818 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING, VOL. ASSP-35, NO. 6, JUNE 1987

Improved Fourier and Hartley Transform Algorithms:
Application to Cyclic Convolution of Real Data

PIERRE DUHAMEL, MEMBER, 1EEE, AND MARTIN VETTERLI, MEMBER, IEEE

Abstract—This paper highlights the possible tradeoffs between arith-
metic and structural complexity when computing cyclic convolution of
real data in the transform domain.

Both Fourier and Hartley-based schemes are first explained in their
usual form and then improved, either from the structural point of view
or in the number of operations involved.

Namely, we first present an algorithm for the in-place computation
of the discrete Fourier transform on real data: a decimation-in-time
split-radix algerithm, more compact than the previously published one.
Second, we present a new fast Hartley transform algorithm with a re-
duced number of operations.

A more regular convolution scheme based on FFT’s is also pro-
posed.

Finally, we show that Hartley transforms belong to a larger class of
algorithms characterized by their ‘‘generalized’” convolution prop-
erty.

I. INTRODUCTION

HE radix-2 fast Fourier transform algorithm was first

explained by Cooley and Tukey in 1965 in a version
on complex data [1]. But, as most of the data to be treated
are real instead of complex, the need for a version of the
FFT on real data removing extra calculations from the
complex case became soon apparent, and such a program
was quickly published by Bergland [3].

In fact, this program does not seem to have been widely
used, and many people preferred either to compute a
length 2" real DFT either by the use of a length 2"
complex FFT plus some additional operations, or to com-
pute two real FFT’s at a time by using one length 2" com-
plex FFT.

Let us also notice that a version of the radix-2 FFT
algorithm was also published in [4] for symmetric real-
values series, and that the algorithm by Preuss [2] can be
straightforwardly applied to real and real symmetric data.

More recently, the 2" FFT algorithms with the mini-
mum known number of both multiplications and additions
were also proposed in a real-data version [6], [7], [10],
[11].

At about the same time, Bracewell [8] proposed the use
of fast discrete Hartley transforms (FDHT), which are real
in nature, as a substitute to the FFT for computing cyclic
convolutions of real data.

Manuscript received March 14, 1986; revised December 10, 1986.

P. Duhamel is with CNET/PAB/RPE, 92131 Issy-les-Moulineaux,
France.

M. Vetterli was with the Ecole Polytechnique Fédérale de Lausanne,
CH-1007 Lausanne, Switzerland. He is now with the Center for Telecom-
munications Research, Columbia University, New York, NY 10027.

IEEE Log Number 8613866.

But it was not clear at all what approach was best suited
for cyclic convolutions of real sequences when taking into
account the structure of the algorithm as well as its com-
putational complexity.

Nevertheless, the well-known approach of computing
real convolutions through FFT algorithms on complex
data will not be considered here, and we shall only con-
sider programs specially designed for real data since they
obtain the lowest known number of arithmetic operations
without an increase in program length.

In Section II, we shall first briefly present the two basic
approaches considered here: convolution using FFT’s and
convolution using FDHT’s. This comparison shows that
the former has some advantages when considering arith-
metic complexity, while the latter has a simpler structure
since the DHT is self-inverse.

Arithmetic complexities for these cyclic convolution
schemes are given when the FFT and FDHT are com-
puted by the algorithms with the lowest known number of
both multiplications and additions.

Sections III and IV describe improved FFT and FDHT
programs, together with a more regular FFT-based con-
volution scheme.

First, a decimation-in-time split-radix FFT algorithm
on real data is presented, with a more regular structure
and a more compact code than the previously published
DIF one (it has exactly the same arithmetic complexity).

Section IV presents an improved FDHT algorithm, al-
lowing us to obtain any length —2" FDHT using only two
additions more than the best FFT algorithms known for
real data (four additions more for the whole convolution).
In this section, we also show how to derive improved
FDHT algorithms from their FFT counterparts.

Finally, Section IV discusses a generalized convolution
property, which includes the various approaches pre-
sented in this paper.

II. THE INITIAL SCHEMES
A. Convolution Using FFT’s
Let { X/ } be the DFT of {x, }:

N-1

2wnk 27nk
X{= 2 xn<cos i — j sin ™
n=0 N N (1)
N-1
= 2 x, W
n=0

0096-3518/87/0600-0818%$01.00 © 1987 IEEE

DUHAMEL AND VETTERLI: IMPROVED FOURIER AND HARTLEY TRANSFORM ALGORITHMS 819

Fig. 1. Usual convolution scheme using FFT’s.

TABLE 1
NUMBER OF ARITHMETIC OPERATIONS FOR A CycLIC CONVOLUTION ON REAL DATA
Number of Additions
FFT-Based
Number Initial Initial with Improved

N of Mult. FFT-Based FDHT-Based 2 Forward FFT’s FDHT-Based
8 15 49 53 55 53
16 43 141 153 155 145
32 115 373 393 403 377
64 291 933 977 995 937
128 707 2245 2329 2371 2249
256 1667 5253 5425 5507 5257
512 3843 12 037 12 377 12 547 12 041
1024 8707 27 141 27 825 28 163 27 145
2048 19 459 60 421 61 785 62 467 60 425

Since the DFT has the convolution property, the convo-
lation scheme has the structure given in Fig. 1.

When the initial sequences {x,} and {h,} are real,
{X.}, {H,}, and {¥,} have Hermitian symmetry: ¥, =
Y*,, and the forward DFT has to be performed on real
data, while the inverse FFT has to be performed on data
with Hermitian symmetry. Both kind of FFT’s have been
published [7], [11]. They have the same arithmetic com-
plexity, and can be performed in place. (In fact, an FFT
on data with Hermitian symmetry can be derived by re-
versing the flow graph of an FFT on real data.)

If the FFT’s are performed with the lowest arithmetic
complexity (lowest number of both additions and multi-

plications) using FFCT [6] or split-radix {7] algorithms,

it leads to the following number of operations:
M FFT —oMf 42 +3- (2" - 1)

=2""'2n-3)+3 (2)
Aionv, FFT _ 2A{l7 + 3(2"-1 - 1)
=2""Y6n -7)+5 (3)

where M{,’ (respectively, A{’) is the number of multipli-
cations (respectively, additions) needed to compute a
length 2" DFT on real data.

In these operation counts, it has been taken into account
that, due to the symmetry of both X! and HY, Y4 can be
obtained with two real multiplications for k = 0 and k =
N/2, and N/2 — 1 complex multiplications (three real
mults + three real adds each) fork =1, - -+, N/2 —
1.

This arithmetic complexity is rather low, as shown in
Table 1, since it is based on a powerful FFT algorithm
for real data.

Let us recall here that both split-radix and FFCT algo-
rithms meet the minimum possible number of nontrivial
real multiplications up to and including length N = 16,
and the minimum possible number of nontrivial complex
multiplications (i.e., #j, 1) up to and including length

N = 64, while possessing the lowest known number of
additions needed to compute a length N = 2" DFT.
Nevertheless, a disadvantage of this scheme is that it
needs both forward transform on real data and inverse
transform on complex data with Hermitian symmetry.
This results in an increase in program length for the cyclic
convolution. ‘/

B. Convolution Using FDHT’s

The discrete Hartley transform is defined as the sum of
the real and imaginary part of the Fourier transform:

N-1
2wnk 27nk
X" = 2 x,(cos —— + sin .
k n=0 " N N

As can be seen from the definition, the DHT is its own
inverse, and it is a real transform. Furthermore, the con-
volution in the time domain corresponds to the following
operation in the Hartley domain:

Y} =X} Hi(k) + X", - Ho(k) (5)

where H ﬁ(k) [respectively, Hﬁ(k)] is the even (respec-
tively, odd) part of the Hartley transform of { &, 1.

So, the convolution scheme using Hartley transforms
becomes as shown in Fig. 2. ‘

When considering (5), the ‘‘multiplications’’ in the
Hartley domain seem to need two multiplications per
point, but it it easy to see that by grouping the computa-
tion of Y% and Y",, this number can be reduced to 3 /2
multiplications per point:

(4)

Y H,(k) Ho(k) || Xk (6)
Y., —Ho(k) H.(k)||X"
and (6) is easily recognized as a complex multiplication,
needing only three real multiplications and three addi-
tions.

If we consider also that for k = 0 and N /2, (6) reduces

820 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35. NO. 6. JUNE 1987

h

h*% {'k"} :V,,}={.n:. hn}
g

Fig. 2. Convolution scheme based on FDHT’s.

b

to
Yo =Xt H.(0)

(7)
Yip = Xkp H(N/2)

one can see that the set of ‘*multiplications’’ in the Har-

tley domain needs exactly the same number of operations

as in the Fourier domain.

The remaining part of the scheme given in Fig. 2 to be
evaluated consists of the FDHT.

FDHT was first introduced by Bracewell [8] in a radix-
2, decimation-in-time version, and Sorensen et al. [9] re-
cently proposed different types of FDHT algorithms. (See
also [15].)

Inspection of these algorithms allows the following
conclusions.

A radix-2 FDHT algorithm needs N — 2 additions more
than the corresponding FFT algorithm on real data and
the same number of multiplications.

The split-radix algorithm, which seems already to be
one of the best compromises for real-data FFT’s (lowest
known number of operations, in-place computation, com-
pact program), also gives the lowest known number of
operations for the FDHT, but requires 2(2" -
(—1)""'/3) additions more than the corresponding split-
radix FFT algorithm on real data.

If the FDHT in Fig. 2 is computed through a split-radix
algorithm, this gives the following arithmetic complexity
for the cyclic convolution:

MP™ PRT = 2771 (2 — 3) + 3 (8)

2n—1 _ (_1)"'1
3

. T
A ﬁonv DH’

=2""Y6n-7)+5+4

n—1 17 4 n-1
2 <6n 3>+5 3(1) . (9)
One can see that convolution using FDHT’s will have a
simpler structure, even if the FDHT programs have the
same code length as FFT programs, due to the self-in-
verse property of the Hartley transform. This simplicity
will be obtained at the cost of a small increase of the num-
ber of additions.

II1. ImprOVED FFT-BASED CONVOLUTION SCHEMES

These initial schemes described in Section II can be im-
proved in two ways: either by an improvement of the basic
algorithm (FFT on real data, FDHT) or by an improve-
ment of the structure of the convolution scheme. The FFT-
based convolution scheme is relevant to both improve-
ments.

A. A DIT Split-Radix FFT Algorithm on Real Data

The decimation-in-frequency (DIF) split-radix decom-
position applies a radix-2 decomposition to the even-in-
dexed samples, and a radix-4 decomposition to the odd-
indexed samples of the transform { X, }. The decimation-
in-time (DIT) split-radix decomposition of the DFT, being
the dual algorithm of the DIF SRFFT, considers sepa-
rately the even-indexed samples {x,,}, the samples =1
(mod 4), {x4,+,}, and the samples =3 (mod 4): {x4,.3}.
This DIT decomposition is given in (10).

N/2-1 Nj4-1
xf = kZo W+ Wy Zo Xon 1 WA
= ne

N/4-1
+ W]3Vk Z() x4,,+3W}‘V"k.
n=

(10)

When the initial sequence {x,} is real, (10) involves
DFT’s of real data only. Furthermore, since these DFT’s
have Hermitian symmetry, it is possible to work ‘‘in
place’’ by using, for a DFT of length L, the L /2 + 1 first
locations for the real part of the corresponding samples of
the transform, and the L /2 — 1 remaining ones for the
imaginary part.

When two butterflies are done at the same time, this
algorithm requires exactly the same number of operations
as the DIF split-radix FFT on real data [7] and the FFCT
algorithm [6], [11], but requires only four different types
of butterflies to meet the minimum number of operations,
thus resulting in a more compact program. This hﬁs to be
compared to the eight different butterflies needed by the
DIF SRFFT [7] and the absence of compact looped pro-
grams for implementing FFCT [6].

The Fortran code corresponding to this algorithm is
given in Appendix I. This program uses the indexing
scheme given by Sorensen ef al. in [12], which gives the
usual three-loop structures of radix-2 or radix-4 pro-
grams.

It should be remarked that this program was written to
be as compact as possible, and that a much faster one
could be obtained by following the approach that was used
in the complex case [7].

Since run-time comparisons on general-purpose ma-
chines are very machine-dependent (and even compiler-
dependent), timings will not be given here. Nevertheless,
precise timings are more important on DSP’'s: we could
obtain run times as low as 235 us for a length-64 real data
FFT on a TMS 32010 (TI’s benchmarks are 400.2 us)
and 572 ps for a length-128 real-data FFT (versus 955 ms
for TI’s benchmarks).

B. A More Regular Convolution Scheme Using FFT’s

Even if the FFT program is compact and effective, the
convolution scheme of Fig. 1 still requires two different
FFT programs: a forward FFT on real data, and an in-
verse FFT on data with Hermitian symmetry.

We shall now propose a new scheme using two forward

DUHAMEL AND VETTERLI: IMPROVED FOURIER AND HARTLEY TRANSFORM ALGORITHMS 821

) AN NI Ny W
e}
Fig. 3. Modified FFT-based convolution scheme using only forward FFT's
on real data.

FFT’s on real data, at the cost of a few more additions:
this improvement is based on some of the remarks made
when studying FDHT’s.

The convolution property in the Hartley domain, as
given in (5), can be rewritten as follows, by reversing the
roles of X, and H,:

Yi = XI(k) - Hi(k)H";. (11)

But X (k), being the even part of the Hartley transform
of {x, }, is also the real part of the DFT of {x,}, and
X (k) is the corresponding imaginary part.
We can then rewrite (6) as follows:

Y: H{ H"||ReX{
' h h ! (12)
Y —k H —k —Hk Im Xk
which is also equivalent to a complex product.
Furthermore, since a DHT is the sum of the real and
imaginary part of a DFT, the last FDHT in Fig. 2 can be
replaced by an FFT followed by the sum of the real and
imaginary part of each DFT component, thus resulting in
the diagram of Fig. 3.
This scheme requires exactly the same number of op-
erations as the usual convolution scheme based on FFT’s,
plus N — 2 additions due to the + / — box:

Aﬁonv. fit _ 2"_1(671 - 5) + 3. (13)

This structure is now as regular as the one using FDHT’s,
to the price of about 2" /3 extra additions compared to
the FDHT scheme. It has the advantage of using only
usual FFT algorithms on real data, which should become
widely used due to their simplicity and compactness.

IV. ImprOVED FDHT ALGORITHM

As can be seen from Section II-B, DHT’s and DFT’s
are very simply related. In fact, FDHT algorithms, as
found in [8] and [9], can be improved by making full use
of the close relationship between Fourier and Hartley
transforms. In fact, nearly all the extra additions needed
to compute FDHT’s instead of FFT’s can be nested inside
the twiddle factors of the FFT, thus resulting in hybrid
FDHT /FFT algorithms.

By multiplying the DFT of {x,} by (1 + j), we obtain
(14):

(1 +)X} = (Re X4 — Im X{) + j(Re X{ + Im X7)

which means that multiplication of X{ by (1 + J) gives
us the Hartley transform of {x,}.
Let us apply this remark to the basic split-radix deci-

mation-in-time decomposition of the DFT [10] as given
in (10):
N/2-1
(T+j) - X,=Xr+jX" =0 +j) Z x,, Wk
Nj/4-1
+ (1 +J')W;v nZO x4n+1W?v"k

N/4-1

A HNDWE L x, W (15)

and with the following notations
{X}"} £ DHT of {x,,}
{XV/} £ DFT of {x4,,}
{X}'} & DFT of {x4,.3)}
(15) can now be rewritten as follows;
Xp + X" = X2 + jx%,
+[(1 +j) - w]xV

[+ WX (16)
Equation (16) is now the basic recursion of the improved
FDHT algorithm: it transforms the length N DHT into a
length N /2 DHT plus two length N /4 DFT’s, and some
multi Phcatlons by tw1ddle factors of the form (1 +
JYWhor(1 +j)wH

As in the case of FFT s on real data, the butterflies with
twiddle factors WY, have to be computed together with the
ones with twiddle factors Wy*. This needs (N /8 — 1)
general 6 mult-18 adds butterflies, plus one 0 mult-6 adds
butterfly (corresponding to k = 0) and one 2 mult-4 adds
butterfly (corresponding to k = N/8).

Iteration of these addition counts gives exactly the same
number as that obtained for FFT’s on real data, except for
the FDHT of length 4 which needs two extra additions.

This leads to

APt =2""Y3-n-5)+6 (17)

and the whole convolution with this algorithm will need
AP = 2n=1(gn — 7) 4+ 9. (18)

The number of multiplications is the same as for the other
schemes.

The convolution scheme using this new fast Hartley
transform algorithm now has the same number of multi-
plications and four additions more than the best known
scheme, with the advantage of using only a single DHT
program to be used twice.

This result is interesting theoretically since it is another
example, besides [6], that uses a decomposition of a
transform into smaller transforms of another type to
achieve a reduction in arithmetic complexity.

Furthermore, the process used for deriving this new al-
gorithm has interesting characteristics: it shows how the

822 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH. AND SIGNAL PROCESSING, VOL. ASSP-35. NO. 6. JUNE 1987

additional operations used to convert transforms of one
type (FFT’s) into transforms of another type (FDHT’s)
can be nested inside existing algorithm, and hence can
almost disappear. This may be useful for other transforms
as well.

Note also that a reverse procedure is also of interest
since the same procedure can be used to convert FDHT
algorithms into FFT algorithms; this shows that it is hope-
less to find FDHT algorithms requiring fewer arithmetic
operations than the corresponding FFT algorithms. In
fact, if there was a possibility of finding improved FDHT
algorithms, they could be used as a starting point for de-
riving improved FFT algorithms using the technique de-
scribed above. We have thus demonstrated that the only
improvement that can be expected from FDHT’s is a more
regular structure (self-inverse property), a fact which was
becoming more and more apparent from the recent liter-
ature.

From a practical point of view, it should be emphasized
that this new algorithm brings only a slight improvement
(N/3 additions) over the split-radix FDHT algorithm
proposed in [9]. Nevertheless, a Fortran implementation
is given in Appendix II for the purpose of providing the
precise computation of the ‘‘butterflies’’ converting the
FFT into an FDHT. It should be clear from what has been
stated above that the improvement in the number of ad-
ditions would produce an increase in the computational
speed only when in-line code is used. This happens when
programming DSP’s or when using autogen techniques
[16]. Otherwise, the program given in Appendix II will
certainly be slower than the one in [9].

V. THE ‘“‘GENERALIZED’’ CONVOLUTION PROPERTY

In fact, the existence of FDHT, which is a real-valued
transform possessing some kind of convolution property,
states a theoretical problem since it has been shown in
[13] that real transforms having a convolution property
could not exist.

The usual convolution property is defined as follows:

N-1
lety, = {x,} * {h,} = Zo x; ®h,_. (19)
The considered transform T will have the so-called con-
volution property if

T{y) = T{x)} ® T{h,} (20)

where & is the usual term-by-term multiplication. In other
words, the convolution product in the time domain be-
comes a usual multiplication in the transform domain.

But it was shown in [13] that the existence of ‘‘square’’
transforms having the convolution property depends only
on the existence of an « that is a root of unity of order N
and on the existence of N~'. In the case of the DFT, a =
Wy, as defined in (1), but the Hartley transform is not
such a transform, although it has some kind of convolu-
tion property. (In fact, it was also shown that a real trans-
form having the convolution property could not exist for
N>2)

Nevertheless, this contradiction is only apparent since
the ‘‘multiplication’’ in the Hartley domain is not the same
one as is defined in (19).

The FDHT belongs then to the larger class of trans-
forms having the ‘‘generalized’’ convolution property

N-1
lety, =x,*h, = 2 x ® h,_; (21)
i=0
then
T'{y.} = T'{x,} @ T'{h,} (22)

where @ is allowed to be different from the usual term-
by-term multiplication.

In fact, Ansari [14] has already shown that the discrete
Hartley transform is not the only combination of the DFT
coeflicients having the generalized cyclic convolution
property.

Further research of other members of this class of trans-
forms should be of interest.

VI. CONCLUSION

In this paper, we have first presented two usual schemes
for cyclic convolution of real signals via FFT or FDHT.
Operation counts are given for both of them using the
fastest known algorithms, showing that the FFT-based
convolution has a lower arithmetic complexity, but a more
complex structure.

Improvements are then made to both schemes since we
propose

® an improved FFT algorithm on real data with in-
creased regularity and compactness

¢ an improved FDHT algorithm which uses less oper-
ations than the previously proposed algorithms

¢ an FFT-based scheme using two forward transforms
on real data

¢ an FDHT-based algorithm with reduced number of
additions.

All operation counts are summarized in Table 1, allow-
ing one to choose the best tradeoff between low arithmetic
complexity and structural complexity.

As can be seen from Table I, the difference between the
arithmetic complexities involved are so small that they
will not have a strong influence on the timings of the dif-
ferent algorithms. Furthermore, the FDHT-based schemes
require the use of a special-purpose program for comput-
ing the FDHT of the input signal that will be used only
for the computation of cyclic convolutions since the
Hartley transform has no physical significance in itself.

These are the reasons why we believe that, in many
circumstances, the scheme using two forward FFT's
should be used since it provides a good compromise be-
tween structural complexity, arithmetic complexity, and
is based on an FFT program that should become widely
used, due to its low arithmetic complexity and regular
structure.

DUHAMEL AND VETTERLI: IMPROVED FOURIER AND HARTLEY TRANSFORM ALGORITHMS

SPLIT-RADIX, DECIMATION-IN-TIME FAsT FOURIER

~

N APPENDIX |

TRANSFORM

n = 2™: length of the transform.
x must be in natural order on input.

On output, x; will contain the real part of X;, k = 1

’

*++,n/2 + 1 and the imaginary part of X;, k = n /2,
ce e n.

This program uses the usual 4 mults-2 adds complex

multiplication algorithm.

(AR

20

40

60

subroutine splitdit{x.n.m)
dimension x{(1}
data rac2s2/0.707106778/

e 1

nt = n-t

do 5 t=1 .nt

tF(t . ge.J) go to 2
xt = x{})

x(J) = x(t)

x{t) = xt

k = n/2
if{k . ge.§J) go to &

is = 1

ig = 4

do 20 10=is . n, id
i1 = 1041

r1 = x(10)

x(10) = r1+x(it)
x(11) = ri-x(11)
continue

ts = 2%9d-1

id = 4*id

1f{is . 1t.n) go to 10

n2 = 2

do 100 k=2.m
n2 = n2*2

na = n2/4

-------- without mult-----------

ts = ¢

id = 2*n2
do 40 10=is . n-1,1id
i1 = 10+n4d
12 = {4+na
i3 = 12+n4
10 = x(12)+x(13)
x(13) = x(12)-x(13)
x{(12) = x(i0)-t0
x{10) = x(10)+t0
cont tnue

ts = 2%id-n2+1

ig = 4*49

1f(is. 1t .n) go to 30

1f{nd . 1t.2) go to 100

————————— with 2 real mult

1s = n4/2+1
ig = 2+n2
do 60 10=is.n-1, 4d
i1 = 104n4
12 = i14na
+3 124n4
t (x(12)-x{13))*rac2s2
t2 (x(12)+x(13))*rac2s2
x(12) = t2-x(11)
x(13) = t2+x(11)
x(i1) = x(10)-t¢
x(10) = x(10)+tt
cont inue
1s = 2%4d-n2+n4a/2+ ¢
td = 4*t¢a
1f{is. 1t.n) go to SO
e = 6.283185307179586/n2
a=:e
1f(nd.1t.4) go to 100
do 90 j=7.n4/2

oo

A3 = 3. *a
cct = cos{a)
sst = sin(a)

other butterflies--«--~-------- _

a2
83
84
85
86
a7
88
89
20
91
92
93
94
85
-1
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121
122

100
c

ccd = cos(al)

883 = sin(al)

A= jre

is = §

19 = 2°n2
do BO 1a0=1s.n-1, td

taQ+na

1D1-§-]4+2

tatsnd

ibt+n4

i82+n4

1bO+n4a

1b2+n4

>
~
LRI I

with 6 real mutt

€2 = x(ta2)*ccti-x(1b2)*ss?
d2 = -(x{ta2)*ss{+x(4b2)*cct)

c3 =
d3 =
t1
c3

c2+c3
c2-c3
t2 d2-d3
dld = d2+4d3
x(1a2) = -x(1b0)-a3
x(1b2) = -x{tb1)+c3
x(1a3) = x(1b1)+c3

"onow

x{1n3) x{ tb0)-d3
x(ibt) x{1a1)+t2
x{1b0) = x(1a0)-t1
x(ta0) » x(1aD)+t1
x(1a1) = x{ta1)-t2

cont inue
1s = 2vig-n2+}
id = 4*id
if{(is. tt.n) go to 70
cont {nue
cont {nue

return
end

APPENDIX II

x{183)*cc3-x(1b3)*ss3
~(x{ta3)*ss3+x(1b3)*cc3)

823

PARTS OF PROGRAM TO BE INSERTED IN THE DIT SpLIT-
Rapix FFT PrOGRAM TO OBTAIN AN FDHT PROGRAM

1) To be inserted after line 48.

1f(10.ne.1) go to 35
t0 = x{12)+x(13)

t1 = x(12)-x(13)
x(12) = x(10)-t0
x(10) = x(i0)+t0
x(13) = x(11)-t1
x{(11) = x(i1)+t1

go to 40

35 continue

2) To be inserted after line 64.

1f{(10.ne.(n4/2+1)) go to S5

55

tt = x(i2)*rac2
t2 = x(i3)*rac2
x(13) = x(11)-t2
x(11) = x(11)+¢2
x(12) = x(10}-t1
x{(10) = x(i0)+t4
go to 60

continue

3) To be inserted after line 83.

cci+sst
cc3+ss3
cc1-sst
cc3-ss3

cpst =
cps3 =
cms1 =
cms3 =

4) To be inserted after line 95.

75

1f(ia0.ne.j) go to 75

c2 = x{ia2)*cpsi+x(1b2)*cms1
d2 = x{ta2)*cms1-x(ib2)*cpst
c3 = x{(ia3)*cps3+x(ib3}*cms3
d3 = x(ia3)*cms3-x(ib3)*cps3
t1 = c2+4c3

c3 = c2-c3

t2 = d2-d3

d3 = d2+d3

x{(ib2) = x(iat)-c3

x(iat) x(1a1)+c3

x{1a3) x(ibt)-t2

x{ib1) x{ib1)+t2

x(103) x(1b0)+d3

x{(1b0) x(ib0)-d3

x(1a2) x(ia0)-t1

x(ia0) = x(i1a0)+t1

go to 80

cont inue

824 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35, NO. 6. JUNE 1987

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive criticisms,

REFERENCES

[1] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine cal-
culation of complex Fourier series,”’ Math. Compur., vol. 19, PP-
297-301, 1965.

{2} R. D. Preuss, *‘Very fast computation of the radix 2 discrete Fourier
transform,”’ JEEE Trans. Acousi., Speech, Signal Processing, vol.
ASSP-30, pp. 595-607, 1982.

{3] G. D. Bergland, “*A fast Fourier transform algorithm for real-valued
series,”” Commun. ACM, vol. 11, pp. 703-710, Oct. 1968.

[4] H. Ziegler, **A fast Fourier transform algorithm for symmetric real-
valued series,”’ IEEE Trans. Audio Electroacoust., vol. AU-20, pp.
353-356, Dec. 1972.

[5] 1. B. Martens, “‘Discrete Fourier transform algorithms for real-valued
sequences,”” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-32, pp. 390-396, Apr. 1984.

[6] M. Vetterli and H. J. Nussbaumer, *‘Simple FFT and DCT algo-
rithms with reduced number of operations,”” Signal Processing, vol.
6, pp. 267-278, July 1984,

{7} P. Duhamel, *‘Implementation of split-radix FFT algorithms for com-
plex, real, and real-symmetric data,”’ IEEE Trans. Acoust., Speech.
Signal Processing, vol. ASSP-34, pp. 285-295, Apr. 1986.

[8] R. N. Bracewell, ‘'The fast Hartley transform,’”’” Proc. IEEE, vol.
22, pp. 1010-1018, Aug. 1984,

[9] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman,
*‘On computing the discrete Hartley transform,’’ JEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-33, pp. 1231-1238, Oct. 1985.

{10] P. Duhamel, ‘‘Un algorithme de transformation de Fourier rapide 2
double base,”” Ann. Télécommun., vol. 40, pp. 481-494, Sept.~-Oct.
1985.

{11] M. Vetterli and H. J. Nussbaumer, ‘‘Algorithmes de transformation
de Fourier et en cosinus mono et bi-dimensionnels,’’ Ann. Télécom-
mun., vol. 40, pp. 466-476, Sept.-Oct. 1985.

[12] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, *‘On computing
the split-radix FFT,"" IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSP-34, pp. 152-156, Feb. 1986.

[13] R. C. Agarwal and C. S. Burrus, ‘*Fast convolution using Fermat
number transform with application to digital filtering,’" JEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 87-97, Apr.
1974.

[14] R. Ansari, ‘*An extension of the discrete Fourier transform,'’ JEEE
Trans. Circuits Syst., vol. CAS-32, pp. 618-619, June 1985.

[15] S.-C. Pei and J.-L. Wu, **Split-radix fast Hartiey transform.”’ Elec-
tron. Lent., vol. 22, pp. 26-27, Jan. 1986.

(16} L. R. Morris, **Automatic generation of time efficient digital signal
processing software,”’ JEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSP-25, pp. 74-79, Feb. 1977.

Pierre Duhamel (M'87) was bom in France in
1953. He received the Ingenieur degree in electri-
cal engineering from the National Institute for Ap-
plied Sciences, Rennes, France, in 1975, the Dr.
Ing. degree in 1978, and the Doctorat es Sciences
in 1986 from Orsay University, France.

From 1975 to 1980 he was with Thomson-CSF.
Paris, France, where his research interests were
in circuit theory and signal processing, including
digital filtering and automatic analog fault diag-
nosis. In 1980 he joined the National Research
Center in Telecommunications (CNET), Issy-les-Moulineaux, France,
where his activities were first concerned with the design of recursive CCD
filters. He is now working on fast convolution algorithms, including num-
ber theoretic transforms and fast Fourier transforms.

Martin Vetterli (M’87) for a photograph and biography, see p. 372 of the
March 1987 issue of this TRANSACTIONS.

