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Labeling speech signals is a critical activity that cannot be overlooked in any of the early phases of designing a system based on
speech technology. For this, an e�cient particle swarm optimization (PSO)-based clustering algorithm is proposed to classify the
speech classes, i.e., voiced, unvoiced, and silence. A sample of 10 signal waves is selected, and their audio features are extracted.�e
audio signals are then partitioned into frames, and each frame is classi�ed by using the proposed PSO-based clustering algorithm.
�e performance of the proposed algorithm is evaluated using various performance metrics such as accuracy, sensitivity, and
speci�city that are examined. Extensive experiments reveal that the proposed algorithm outperforms the competitive algorithms.
�e average accuracy of the proposed algorithm is 97%, sensitivity is 98%, and speci�city is 96%, which depicts that the proposed
approach is e�cient in detecting and classifying the speech classes.

1. Introduction

�e classi�cation of speech into voiced, unvoiced, and silent
(V/UV/S) frames is a critical and di�cult topic that allows
for pitch estimation, automated speech identi�er, speaker
identi�cation, speech analysis, speech augmentation, and
speech signal compression based on whether or not the vocal
cords vibrate during the creation of the speech segment [1].
�e silent segment in human speech is a period of quiet that
may happen at the start of statements, between words/syl-
lables, or after utterances. When the vocal cords aperiodi-
cally vibrate, unvoiced segments are generated [2]. When the
vocal cords vibrate in a regular pattern, voiced segments are
generated. �e SUV segmentation is a more di�cult clas-
si�cation issue than the two-class voiced activity detection
(VAD) and voiced-unvoiced (VU) classi�cations since it is a

three-class problem. �e SUV segmentation can be ac-
complished by combining VAD and V/U segmentations,
according to research. �is will need previous knowledge of
the speech signal’s noise statistics, making the classi�cation
issue reliant on the noise statistics’ correctness. As a result,
the SUV segmentation is often viewed as a single issue.

1.1. Preliminaries. �e preliminaries of the research are the
parameters of the speech that are to be extracted for clas-
si�cation. �e �ve parameters of speech are as follows
(https://www.clear.rice.edu/elec532/PROJECTS00/vocode/
uv/uvdet.html).

1.2. Zero Crossing. �e frequency where the energy inside
the signal spectrum is focused is indicated by the zero-
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crossing count [3]. Voiced speech is produced by the pe-
riodic flow of air just at glottis activation of the vocal tract
and has a low zero-crossing count in general. A noise-like
source excites the vocal tract at a constriction in the interior
of the vocal tract, leading to unvoiced speech with such a
high zero-crossing count [4]. Silence is expected to get a
lower zero-crossing frequency than unvoiced speech but
equal to voiced speech.

1.3. Energy. Log energy Ev is as follows:

Ev � 10 log λ +
1
N

􏽘

M

m�1
S
2
p(m)⎛⎝ ⎞⎠. (1)

Here, λ represents a tiny positive constant that prevents
the log of zero from being computed. Ev shows the energy of
spoken data is substantially greater than that of silence. N
shows the zero-crossing count.

1.4. Normalized Autocorrelation Coefficient
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C1 defines that at a unit sample delay, the normalized au-
tocorrelation coefficient.

+e association between nearby speech samples is this
metric. Because of the significant association between ad-
jacent samples of voiced speech waveforms because of the
high presence of low-frequency energy in voiced sounds, this
value is near to 1 [5]. Unvoiced speech, on the other hand,
has a connection that is close to zero.

1.5.6ePredictorCoefficient. +e initial predictor coefficient
in a 12-pole linear predictive coding research using the
covariance technique is α1. At unit sample delay, this value
may be shown to be the inverse of the log spectrum’s Fourier
component. +e first LPC coefficient greatly deviates from
the spectra of the voiced, unvoiced, and quiet classes [6].

1.6. Normalized Prediction Error

Enp � Ev − 10 log 106 + 􏽘
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⎛⎝ ⎞⎠, (3)

ϕ(h, k) �
1
N

􏽘

M

m�1
Sp(m − h)Sp(m − k), (4)

where Ev is described above, ϕ(h, k) is the (h, k) of the
speech samples’ covariance matrix, and Ks are the predictor
coefficients. +is metric quantifies the nonuniformity of the
spectrum [7].

+e silence, voice, and unvoiced segmentation is a more
difficult classification issue than the two-class voiced activity

detection and voiced-unvoiced classifications since there is a
three-class problem [8]. Previous research has solely looked
at segmentation in terms of silent and nonsilent frames or
voiced and unvoiced frames. Furthermore, fundamental
metrics collected from the speech signal, including the
signal’s energy [9], zero-crossing rate, and degree of voice
periodicity, were employed to achieve the V/UV classifi-
cation. A single statistic from the speech signal, such as RMS
energy or zero-crossing rate, may be used to detect VN/S
signals. Because the quantity of any one parameter often
overlaps across categories, such a technique may achieve
only limited accuracy, especially when the speech is not
captured in a high-quality context. For a long time, the V/U/
S category has been engaged in defining the periodicity of
speech [10]. Due to the fact that vocal fold vibration does not
always result in a periodic signal, failure to recognize pe-
riodicity for voiced speech might result in a VN/S classifi-
cation mistake [11].

When it comes to SUV categorization, one of the most
significant considerations is the characteristics that must be
employed. SUV categorization outperforms the others in
terms of LPD-derived cepstrum and mel-frequencey ceps-
trum coefficients. Calculating the energy of a voice signal, on
the other hand, is a very simple operation, with most al-
gorithms relying on fundamental elements such as energy
contours and zero crossings [12]. In the prior and current
research, unsupervised learning, zero-crossing rate, pattern
recognition algorithms, cumulates, autocorrelation algo-
rithms, spectral parameters, and combinations of two or
more of these methods have all been employed to construct
SUV classification systems. +e following are the techniques
to classify voice, unvoiced, and silence:

1.6.1. Voiced Speech. When a system’s input excitation is a
nearly regular impulse sequence, the resultant speech is
referred to as voiced speech, as it seems visually periodic (see
Figure 1) [13].

1.6.2. Unvoiced Speech. Unvoiced speech occurs when the
stimulation is random noise-like, and the resulting speech
signal is likewise arbitrary noise-like with no periodicity.

+e graphic depicts the nature of natural enthusiasm and
the resulting unvoiced words [15]. +e unvoiced utterance,
as can be observed, will be nonperiodic. +e major dis-
tinction between voiced and unvoiced speech will be this.
+e autocorrelation analysis may also detect the non-
periodicity of unvoiced speech (see Figure 2) [16].

1.6.3. Silence. +e speech creation process involves the si-
multaneous development of vocal and unvoiced speech,
separated by a silent period [17]. +ere is no stimulation
delivered to the vocal tract during the silent phase; hence,
there is no voice production. Silence, on the other hand, is a
component of the speech signal. +e speech will be in-
complete if there is no quiet zone between vocal and un-
voiced discourse. Silence, combined with other vocal or
unvoiced words, may be used to identify particular sorts of
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noises [18]. Even if the silent area is negligible in terms of
amplitude/energy, its length is critical for comprehensible
speech. +e frequency where the energy inside the signal
spectrum is focused is indicated by the zero-crossing count
[3]. Voiced speech is produced by the periodic flow of air just
at glottis activation of the vocal tract and has a low zero-
crossing count in general. A noise-like source excites the
vocal tract at a constriction in the interior of the vocal tract,
leading to unvoiced speech with such a high zero-crossing
count [4]. Silence is expected to get a lower zero-crossing
frequency than unvoiced speech but equal to voiced speech.

+is study proposed a novel PSO-based clustering
method to categorize speech into three categories: quiet,
voice, and unvoiced. +ese classes are grouped together
based on the characteristics that were derived from them.
Zero crossing, energy, normalized autocorrelation coeffi-
cient, predictor coefficient, and normalized prediction error
are the five characteristics that may be extracted from
speech. With the use of PSO-based clustering, an audio
signal is partitioned into frames and classified according to
its class by extracting these characteristics from the signal.
Performance criteria such as accuracy, sensitivity, specificity,
and confidence intervals are analyzed to show the usefulness
of the suggested algorithm.

Furthermore, this study is organized as follows: Section 2
presents the related work. Section 3 describes the proposed
methodology. Section 4 presents the comparative analyses.
Finally, Section 5 concludes this study.

2. Related Work

Many of the existing works are developed on SUV classi-
fication and segmenting methods. Researchers implemented
these segmentations by using different machine learning and
clustering techniques. In [19], the author presented a novel
approach for segmenting dysarthric speech into silent,
unvoiced, and voiced pieces. Short-time energy, zero-
crossing rate, and linear prediction error variance are used to
solve the segmentation issue in this example. A moving
average threshold technique is presented to give completely

automated “as-fit” major components that can handle highly
acute dysarthric speech with changing loudness and ZCRs.
+e capabilities of the proposed totally automated method
are validated using real-world audio signals from healthy
and ataxic dysarthric speakers. [20]. As per the findings of
the article, the proposed classification strategy not only
increased segmentation results but also gave reliable results
in low-effort settings.

A voiced-unvoiced-silence classification technique based
on a time-frequency description of the measured signal,
regarded as a data matrix, is proposed. +e study [21] is
based on a hierarchical dual-geometry data matrix analysis
that makes use of the tight connection between time frames
and frequency bins. +e method allows for the separation of
spoken and quiet frames, and then voiced and unvoiced
frames, by progressively learning the associated geometry in
two phases. A multilayer feedforward network was used to
classify speech into voiced-unvoiced-silence. A maximum-
likelihood classifier was used to analyze the network [22].
Using an MFN, a process for classifying speech into voiced,
unvoiced, and silent was devised. +e network VIUIS
classifier is projected to be a valuable tool in this study for
speech analysis and for speech-data mixed communication
systems.

Using unsupervised learning provided [23] a unique
voiced-unvoiced-silence categorization. Using Gaussian
mixture models and the expectation-maximization ap-
proach, class-dependent statistics such as feature means,
covariance matrices, and frequency probabilities of voiced,
unvoiced, and silent classes are directly generated from the
signal. +e NTIMIT database was utilized to evaluate the
learning-based categorization, and the dataset illustrated the
accuracy of a completely learned classification. To remove
noise from speech signals, an improved speech enhancement
technique wavelet-based and spectra speech classification is
proposed. Using a unique energy-based threshold, the
technique splits speech into voiced, unvoiced, and silent
sections before applying the wavelet transform. +e detailed
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Figure 2: Unvoiced speech [13].
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Figure 1: Voice speech [14].
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Figure 3: Flowchart of the proposed methodology.
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coefficients are thresholded to reduce noise, taking into
account the distinctive properties of speech in each of the
three domains [24]. For vocal parts, soft thresholding is
employed, hard thresholding is used for unvoiced regions,
and the wavelet coefficients for quiet zones are set to zero.
+e proposed technique is tested using white noise-con-
taminated utterances from the SPEAR collection. +e
technique generated better results in terms of output SNR,
PESQ score, speech waveforms, and spectrograms.

+e author presented a digital architecture for classifying
noise-free voice segments in an instantaneous V/UV/S
manner. +e proposed [25] architecture computes two
commonly utilized time-domain-based speech metrics, brief
energy (STE), and relatively short zero-crossing rate, using
the incoming sample of the speech segments. +e hardware
required to do on-the-fly calculations of the specified pa-
rameters is included in an algorithm state machine with such
a data path (ASMD). Inside the ASMD, the decision model
was implemented as a separate unit. To use the Xilinx
ZedBoard Zynq Evaluation and Development Platform
XC7Z020CLG484-1, the suggested architecture is prototyped
on a ground gate array (FPGA). It has a maximum operating

clock frequency of 185MHz and is fully compatible with
prior CORDIC-based window designs.

In [26], a hybrid CNN with long short-term memory
(LSTM) is used to automatically extract ambient and mi-
crophone information from the spoken sound. In the trials, it
was also looked at how the usage of voiced and unvoiced
chunks of speech affected the accuracy of such environment
and microphone classification. +e suggested method em-
ploys a subset of the KSU-DB corpus that contains three
settings, fourkindsof recordingequipment, 136 speakers, and
3,600word,phrase, andspeechsignal recordings. In thiswork,
the CRNN model was established, which incorporates ele-
ments of both CNN and RNN models. Speech signals were
recorded as spectrograms and sent into the CRNN model as
2D images.

From the literature, it is found that the existing models
suffer from various problems such as poor convergence
speed [27, 28] and are stuck in local optima [29–31], pre-
mature convergence speed [32, 33], gradient vanishing
[34, 35], etc. Besides designing the efficient fitness function,
there remains a challenge for real-time applications of
metaheuristic techniques [31, 36].

Initialize signals with a constant value of energy and deploy in a specified area.
Initially, assign 10% of n signals to cluster nodes at random.
For i: 1 to n
Calculate distance (F1)� di, m+ 1
Minimum distance�Euclidean distance value from signal i to BSm+ 1
If (minimum distance> distance)
Node.id� i
End if
For j: 1 to m (total number of CH)
Calculate distance (F2)� djm (distance from signal j to CHm)
If (minimum distance> distance)
Minimum distance� distance
Node.id� j
End if
Store the distance in an array (A) which maintains values for clusters
A (Node.id).sum�A (Node.id).sum+minimum_distance
A (Node.id).num�A.(Node.id).num+ 1
End for

End for
For k: 1 to m (total number of CH)
Calculate distance (F3)� dk, m+ 1
If (minimum distance> distance)
Minimum distance� distance
Cluster.id� k
End if
Store the distance in an array (A) which maintains values for clusters
A (cluster.id).sum�A (cluster.id).sum+minimum_distance
A (cluster.id).num�A(cluster.id).num+ 1
End for
Calculate the total energy
Fitness function value for each node
For i: 1 to n
Fitness (clustering)� (0.25∗ F1) + (0.25∗ F2) + (0.25∗ F3) + (0.25∗ F4)
End for
Stop

ALGORITHM 1: PSO-based clustering for audio speech signals.
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2.1. Contributions of the Study. +e main contributions of
the study are to:

(i) Classify the speech classes as voice, unvoiced, or
silence by using particle swarm optimization (PSO)-
based classification.

(ii) Measure the efficacy of the proposed algorithm with
performance parameters like accuracy, sensitivity,
and specificity.

Furthermore, this study is organized in such a way that
Section 2 describes the proposed methodology and Section 3
displays the results. Finally, Section 4 concludes the work.

3. Methodology

In this work, a PSO-based clustering algorithm is proposed to
classify the speech classes, i.e., silence, voice, and unvoiced.
+ese classes are clustered on the basis of their extracted
features.+efive features that are retrieved from the speech are
zero crossing, energy, normalized autocorrelation coefficient,

predictor coefficient, and normalized prediction error. An
audio signal is partitioned into frames and segmented
according to its class by extracting these features using PSO-
based clustering. +e flowchart of the proposed methodology
for a brief understanding is presented in Figure 3.

To illustrate the efficiency of the suggested algorithm,
performance parameters like accuracy, sensitivity, specific-
ity, and confidence intervals are evaluated.

3.1. Particle Swarm Optimization (PSO). +e PSO is a
population-based optimization algorithm that is inspired by
flocks of birds’ social behavior. +e PSO is often referred to
as an example of evolutionary computation. A swarm of
particles moves across the search zone in a PSO system. Each
particle represents a potential solution to the issue of op-
timization [37]. +e best place visited by the particle and the
particle’s position in the particle’s vicinity impact the par-
ticle’s location. When a particle’s neighborhood is the whole
swarm, the global best particle is the best location in the
neighborhood, and the process that follows is known as the
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gbest PSO. +e technique is known as the West PSO when
small neighborhoods are adopted. +e optimization prob-
lem provides a fitness function that is used to assess the
performance of each particle.

+e following qualities are represented by each particle
in the swarm: ux � particle’s current position. jx � particle’s
best personal position. vex � particle’s present velocity.

Particle x s personal best position is the best position that
particle x has visited thus far. +e objective function is
denoted by the letter f. +e particle’s personal best at time
step ts is then updated as

yi(ts + 1) �
jx(ts) if f ux(ts + 1)( 􏼁≥f jx(ts)( 􏼁,

ux(ts + 1) if f ux(ts + 1)( 􏼁≥f jx(ts)( 􏼁,
􏼨 (5)

lbest and gbest are two basic techniques to PSO, with the
distinction being in the neighborhood topology utilized to
trade experience among particles. +e best particle in the
gbest model is chosen from the whole swarm. If the vector 􏽢y

denotes the location of the global best particle, then
􏽢j(ts)∈ j0,j1,...,js􏼈 􏼉�min f j0(ts)( 􏼁,f j1(ts)( 􏼁,....,f js(ts)( 􏼁􏼈 􏼉.

(6)

Here, s� size of the swarm, and A swarm is partitioned
into overlapping zones of particles in the lbest model. +is
particle is known as the best particle in the neighborhood,
and it is defined as

Ny � jx−1(ts),jx−l+1(ts), ...,jx−1(ts),jx(ts),jx+1(ts),􏼈

...,jx+l−1(ts),jx+1(ts)},
􏽢jy(ts+1)∈ Ny|f 􏽢jy(ts+1)􏼐 􏼑�min f jx(ts)( 􏼁􏼈 􏼉,∀jx

∈Ny􏽮 􏽯.

(7)

Particle indices are often employed to identify neigh-
borhoods, although topological neighborhoods may also be
utilized.+e gbest is a special case of lbest with l� s, in which
the neighborhood is the whole swarm [38]. Although the
lbest PSO has more variety than the gbest PSO, it is also
slower. +e remainder of the chapter focuses on the gbest
PSO, which is quicker.

+e velocity vex and location ux are changed as follows
for each iteration of gbest:

vex(ts + 1) � wvei(ts) + c1r1(ts) ji(ts) − ui(ts)( 􏼁

+c1r1(ts) 􏽢j(ts) − ux(ts)􏼐 􏼑, (8)

ux(ts + 1) � ux(ts) + vx(ts + 1). (9)

Here, w � inertia weight, and c1, c2 � acceleration con-
stants.+e above equation consists of 3 components, namely,
the word inertia refers to the body’s ability to remember prior
speeds.+e influenceof theprecedingvelocity is controlledby
the inertia weight: exploration is favored by a high inertia
weight, but exploitation is favoredby a low inertiaweight.+e
cognitive aspect, jx(ts) − ux, reflects the particles’ knowledge
of the optimum solution. +e social aspect, 􏽢j(ts) − ux(ts),
symbolizes the swarm’s collective conviction on the optimum
option. Various social topologies have been studied, with the
star topology being the most popular.

To do a classification approach, you must first establish a
fitness function. PSO, like other swarm intelligence ap-
proaches, has been defined to undertake a search in the space
of solutions to maximize outcomes in situations with single
and multiple objectives. It has been established that PSO
may provide better outcomes in a quicker and less expensive
manner than other approaches. It is also possible to par-
allelize it. Furthermore, it does not take advantage of the
gradient of the issue to be optimized. In other words, unlike
classic optimization approaches, PSO does not need a dif-
ferentiable problem. It is becoming more popular as a result
of its many benefits such as resilience, efficiency, and
simplicity. PSO has been discovered to need less computing

Table 1: Information of audio waves.

Sample Number of samples Frequency No. of frames Frame length
Audio signal-1 48622 44100 95 512
Audio signal-2 48622 44100 95 512
Audio signal-3 76404 44100 149 512
Audio signal-4 76404 44100 149 512
Audio signal-5 75776 44100 148 512
Audio signal-6 50847 20000 99 512
Audio signal-7 50847 20000 99 512
Audio signal-8 49920 20000 98 512
Audio signal-9 43213 16000 85 512
Audio signal-10 4309544 48000 8417 512

Table 2: Performance parameters.

Sample Accuracy Sensitivity Specificity
Audio signal-1 0.9789 0.9842 0.9684
Audio signal-2 0.9719 0.9789 0.9579
Audio signal-3 0.9955 0.9966 0.9933
Audio signal-4 0.9821 0.9866 0.9732
Audio signal-5 0.9820 0.9865 0.9730
Audio signal-6 0.9798 0.9848 0.9697
Audio signal-7 0.9731 0.9798 0.9596
Audio signal-8 0.9728 0.9796 0.9592
Audio signal-9 0.9765 0.9824 0.9647
Audio signal-10 0.9823 0.9868 0.9735

Table 3: Confidence levels of parameters.

Parameter (%) Accuracy Sensitivity Specificity
90 0.00428 0.00643 0.00643
95 0.00691 0.00518 0.01038
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effort than other stochastic algorithms. As a result, this is an
efficient optimization strategy for classification issues.

+e PSO approach repeats the update equations above
until the velocity updates are close to zero or until a certain
number of iterations have been completed [39]. Particle
quality is assessed using a fitness function that determines
the optimality of the relevant solution.

+is proposed algorithm will be used to cluster audio
signals according to their respective classes.

+is proposed algorithm 1 will be used to cluster audio
signals according to their respective classes. +e perfor-
mance is measured with the following parameters.

3.2. Performance Metrics. +e confusion matrix’s perfor-
mance characteristics, such as accuracy, sensitivity, and
specificity, are used to assess the suggested algorithm’s
performance.

Accuracy: It is the fraction of correctly recognized
subjects to the total number of subjects.

Accuracy �
TP + TN

TP + TN + FP + FN
. (10)

Sensitivity: Recall, also known as sensitivity, is the
proportion of correctly positive labels recognized by
our computer.

Sensitivity �
TP

TP + FN
. (11)

Specificity: +e system has appropriately classified the
negative as specificity.

Specificity �
TN

TN + FP
, (12)

where TP� true positive, TN� true negative, and
FP� false positive.

4. Performance Analyses

+e proposed PSO-based clustering method is developed
and tested in this section, and the results are examined.
Performance measures such as accuracy, sensitivity, and
specificity are examined to illustrate the usefulness of the
suggested algorithm.

Figure 4 shows the wave signals of chosen 10 test audio
samples.

Table 1 depicts the information of the chosen data
samples. For implementation, 10 test audio samples are
taken and their sample size, frequency, frame size, and frame
length are extracted and displayed. +e number of frames is
generated by partitioning the audio signal. +ese frames are
clustered according to their respective classes.

Table 2 exhibits the audio samples’ performance metrics
such as accuracy, sensitivity, and specificity. +e average
accuracy of the 10 test samples is 0.9794, or 97%, the average
sensitivity value is 0.9846, or 98%, and the average specificity
value is 0.9692, or 96%. +ese numerical values of the
metrics are visualized in Figure 4. It shows the accuracy,
specificity, and sensitivity of the chosen 10 test audio signals.
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From Table 3, it is observable that the performance
parameters vary over its mean value with confidence in-
tervals of 90% and 95%. Accuracy varies by the values of
0.00428 and 0.00691, respectively. Sensitivity varies by the
values of 0.00643 and 0.00518 and specificity with a confi-
dence intervals of 90% and 95% by the values of 0.00643 and
0.01038, respectively. Figure 5 shows the performance pa-
rameters for the tested audio signals on the basis of accuracy,
specificity, and sensitivity.

5. Conclusions

In this work, MATLAB 2020a is used for the imple-
mentation. +e proposed algorithm particle swarm opti-
mization (PSO)-based clustering algorithm is used to classify
the three speech classes. +ese classes are silence, voice, and
unvoiced. +ese classes are clustered based on extracted
features. +e five features that are retrieved from the speech
are zero crossing, energy, normalized autocorrelation co-
efficient, predictor coefficient, and normalized prediction
error. A sample of 10 audio signals is chosen for the
implementation. Each audio wave is partitioned into frames,
and each frame is clustered into either voice, unvoiced, or
silence. In order to demonstrate the effectiveness of the
proposed algorithm, performance parameters like accuracy,
sensitivity, specificity, and confidence intervals are evalu-
ated. +e average accuracy of the audio samples is 97%,
sensitivity is 98%, and specificity is 96%, which demonstrates
that the proposed algorithm is highly accurate in clustering
the speech classes.+e average accuracy of the audio samples
is 97%, sensitivity is 98%, and specificity is 96%, which
demonstrates that the proposed algorithm is highly accurate
in clustering the speech classes.+is allows the smart hearing
aid to distinguish between silence, voice, and unvoiced
sounds.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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