compro-
mise, an improved formulation of the coupled-wave
method for 2-D gratings is presented. A new set of first-
order differential equations was proposed for solving
Maxwell’s equations inside the grating region [see Eqs.
(1) and (6)]. Second-order differential equations can be
derived simply. The new formulation uses a free param-
eter a to weigh the relative strengths of matrices E and
A21 in the differential equations. Several grating dif-
fraction problems are considered to demonstrate the ca-
pability of the present method. In every case the new
formulation outperforms the conventional one. The ex-
ceptional case of very thin gratings, for which opposite
conclusions are obtained, is given and explained. The
numerical results clearly show the impact of parameter a
on the convergence rate of the new formulation. Consid-
erations based on the quasi-static limit and on the conti-
nuity of the electromagnetic field in the grating region are
given to explain this impact. This interpretation pro-
vides not only a physical insight but also a simple way to
derive good values of a for some basic grating geometries,
including volume or surface-relief, dielectric or metallic
gratings, with symmetric or nonsymmetric, round or
square grooves. It also suggests that finding the optimal
a* value that provides the fastest convergence rate for a
given diffraction problem is a difficult task. This is an
open question.
The efficiency of the new algorithm makes it possible to

model 2-D gratings with an improved accuracy by using a
given number of orders, or to save much computation
time for a given accuracy. Because 2-D gratings are ex-
tremely demanding in computational effort, the conver-
gence improvement achieved herein is of important prac-
tical interest. Although the improvement reported
herein is significant, the fact that the new formulation
neither satisfies the boundary conditions uniformly nor is
well conditioned in the quasi-static limit is obviously a
drawback that makes it conceptually less complete than
its 1-D version. This is due to the nature of the 2-D prob-
lem and due to the method itself, which relies on Fourier
expansions of the field and the relative permittivity inside
the grating region. However, as shown by the numerical
examples provided in this paper, the new algorithm can
be considered as a versatile and powerful tool to model
the diffraction of electromagnetic waves by 2-D gratings.
The approach developed in this paper can be generalized
for continuous-profile gratings and for stacks of lamellar
gratings and can be applied to other rigorous methods
that use a Fourier extension of the electromagnetic fields
in the grating region.
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