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Purpose: Head motion during PET brain imaging can cause significant degradation of image quality.

Several authors have proposed ways to compensate for PET brain motion to restore image quality

and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for

alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the

authors present a data-driven motion estimation method using a preprocessing technique that allows

the usage of very short duration frames, thus reducing the intraframe motion problem commonly

observed in the multiple frame acquisition method.

Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are

reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolu-

tion registration algorithm and subsequently compensated for. For this study, the authors used 8 PET

brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After recon-

struction and prior to motion estimation, known motion was introduced to each frame to simulate head

motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation

with respect to frames of different length, the authors summed 5-s frames accordingly to produce

10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames

were then compared to the original PET image reconstruction without motion compensation.

Results: The authors found that our method is able to compensate for both gradual and step-like

motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex

volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on

average) than the other types investigated. Preprocessing of 5-s images was necessary for successful

image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible

to motion introduced between CT and PET acquisitions.

Conclusions: The authors have shown that they can estimate motion for frames with time intervals

as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe

motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4946814]
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1. INTRODUCTION

PET brain imaging is negatively impacted by head motion

during PET imaging as well as between CT and PET imaging.

The loss of resolution and misalignment of the CT attenuation

map due to motion can cause distortions affecting the image

quality and quantitation of PET images. In healthy volun-

teers undergoing simulated imaging and Parkinson’s disease

(PD) patients being PET imaged, continuous or drifting type

motions, repetitive motions occurring about a mean position,

and large step motions that resulted in a sustained change

in position were observed.1 In this study long drift motions

measured throughout healthy subject scans correlated to the

subject falling asleep; whereas, for PD subjects these motions

often reflected a commonly observed tendency to pull to one

side. Drifting motions up to 13 mm were observed for one PD

subject. Rotations of up to 3.0◦were present in several PD data

sets. In one case, brain drifts of up to 6 mm were measured in

the striatum, and up to 15 mm in the occipital cortex region. In

another study, about 15% of 500 2-h brain scans which were
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divided into 24 5-min frames had more than 3 mm intraframe

motion.2 This may occur despite head-restraints to limit mo-

tion3–5 where typical translations in the range of 2–20 mm

and rotations of 1◦–4◦ were observed, depending on the type

of mask and the duration of scan. Please note that the actual

impact of motion due to rotations depends on the choice of the

rotation center.

A number of authors have proposed methods to estimate

and compensate for such head motion during PET brain imag-

ing.6–12 Motion estimation can be broadly grouped into

external-tracking based and data-driven methods. External

tracking utilizing an electro-mechanical system was used in

Green et al.;13 however, by far the most commonly used

method to track motion is with infrared stereo cameras by

affixing passive reflective markers1,3,4,6,7,10,11,14–21 or active

markers that emit light22 to the head of the patient. Recently,

researchers have begun investigating the use of structured

light cameras, such as the Microsoft Kinect23 or other de-

vices5,9,24 which can be used to track the surface of the head

without the need for markers. Data-driven methods which

estimate motion from temporal frames of reconstructed PET

data using registration to a reference frame2,22,25–28 have also

been reported. These methods have the advantage that no

external equipment is necessary and motion compensation can

be applied retrospectively. Nonattenuation corrected frames

were used in Andersson et al.28 to avoid registration errors due

to motion that may have occurred between PET emission and

corresponding attenuation scan. Fulton et al.14 and Rahmim

et al.29 provide extensive reviews of the various methods of

motion tracking and compensation in PET.

In this work we report on a data-driven motion estimation

strategy for PET brain imaging which also uses nonattenua-

tion corrected images reconstructed from clinical patient list-

mode PET data to avoid errors associated with misaligned

CT images.2 The list-mode data are first divided into frames

of 5 s, which are then reconstructed to produce a sequence

of 3D nonattenuation corrected PET brain images. In this

paper we will use the term “reconstructed frames” and images

interchangeably. The images are then preprocessed (details

discussed in Sec. 2.C) and spatially registered using an auto-

mated image registration algorithm30 to the first image in the

sequence to estimate the motion relative to it. In the absence of

prior knowledge about motion, we chose fixed 5-s frames for

data-driven motion estimation in PET. In prior work, the mul-

tiple acquisition frame (MAF) approach refers to the division

of PET data to multiple frames based on a motion-threshold

and compensation of motion by alignment and summation of

reconstructed frames. Unlike MAF approaches,3,4,15,22,31,32 we

derive the motion estimates from the PET data itself using im-

age registration. Similar methods as ours have been proposed

previously.2,25,26 However, none of the authors reported motion

estimation using image registration from frames as short as 5 s.

Jin et al.2 used 5-min frames, Chen et al.25 used frame sizes

of 2 s to 5 min, but did not report registration error from first

22 s of data that consisted of 2-s frames. Costes et al.26 used

2-min and longer frame sizes with intraframe motion occurring

at least 30 s apart. One major argument against MAF has been

the inability to compensate for intraframe motion due to the

use of frame sizes 30 s or longer.26 Jin et al.32 reported on a

MAF-based method using minimum frame size of 2–4 s but

the motion itself was estimated from external tracking system.

Herein, our objective is to investigate the tradeoffs in data-

driven motion estimation using frame sizes as small as 5 s.

Small frames have the potential to increase the accuracy of

motion estimation but also create more noise affected images

due to poor statistics compared to larger frame sizes. Further-

more, our method can be used to compensate for misalignment

errors in CT-based attenuation correction by aligning all other

PET reconstructed frames to a reference image that is closest

to the CT image, followed by estimating the motion between

the reference and the CT image.

2. MATERIALS AND METHODS

2.A. Patient data

We developed and tested our motion estimation method

using eight anonymized patient list-mode datasets which we

obtained with the approval of the Institutional Review Board

(IRB). The selected studies had very little intrinsic motion as

confirmed through visual assessment by an expert physician

observer. All the studies used F-18 FDG as the PET tracer

and the purpose of imaging was to assess regional glucose

metabolism in the brain. The injected dose was between 200

and 555 MBq (328 ±126 MBq) and the time of injection was

between 0.9 and 1.5 h before acquisition. All patient studies

used a CT based attenuation map which was acquired at the

beginning of the study on a Philips Ingenuity TOF PET/CT

system. Herein, it is assumed that these attenuation maps were

aligned with the start of the 600 s duration of PET acquisition.

Our motion estimation and compensation methodology is

schematically illustrated in Fig. 1. Each 10 min-long patient

list-mode dataset was subdivided into 120 5-s time intervals

(called frames) and reconstructed into 3D images. All process-

ing (motion estimation and compensation) was performed on

these images. Reconstruction was performed using PET/CT

Ingenuity TF reconstruction software (version 4.0.1) provided

by Philips Healthcare. The parameters of the protocols used for

reconstructing these images were those provided to customers

for use in the Ingenuity TOF PET/CT clinical systems. The

reconstruction used the RAMLA 3D algorithm33 (3 iterations,

33 subsets, and smoothing parameter set to normal) without

attenuation correction producing reconstructed frames with

128×128×90 voxels of 2×2×2 mm3 volume.

2.B. Motion simulation

To simulate head motion during acquisition, we artificially

added motion to the patient data. This was done by applying

six-degree-of-freedom (6-DOF) rigid-body transforms to the

5-s images of each patient as shown with a box with dashed

outline in Fig. 1. Therefore, our motion simulation only ac-

counts for interframe motion at a granularity of 5 s.

Four different motions were selected based on movements

reported clinically.1–4 The first was a Step motion which was

simulated as sudden movements. This motion was applied with

Medical Physics, Vol. 43, No. 5, May 2016



2445 Mukherjee et al.: Frame-based head motion estimation in PET brain imaging 2445

F. 1. Schematic diagram of our motion estimation and compensation pipeline. Our method divides PET list-mode acquisition data into a number of time

frames (N ) which are reconstructed. In our test strategy we apply artificial motion (box with dashed outline) to the images reconstructed with and without

attenuation. We then use preprocessing and image registration to estimate motion relative to the first image (reference). The resulting N −1 transforms are used

to move N −1 images to the pose of the reference image and all N images are then summed to produce a single motion compensated image.

a maximum extent of ∼13 mm in the axial-direction (Z-axis),

and about 4 mm in the lateral direction (X-axis). A small

rotation of up to 6◦ about X-axis was also added. The rotation

center was fixed at the center of the first 5-s reconstructed

frame. The second was a Gradual motion which was applied as

a slow drift along the lateral direction with a maximum extent

of 10 mm. This transform is intended to simulate the motion of

the head which can be associated with patients falling asleep

and is similar to that in Olesen et al.24 Gradual drifts, not

necessarily associated with patients falling asleep, have been

widely reported.1,5,7,27 The third motion was that of an actual

Volunteer. This motion was obtained by using a marker-based

visual tracking system34 tracking the head movement of a

human volunteer who was coached to move while lying in

the gantry of a SPECT/CT system where the motion tracking

system was installed. This movement consisted of a complex

set of small and large motions with a maximum extent of

3 cm. The fourth set called Baseline was without artificially

applied motion and contained only the pre-existing motion in

the patient datasets. Intraframe motion was also simulated by

summing the moved 5-s frames accordingly to obtain frames

with different time intervals, i.e., 10 and 60 s. Thus, for each of

the eight patient datasets, we simulated three different frame

sizes with four different motion transforms resulting in 96

motion datasets.

2.C. Preprocessing steps

As shown in Fig. 1, the images were preprocessed before

image registration to suppress noise and enhance the outer

edges of the brain. Our preprocessing steps consisted of

Gaussian smoothing coupled with a median filter, followed by

a nonlinear gamma correction to enhance the contrast of the

edges. Together, these operations smoothed the reconstructed

frame while preserving the edges needed for image regis-

tration. All the preprocessing filters were 2D and therefore

applied to the volume slice-by-slice. Gaussian smoothing with

σ = 2 pixels was applied for noise reduction. A median filter

with a wide square neighborhood (17×17 pixels) was applied

for additional smoothing while preserving the edges of major

structures. This smoothing degraded the contrast which was

regained using a gamma power function35 with an exponential

of γ = 2.5 (γ > 1 signifies an expansion and γ < 1 signifies a

compression). The gamma power function raises the intensity

of each pixel P to the power of γ which is then scaled by

the maximum voxel value M . Thus, the new pixel value was

obtained from P′=M ∗ (P/M)γ.

An illustration of the alteration of the slices by our prepro-

cessing method is shown in Fig. 2, where the two rows show

the same slice from two different 5-s reconstructed frames

of patient data. In each row, the first image on the left is

the original reconstructed slice with pronounced noise, the

second is after Gaussian filtering, the third after the additional

median filtering, and the last image was obtained after gamma

correction. Line profiles of all four images are plotted together

on the right. The location of the outer edge of the brain in

these profiles is indicated by red arrows. Note that for both

slices the edge after preprocessing remains close to that in the

unprocessed image, while other variations in the profile are

suppressed.

Figure 3 further illustrates the stability of the outer edge of

the brain in 5-s PET images after preprocessing. The images

shown are edge maps identified using a Sobel operator in the

extraction method implemented in the image processing and

analysis tool Fiji.36 These images are meant for illustration

purposes only and were not used for image registration. The

top two rows show the overlaid edges in five slices of three

different preprocessed 5-s images selected from a patient, and

the bottom row shows the same images after adding simulated

motion. In all the images, red, green, and blue color channels

are used to overlay the three images. Therefore, the edges

appear in white where they overlap in all three images. The

top row shows the edges after the first stage of preprocessing,

i.e., Gaussian filtering, and the middle row shows the edges

after the full preprocessing sequence illustrated in Fig. 2.

From the top row, it is evident that the outer boundary of

the count distribution indicated by red arrows is consistent

across images (due to its white color). Everywhere else, the

edges do not perfectly overlap due to noise. By comparing

the top and middle row, it is evident that our preprocessing

sequence improved the continuity and consistency of the outer

edges compared to plain Gaussian smoothing. This presents

as improved sharpness of the edge and brightness of the white

color in the middle row overlays. Additionally, the spurious

edges in the region indicated by green arrows in the top row

(background) are also suppressed in the middle row due to

Medical Physics, Vol. 43, No. 5, May 2016
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F. 2. Effect of our preprocessing method on 5-s reconstructed frames. The two rows show the same slice from two randomly selected 5-s images in a patient

with small motion. In each row, the first image on the left is the reconstructed slice showing the level of noise in the frames, the second is after Gaussian filtering,

the third after additional median filtering, and the last image is obtained after gamma correction. The line profiles of all four images are plotted together on the

right for each row. The line profiles for the unprocessed slices are shown with dotted lines; dashed lines show the Gaussian filtered profiles, the dashed-dotted

lines show the median filtered profiles, and the final gamma-corrected profiles are shown in bold black lines. The outer edge of the distribution is indicated with

red arrows. Note that the preprocessing sequence keeps the outer edge intact.

nonlinear histogram adjustment by the gamma function. Thus,

gamma correction increased the consistency of the distribution

across images when motion was small facilitating image regis-

tration which is based on maximizing mutual information. In

the middle row, the orange arrows indicate better delineation of

the ventricles in the brain after preprocessing which are hard to

identify in the top row. The bottom row shows the preprocessed

slices from the same images after artificial motion was applied.

The displacement of the outer edges is clearly seen as the

red, green, and blue colors separate to a different extent in

proportion to the amount of motion.

2.D. Rigid-transform estimation

After preprocessing, the images were registered in 3D using

the ITK multiresolution registration algorithm.37 In this algo-

rithm, a multiresolution pyramid filter framework was used to

progressively down-sample the image at successive levels. The

transform parameters were estimated at the coarsest level by

computing the best transform (in an optimization sense) that

aligned one image onto the other and this estimate was then

used to initialize the registration at the subsequent finer level.

The registration method used a statistical mutual-information

F. 3. Five different coronal slices (slices numbers are at the bottom) of the overlays of the edges from three 5-s images of a brain PET study. Edges

were extracted using an edge enhancement operator. The top row shows edges extracted after Gaussian filtering only, middle row shows the same after our

preprocessing, and the bottom row shows the edges after our preprocessing when artificial motion is applied to the images. The edges for each of the three

images are displayed in a different color (red, blue, and green). Thus when there is overlap of all the images, the edge is displayed as white. Note that the outer

boundary of the brain indicated by the red arrows is consistent across frames (in absence of artificial motion). The spurious edges in the background region

indicated by green arrows in the top row are also suppressed by preprocessing in the middle row. When motion is applied, the displacement of the outer edges

is clearly visible as the red, green, and blue colors separate to a different extent in proportion to the amount of motion. (See color online version.)
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metric38 to align the images. Mutual information based regis-

tration was chosen so that the differences in reconstructed

voxel values between images did not affect the registration

process. This method has been previously shown to be effec-

tive for interframe registration methods.25 Image registration

was performed using a regular step gradient-descent based

optimization algorithm. The optimizer used 6-DOF rigid trans-

form parameters, with 3-DOF for translations and 3-DOF for

rotations. No scale parameters were applied or estimated as

the images were from the same patient and a single modality.

The center of rotation was fixed at the center of the reference

image.

To avoid an accumulating error between successive inter-

frame registrations, the transform was estimated using the first

image in the sequence as a reference for registering subsequent

images. We performed this operation for the three frame sets

of different temporal duration (5, 10, and 60 s) and for every

patient.

2.E. Motion compensation

For motion compensation, the rigid-transform estimates

determined in Sec. 2.D were used to spatially transform each

image in 3D. The transforms estimated by the ITK registration

were of the following form:

−−→

Pic−

−→

C =Ri ∗

�−→

Pi−

−→

C
�

+
−→

Ti , (1)

where
−→

Pi is the position of a point in the ith frame and
−−→

Pic

is its compensated position, i.e., transformed to align with

the reference image; the rotation is specified by the 3 × 3

matrix Ri and the translation given by 3× 1 vector
−→

Ti . The

transform was estimated relative to the fixed center
−→

C , i.e.,
−→

C

= [63.5,63.5,44.5] voxels . Therefore,
−−→

Pic was obtained as

−−→

Pic =Ri ∗

−→

Pi+ (
−→

Ti+
−→

C −Ri ∗

−→

C ), (2)

where Ri and
−→

Ti +
−→

C −Ri ∗

−→

C constitute the matrix and offset,

respectively, that is used to specify the ITK transform for

motion compensation. We resampled each image using a

linear interpolation scheme in ITK. Once all the images were

spatially aligned, we summed them to generate a single motion

compensated image.

2.F. Assessment of accuracy of motion estimation
and compensation

To assess the accuracy of our data-driven motion esti-

mation method, we compared the estimated motion to the

“ground truth.” This ground truth was in fact an approxi-

mation since the motion between images was a combination

of the applied motion and the motion already present in the

patient data, for which we only had an estimate. Registra-

tion of the no-motion-added baseline images provided this

estimate. We compared the ground truth and estimated trans-

forms by applying them both to a fixed point in 3D space

and plotting its displacement along X , Y , and Z axes over

time. This point was selected as the centroid of the first

5-s baseline image. The ground truth transform was applied

as

−−→

Pigt=Rigt∗

(

−→

P0−
−→

C

)

+
−→

Tigt+
−→

C , (3)

where
−−→

Pigt is the position of a point
−→

P0 in the ith image

when moved by the ground truth transform. The ground truth

F. 4. Change in position of the centroid of the 5-s reference image for estimated versus ground truth transforms for patient 1 in Table I. The first row at the top

shows the displacement along X (lateral), second row along Y (vertical), and the third row along Z (axial) direction as estimated by registration of 5-, 10-, 60-s

images, and as per the true displacement (ground truth). The columns show the same for each motion type simulated, i.e., Step, Gradual, and Volunteer motion.

The Euclidean distance from ground truth is shown in the last row at the bottom. Registration of 5-s images produces the smallest distance error for all motion

types.

Medical Physics, Vol. 43, No. 5, May 2016
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�

Rigt,
−→

Tigt

�

which is a combination of the baseline mo-

tion estimates
�

Ribase,
−−−→

Tibase

�

and the applied motion
�

Rita,
−→

Tita

�

was obtained as

Rigt=Rita∗Ribase
−1,
−→

Tigt=
−→

Tita−Rigt∗
−−−→

Tibase. (4)

Herein, the baseline transform as estimated by image regis-

tration was inverted and combined with the true applied mo-

tion. The transforms estimated by image registration move

the subsequent images to the pose of the reference image,

which therefore must be inverted in order to move a point

in the reference image to the pose of the subsequent images.

Thus, the displaced position of the same point
−→

P0 in the ith

image when moved by the estimated transform was obtained

as follows:

−−→

Piest=Riest
−1
∗

�−→

P0−
−→

C −
−−→

Tiest

�

+
−→

C . (5)

For visual assessment of motion estimation, we plotted the

pair of positions
�−−→

Piest,
−−→

Pigt

�

for the selected point in Fig. 4

for each of the four motion types and three frame durations

in a patient study. We also measured the mean and vari-

ance of the Euclidean distance between the pair
�−−→

Piest,
−−→

Pigt

�

for all patients as a measure of motion estimation accuracy

(Tables II and III). For quantitative assessment of the efficacy

of the applied motion compensation, we transformed the

reconstructed frames by the estimated transform and summed

all the motion compensated images to obtain the registered

transform compensated (RTC) image. We did the same using

ground truth transformations which we will refer to as the

ground truth corrected (GTC) image. We then computed the

root-mean-squared difference (RMSD) of these images (RTC

and GTC) with respect to the baseline transform compen-

sated image (BTC). BTC was obtained by applying motion

compensation to the 5-s baseline images using the motion

estimated by image registration. BTC was thus expectedly

compensated for pre-existing motion in the data. Using the

BTC for RMSD computation allows the comparison of motion

compensation accuracy between different motion types and

frame sizes without the complicating factors of pre-existing

motion or reconstruction bias which would be present if the

full reconstruction were to be used. The difference images of

RTC and GTC with respect to BTC for all motion datasets were

also assessed visually.

3. RESULTS

3.A. Baseline motion estimation

We estimated the motion already present in the patient

studies (also referred to as Baseline) by registering 5-s re-

constructed frames to the first one in the sequence. As the

time intervals are made shorter, the data become photon-

limited and nonlinearity in the reconstruction may introduce

bias which could have an impact on our motion compen-

sation methodology. To assess the degree of such nonlin-

earity in the reconstruction, we compared the sum of the

reconstructed voxel values over the whole brain between
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the summed reconstructed (SR) frames and the full recon-

structed (FR) image. We determined that the SR from the 5-s

list-mode subsets were on average 3% lower in the total voxel

value than the FR.

We also examined the impact of using larger frame sizes

on motion estimation. The 10 and 60 s frames were created

by summing the 5-s frames. Baseline motion estimates for

the 5-s images are summarized in Table I with X being the

lateral direction, Y the anterior/posterior direction, and Z be-

ing the superior/inferior direction. The pre-existing motion in

these eight patients is small as seen from the values of the

maximum Euclidean distance from the start of the acquisition

(all <2 mm).

The effect of frame size on motion estimation is also shown

in Table I, where the standard deviation about the mean posi-

tion is shown for 5-, 10-, and 60-s frames. The standard devia-

tion is slightly higher for the 5-s frame-based estimation in part

due to increased noise in the estimates, but may also indicate

pre-existing motion that is estimated more accurately using

short duration frames. In patient 3 the actual motion is very

small, so most of the variance in the estimate using 5-s frame

size is due to noise. However in patient 1 along the Z-direction,

the higher standard deviation is due to the presence of a mono-

tonic trend. This trend can be visualized in Fig. 4 (third row,

middle column) as a displacement along Z-axis for the case of

Gradual motion that was simulated along X-axis only. From

Table I we can see that motion estimation using 5-s temporal

frame size was not disadvantaged by an increase in statistical

variation compared to the longer frames. We also assessed the

impact of larger frame size in Sec. 3.B using simulated motion

datasets, with the ground truth transformation computed as in

Sec. 2.F.

3.B. Accuracy of motion estimation versus
time interval

Figure 4 shows plots of the spatial displacement of the

centroid of the first 5-s baseline image in patient 1 when moved

by the ground truth transformation (solid lines) as defined in

Eq. (3); and the estimated transformation obtained by registra-

tion of 5-s (dotted lines), 10-s (dashed-dotted lines), and 60-s

images (dashed lines).

As is evident, the motion estimated from 60-s images is

rather coarse and has larger bias probably due to intraframe

motion. The motion estimated from 5-s frames (which matches

the frequency at which the motion was simulated) is the closest

to the ground truth motion. Table II quantitatively summa-

rizes the motion estimation accuracy for various motion types

shown in Fig. 4 using the average Euclidean distance (AED)

between the position of the centroid when moved by the

ground truth and the estimated transforms.

Larger AED implies lower accuracy. The standard devia-

tion of the Euclidean distance is also shown in Table II, with

larger values indicating larger deviations in the estimates from

ground truth during the imaging time. The AED was the largest

for the 60-s frame size due to intraframe motion for all motion

types except the Volunteer motion. For the Volunteer motion

type, 10-s frame size had an AED of about 5 mm for all

patients. This was caused by a reference image containing

uncompensated large motion (∼10 mm). The reference 10-s

image for Volunteer motion type was formed by adding two

5-s images displaced by about 15 mm along the Z-direction.

On one hand, this caused the centroid of the 10-s reference

image to be displaced with respect to the 5-s reference image

and is seen in Fig. 4 as a bias in the Z-axis plot (right column,

F. 5. Change in position of the centroid of the 5-s reference image for motion estimated with and without preprocessing versus the ground truth transform for

patient 5 in Table I. The first row at the top shows the displacement along X (lateral), second row along Y (vertical), and the third. row along Z (axial) direction

as estimated by registration of 5-s images with preprocessing (dotted lines), without preprocessing (dashed lines), and as per the ground truth (solid lines). The

columns show the same for each motion type simulated, i.e., Step, Gradual, and Volunteer motion. The Euclidean distance from ground truth is shown in the last

row at the bottom. Registration of 5-s images without preprocessing fails completely due to noise for some frames as seen by the large error.
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.4 third row from top). On the other hand, using a reference image

with motion artifacts resulted in underestimated motion. This

scenario can be avoided in practice by using at the minimum

a reference image reconstructed from a frame with small in-

traframe motion. The maximum position error was approxi-

mately 2 mm for 60-s images at the centroid for all motion

types. Additionally, the larger standard deviation at 60-s frame

size indicates even larger position errors during the imaging

time due to underestimation of motion. At 5-s frame size, the

position error for the centroid was lower than 0.6 mm for all

motion types. Table III shows the motion estimation accuracy

with and without preprocessing before image registration.

As is evident, the errors without preprocessing are larger

in all patients, especially patients 5–8. This is due to complete

failure of image registration due to noise in some reconstructed

frames as shown in Fig. 5. Figure 5 is similar to Fig. 4 and

shows the plots of the spatial displacement of the centroid of

the first 5-s baseline image in patient 5 when moved by the

ground truth transformation (solid lines) as defined in Eq. (3);

and the estimated transformation obtained by registration of

5-s images with (dotted lines) and without preprocessing

(dashed lines). There are large deviations from ground truth

for some frames of the order of 1 cm or more when no

preprocessing is used. This demonstrates the positive impact

of preprocessing in the registration of 5-s images.

3.C. Motion compensation efficacy

For a quantitative assessment of the efficacy of the applied

motion compensation, the RMSD between GTC and RTC im-

ages with BTC is shown in Table IV for each patient, interval,

and motion type.

In the studies used herein, we had one patient with a large

perfusion defect (patient 4) which may have facilitated the

image registration leading to the smallest RMSDs among all

the patients. The RMSDs of all patients were smaller after mo-

tion compensation and very close to the RMSD when ground

truth was used for compensation. This suggests the registration

of 5-s frames to be accurate. Note that adding 5-s registered

reconstructions for motion compensation introduce some bias

compared to the full reconstruction, in addition to that from

small pre-existing motion in patient data. With respect to mo-

tion compensation, Faber et al.21 demonstrated deconvolution

as a good postreconstruction compensation strategy which

may be employed once the motion is estimated via image

registration. For future clinical software implementation, we

therefore envision the motion transforms will be used to cor-

rect LORs within reconstruction using the full dataset.39

Figure 6 shows an example of our data-driven motion

compensation performed on patient 1 using 5-s reconstructed

frames.

The baseline reconstructions (no motion added) are shown

in the top row, with the leftmost being the full reconstruction

(without subdividing list-mode into frames), followed by the

summed reconstruction (SR) in the middle, and the BTC image

on the right. The corresponding difference images using BTC

are also shown alongside each reconstructed slice. The sec-

ond row shows uncompensated (left), corrected with ground

Medical Physics, Vol. 43, No. 5, May 2016
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F. 6. Motion compensation in patient 1 using 5-s reconstructed frames. Colorbar at the bottom of the figure shows the range of the voxel values in each

column.

truth (middle), and compensated with estimated motion (right)

slices for the Step motion. The third row shows the same for

Gradual motion, and the last row for the Volunteer motion as

described in Sec. 2.B. The uncompensated slices for all motion

types have the largest difference as expected. The difference

image for each uncompensated slice illustrates where the vari-

ations are a result of motion. The compensated images with

motion estimates (RTC, right column) are very similar to

the corrected images with ground truth motion (GTC, middle

column, rows 2–4). Note that the RMSDs in Table IV for the

RTC images are only slightly higher than the GTC images,

confirming the visual impression of how close the two images

appear in Fig. 6. This is also evident in the smaller difference

image. The Volunteer motion type was estimated with larger

error compared to the others. The complexity of this motion

was also higher compared to the other two types involving

all 6-DOFs. The RTC for all motion types was qualitatively

restored to the BTC image indicating motion compensation

efficacy.

4. DISCUSSION

As can be seen in Table II, we were able to obtain mo-

tion estimates within 1 mm accuracy using the 5-s images.

The result is that, as can be seen in Fig. 6 where there is

very little visual difference in the images using our estimate

and the ground truth, there are obvious differences with the

uncompensated images. The RMSD values further support

the utility of our motion estimation strategy. To appreciate

the difficulty of the task of motion estimation, please note

the high noise level of the 5-s transverse reconstructions illus-

trated at the left in Fig. 2. The 5 s duration of these frames

represents 1/120th of the data a physician would use for clin-

ical diagnosis. To the best of our knowledge, data-driven mo-

tion estimation from static PET frames as small as 5 s has

not been reported before. Using frame sizes of 5 s allowed us

to estimate gradual monotonic drifts with sub-mm accuracy.

Motion estimation using registration allows full 6-DOF mo-

tion compensation, which cannot be achieved using sinogram-

Medical Physics, Vol. 43, No. 5, May 2016
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based motion estimation as performed in data-driven gating

methods.40 Sinogram-based motion estimation can however

be used to identify when the motion occurred and improve

the efficiency of our motion estimation scheme by matching

the frames to instances of motion occurrence. Alternatively,

automatic frame division using tracking methods41 can be used

to divide frames based on motion occurrence. Recent work

in marker-less tracking42 using inexpensive consumer grade

depth-sensing cameras shows that motion occurrence can be

reliably detected. Further, if an external motion tracking device

is available, the registration-based estimates can be used to

augment the motion capture accuracy. This is especially useful

when acquisition conditions cause a loss of motion capture

accuracy, such as obstruction of line of sight, tracking device

malfunction, or loss of time-synchronization with the PET

list-mode, and insufficient signal to noise ratio due to patient

features, garment, etc.

In Jin et al.2 it was noted that image registration may work

as well as having true motion information for high count

frames, but accuracy may be less for noisy frames. Herein,

we have demonstrated a preprocessing method to suppress

noise effectively and use image registration for low count PET

frames (2–4×106 prompts in the 5-s frames). Table III demon-

strates the efficacy of our preprocessing method for reducing

the impact of the high noise level in the 5-s frames. Registra-

tion of the gross shape of the count distribution using mutual

information is not affected by any bias in the reconstructed

voxel values which may occur for OSEM-based reconstruc-

tion in low count data.43 However, registering to a reference

image with motion artifacts as in the case of the 10-s frames

for the Volunteer motion causes degradation of accuracy. As

the registration used reconstructions without attenuation and

scatter correction similar to the methods described in Jin et al.,2

the motion estimates were not affected by motion between

CT and PET images. Although we used fixed 5-s frame sizes

for registration which is computationally expensive due to the

increased number of reconstructions, future parallelization us-

ing GPUs on clinical Philips PET systems is expected to reduce

the time taken to obtain the motion estimates. Our preprocess-

ing and registration scheme takes about 8 s on a system with

2.7 GHz Intel processor and 8.00 GB RAM for registering two

reconstructed frames with 128×128×90 voxels irrespective

of the frame duration. On the same system, reconstruction of

5-s frames takes 4–5 min using a non-TOF protocol. However,

migrating from a CPU to GPU implementation has improved

the reconstruction times by at least a factor 10.

A limitation of data-driven motion estimation has been

that it is dependent on the specific radiotracer and may not

work equally well in other types of radiotracer images. In

this work we used brain perfusion images using F-18 FDG

and observed that in all the studies, the brain boundary of

the reconstructed voxel values was consistent between im-

ages when no motion occurred. The success of current data-

driven estimation scheme in other radiotracer distributions

will rely on the presence of similar consistent features. The

underlying assumption was that in practice the motion of a

patient’s head is also fairly rigid. However, if a change in voxel

intensity distribution was not associated with movement such

as a change due to tracer kinetics (e.g., in dynamic studies), or

if the movement did not present itself as a rigid pose change,

then the accuracy of data-driven estimation will be reduced. In

dynamic studies, motion may be estimated using our scheme

by registering adjacent frames where the shape of the voxel

intensity distribution appears fairly similar.

5. CONCLUSION

In conclusion, we have shown that we can estimate and

compensate for motion for time frames with time intervals as

short as 5 s with an accuracy of 0.3 mm using nonattenuation

corrected F-18 FDG PET brain images. Intraframe motion in

60-s frames results in degradation of accuracy to 2 mm or

more based on the motion type. Using a reference image with

motion artifacts causes lower accuracy as in the case of the

estimation of complex Volunteer motion from 10-s frames.

Finally, appropriate preprocessing is necessary for successful

image registration of short 5-s frames.

In future work, we will use patient data with motion dur-

ing emission and move the CT to the position of the frames

using registration-based motion estimates for attenuation and

scatter corrected reconstruction. We will also test the effect of

varied count distributions of other radioactive tracers (such as

FDA approved tracers for imaging of amyloid) on data-driven

motion estimation. We will investigate even shorter frames,

for example, 1-s, for registration-based motion estimation to

determine the threshold where image registration fails due to

insufficient count statistics, and integrate the motion compen-

sation transformations into the reconstruction source code or

into the list mode events.
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