
925

†To whom correspondence should be addressed.
E-mail: suwhansung@knu.ac.kr

Korean J. Chem. Eng., 26(4), 925-929 (2009)
DOI: 10.1007/s11814-009-0155-1

RAPID COMMUNICATION

Improved fourier transform to estimate frequency responses

Yu Jin Cheon, Chun Ho Jeon, Jietae Lee, and Su Whan Sung†

Department of Chemical Engineering, Kyungpook National University, 1370
Sankyeok-dong, Buk-gu, Daegu 702-701, Korea

(Received 10 April 2008 • accepted 9 January 2009)

Abstract−For the automatic tuning of PID controllers, a new identification method is proposed to estimate the fre-
quency responses of the process from the activated process input and output. It can extract many more frequency re-
sponses as well as guarantee better accuracy compared with the previous describing function analysis algorithm. Also,
the proposed method can be applied to the case that the initial part of the activated process input and output is periodic
(cyclic-steady-state), whereas the previous method using the modified Fourier transform cannot incorporate the case.
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INTRODUCTION

PID controllers are the majority of the process controllers used
in industry because they give satisfactory control performance for
usual processes and have good robustness to modeling errors. The
tuning parameters of the PID controller have to be tuned with in-
depth consideration of the process dynamics to guarantee accept-
able control performance. Since the manual tuning depends on ex-
perience, it is inefficient and time-consuming. So, many studies have
been focusing on the autotuning of the PID controller recently. On
a demand from an operator or an external signal, the autotuner goes
through the whole procedure of activating the process, identifying
the model and tuning the PID controller in an automatic way.

Åström and Hägglund [1] proposed the original relay feedback
identification method to obtain an approximated critical point from the
relay oscillation and to tune the adjustable parameters of PID con-
trollers automatically. Their idea has been applied in many areas [2-7].

The describing function analysis [1] has been widely used to iden-
tify the ultimate information from the relay feedback signal. It is
derived on the basis of the Fourier series of the relay feedback signal,
where only the fundamental term of the series is considered. In gen-
eral, the obtained ultimate frequency and gain have good accuracy
for usual processes [8]. However, since the square signal is approx-
imated by one sinusoidal signal, it is always possible for high-order
harmonic terms to be dominant. Sung et al. [9] proposed a modi-
fied relay feedback method to obtain the ultimate data set more ac-
curately. Here, they used a two-level signal instead of the one-level
signal of the original relay feedback to reduce the high-order har-
monic terms. Also, Shen et al. [10] used a saturation-relay feed-
back method to reduce the high-order harmonic terms. Lee et al.
[11] applied the describing function analysis to the integrals of the
relay feedback signal, resulting in significant reduction of the har-
monics. Though the above-mentioned approaches have contributed
to improving accuracy of the estimates, they cannot still remove
completely the estimation errors, originated from the describing func-

tion approximation.
Sung and Lee [12] proposed the Fourier analysis method to over-

come the problems of the describing function analysis method. It esti-
mates the exact frequency response data of the process without any ap-
proximations. But, it can provide only one or two frequency response
data because it uses only the process data of the cyclic-steady-state.

Sung and Lee [13] and Ma and Zhu [14] proposed the most ad-
vanced nonparametic identification algorithm using a modified Fou-
rier transform. It can provide many more frequency response data
compared with the previous describing function analysis algorithm [1]
and the Fourier analysis algorithm [12]. Also, the estimates are exact.

The previous method of the modified Fourier transform can be
applied only to the cases that the initial part and the final part of the
activated process data are steady-state and cyclic-steady-state, respec-
tively, or both the initial part and the final part are steady-state. This
means that it cannot incorporate the case that both the initial part and
the final part are cyclic-steady-state. For this reason, we propose a new
frequency model identification method to incorporate more various
situations, applicable to all the three cases: the initial steady-state and
the final cyclic-steady-state, the initial cyclic-steady-state and the final
cyclic-steady-state, the initial steady-state and the final steady-state.

PROCESS ACTIVATION

The proportinal controller and relay feedback method have been
widely used to activate the process. Consider the three types of the
activated process input and output in Fig. 1. Both the initial part
and the final part of Fig. 1(a) are steady-state. The process is acti-
vated by a proportional controller. Fig. 1(b) shows the activated pro-
cess input and output of which the initial part is steady-state and
the final part is cyclic-steady-state. A biased-relay feedback method
is used to activate the process. Fig.1(c) is the process input and out-
put of which the initial part is cyclic-steady-state and the final part
is also cyclic-steady-state. The process is activated by the relay feed-
back method proposed by Park et al. [15]. The periods of the initial
part and the final part are the same.

Several algorithms such as the describing function analysis, Fou-
rier analysis and modified Fourier transform have been used to ex-
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tract the frequency responses of the process from the activated pro-
cess input and output. The describing function analysis can be ap-
plied to Fig. 1(b) and Fig. 1(c). But, only one or two frequency re-
sponses can be obtained by the describing function analysis. Also,
the estimated frequency responses are not accurate due to the ef-
fects of the harmonics. A Fourier analysis can estimate exact fre-
quency responses from Fig. 1(b) and Fig. 1(c), but it can extract
only one or two data. The modified Fourier transforms can identify
a wide range of frequency responses (theoretically, all frequency
responses) from Fig. 1(a) and Fig. 1(b). The estimates are exact.
But, it cannot be applied to Fig. 1(c). Table 1 summarizes the pre-
vious approaches. It is clear that no previous approaches can esti-
mate a wide range of frequency responses for the activated process
input and output of Fig. 1(c).

In this research, a new estimation method is developed to over-
come the limitations of the previous approaches. The proposed meth-
od can estimate a wide range of frequency responses from any cases
of Fig. 1(a), 1(b) and 1(c). Also, the estimates are exact.

PROPOSED IDENTIFICATION METHOD

Consider the activated process input and output of Fig. 1(c). The
initial part from ti to ti+pr is cyclic-steady-state, and the final part
from tf to tf+pr is also cyclic-steady-state of which the period is pr.
Let u(t) and y(t) denote the process input and the process output in
Fig. 1(c). Meanwhile, we can repeat the initial part from ti to ti+pr

to obtain the process input and output as shown in Fig. 2. Let uref(t)
and yref(t) denote the process input and the process output of Fig. 2.

Assume that the dynamics of the process is described by the fol-
lowing linear time-invariant system.

(1)

It is equivalent to the following differential equation.

(2)

Here, u(t) and y(t) are the process input and the process output, re-
spectively. It should be noted that (2) is also valid for u(t) and y(t) of
Fig. 1(c) as well as uref(t) and yref(t) of Fig. 2. That is, (3) is valid also.
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Fig. 1. Three types of process activation.

Table 1. Summary of previous approaches

Algorithms
Applications DFAa FAb MFTc

Initial steady-state and final steady-state Not applicable Not applicable Applicable
Initial steady-state and final cyclic-steady-state Applicable Applicable Applicable
Initial cyclic-steady-state and final cyclic-steady-state Applicable Applicable Not applicable
Number of estimated frequency responses One or two One or two Theoretically all
Accuracy Approximated Exact Exact

aDFA: Describing function analysis, bFA: Fourier analysis, cMFT: Modified fourier transform
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(3)

Then, we obtain (4) by subtracting (3) from (2).

(4)

Here, (t)=u(t)−uref(t) and (t)=y(t)−yref(t) are the deviated pro-
cess input and the deviated process output, respectively. Then, the
initial part of (t) and (t) from ti to ti+pr are zero-steady-state and
the final part of (t) and (t) from tf to tf+pr are cyclic-steady-state
of which the period is pr.

Let us define the following transform.

(5)

If the initial state of system is zero and steady-state, the following
is easily proven.

(6)

By applying (5) and (6) to (4), we can obtain the following equa-
tion.

(7)

den(s)=ansn+an−1sn−1+…+a1s+1 (8)

num(s)=bmsm+bm−1sm−1+…b1s+b0 (9)

Here, A(s) and B(s) are time-independent constants. Then, (7)-(9)
can be rewritten as follows.

(10)

(11)

(12)

Because (t) and (t) are periodic after tf, the integrals of the deriva-
tives (di (t)/dti, di (t)/dti, i=1, 2, 3, …) from tf to tf+pr are zero. For
the detailed proof, refer to [13]. Then, the following equations are
obtained.

(13)

(14)

(15)

So, we can obtain (16) by integrating (10) from tf to tf+pr.

(16)

In (16),  can be rewritten to (17) by integration
by parts.

(17)

Then, (16) is equal to (18).

(18)

By substituting iωj, j=1, 2, …, n for s in (18), (19) is obtained.

(19)

Here, (t)=u(t)−uref(t) and (t)=y(t)−yref(t). uref(t) and yref(t) are the
repeated signals of the initial part of Fig. 1(c) as shown in Fig. 2.
Now, we can calculate a wide range of frequency response data for
the specified n frequencies of iωj, j=1, 2, …, n from the activated
process input and output of Fig. 1(c).
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Fig. 2. The repeated signal of the initial part from ti to ti+pr.
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It should be noted that (19) is also applicable to Fig. 1(a) and Fig.
1(b). For the activated process input and output of Fig.1(b), the period
of the initial part of Fig. 1(b) can be assumed to be pr because the
initial part is constant. Here, pr is the period of the final part of Fig.
1(b). And, uref(t) and yref(t) are constant because the initial part is
steady-state. So, (19) is applicable to Fig. 1(b), where, pr is the period
of the final part and uref(t) and yref(t) are the process input and output
of the initial part.

Without loss of generality, the period pr of (19) can be assumed
to be any small value for the activated process input and output of
Fig. 1(a) because the initial and final parts are constant. Then, (19)
is applicable to Fig. 1(a), where, pr is any small value and uref(t) and
yref(t) are the input and output of the initial part.

SIMULATIONS

Consider the following third-order plus time delay process:

(20)

We activated the process using the relay feedback method pro-
posed by Park et al. [15] as shown in Fig. 3(a). Fig. 3(b) shows the
estimated frequency responses by the proposed method. It demon-
strates that the proposed method provides the exact frequency re-
sponse data of the process. Fig. 4(a) corresponds to the activated

process input and output when the measured process output data
are contaminated by uniformly distributed random noises between
−0.01 and 0.01. As shown in Fig. 4(b), the proposed method shows
the acceptable robustness of the proposed method to the measure-
ment noises.

CONCLUSIONS

A new method is proposed to estimate a wide range of frequency
responses of the process. The proposed method provides exact esti-
mates and it can incorporate all the cases of the initial steady-state
and the final cyclic-steady-state, the initial cyclic-steady-state and the
final cyclic-steady-state, the initial steady-state and the final steady-
state. Simulation study confirms that the proposed method is appli-
cable to the case that the previous approaches cannot incorporate
and it shows acceptable robustness to measurement noises.
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