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ABSTRACT 
In the paper frequency domain Super-Resolution algorithm 
with enhanced reconstruction stage is presented. The 
Fourier transform properties of relocated images are used to 
easy estimation of rotation and translation, as well as 
artifacts caused by subsampling. Previously, the bicubic 
interpolation has been employed in the reconstruction 
phase, in this paper it is replaced by iterative conjugate-
gradient method with inverse nonuniform fast Fourier 
transform at its core. The new algorithm indeed gives 
improved results, if compared to those of the previous ones.   

1. INTRODUCTION 

The spatial resolution is the major perception factor of 
image quality. Namely, the sensor manufacturing 
limitations are the principle aspects that determine the 
number of details of captured scene. However economical 
and technical reasons may disqualify rebuilding of existing 
imaging system. One of existing possibilities allowing to 
overcome such kind of system limitations is digital signal 
processing approach which is called Super-Resolution (SR). 
The Super Resolution has been proposed in 1984 [3] and 
has been applied to multiframe image restoration from a set 
of bandlimited images. The Super-Resolution is feasible 
when capturing of a set of Low-Resolution (LR) images of 
the same scene is possible and, what is particularly 
important, sub-pixel shifts between LR images exist. If 
fractional shifts between LR images were not present, all 
images would have contain the same information. In such 
situations a better solution may be simple image 
interpolation for image enhancement. Additionally, 
interpolated images usually suffer from blur which makes 
analysis of details difficult.  
The most influential part of SR algorithms is precision of 
its first stage, motion (i.e. displacement) estimation 
between low resolution images. The next step of SR 
algorithm is a reconstruction of High Resolution (HR) 
image from nonuniformly sampled grid, which has been 
obtained from appropriately positioned motion estimated 
captured images. In such situation Strohmer [1,2] suggested  
employing complex exponentials and proposed iterative 
algorithm to get set of samples on Cartesian (i.e. regular) 
grid. Differences between SR methods mainly concern the 
motion estimation part. The technique based on Taylor 
series motion estimation has been proposed by Keren et. al. 

[4]. Another method based on mean square error criterion  
applied to minimization of error between reference and 
arbitrary chosen images can be found in [5]. This paper 
presents an improved version of frequency domain SR 
algorithm presented in [3]. The principle advantage of 
frequency domain approach is the fact, that degradations 
due to physical limitations are much easier to describe there 
than in the spatial domain. We have applied in its 
reconstruction stage an extension of the concept from [6]. 
The algorithm has been compared to three other ones 
[3,4,5], and the efficiency of our approach has been shown. 
This paper is organized as follows: section I presents an 
introduction, sections II and III describe a motion 
estimation step, and a reconstruction step. Finally, sections 
IV and V present experiment, results and conclusion.  

2. MOTION ESTIMATION IN THE POLAR 
COORDINATES SYSTEM [3] 

The motion between reference image and arbitrarily chosen 
another one from the set of the low resolution images is 
assumed to be translation and rotation motion on the flat 
space. We consider static scenes as in such case global 
motion sufficiently describes differences between acquired 
LR images.  
Considering such kind of displacement between two images 
the motion may be simply described by three parameters: 
horizontal and vertical shifts: appropriately , and 
planar rotation factor representing by angle . In the 
Fourier transform domain relation between two mutually 
shifted and rotated images can be expressed as follows: 
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where R means rotation angle expressed in planar 
coordinates: 
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and x and x’ represent the coordinates of the reference and 
shifted images, respectively.  

3.1 Conjugate gradient method with INUFFT at its core 
The image transformation to the spatial domain may be 
expressed as follows: The displacement in the spatial domain results in changed 

phase values in the Fourier domain (  and  

do not depend on the shift ). The rotation angle  may 
be computed from the amplitude spectrum of images: 
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 where t means the location of a pixel of the SR- 
reconstructed image in the space domain,  is the k-th  
irregular sample of the image in spatial domain, and 

denotes the (regularly sampled) Fourier Transform of 
the image. Therefore, after the registration of the motion 
corrected noisy image its samples can be expressed in the 
following form: 
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where  and   are Fourier transforms of  the 
rotated and the reference images, respectively.  
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2.1 Rotation factor estimation  

( ) i+εii tzf = ,                              (5) Rotation estimation is based on a simple premise that for 
the appropriately rotated version of the  the 
correlation factor between  and  is 
maximum. Unfortunately, such an approach needs 
computation of correlation for every assumed rotation 
angle, which is not computationally efficient. Transforming 
spectrums into polar coordinates limits the number of 
operations to circular shifts by . This may be estimated 
by computing phase difference between two spatial domain 
signals. Transforming into regular polar coordinates from 
regular Cartesian grid usually leads to interpolation and is a 
relatively complex operation. 
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where  denotes complex Gaussian noise. Since the 
dominant noise in the spatial domain is assumed to be white 
Gaussian one [6], we estimate image on the regular grid in 
the Fourier domain by minimizing the following penalized 
least-squares cost function: 
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It means that we are looking for: 

  
2.2 Shifts estimating 
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If the rotation factor has been estimated, the shift may be 
computed as follows:  

where f denotes noisy samples of the image, and R(x) 
means regularization function, that penalizes the roughness 
of the estimated image. This regularization can speed up 
convergence. We choose the parameter  according to the 
point spread function of the reconstructed image [6]. The 
space domain needs to be segmented into sub-spaces where 
sample density is approximately constant. Now we are able 
to directly compute Ax via Inverse Nonuniform Fast Fourier 
Transform (INUFFT).  

δ

 
( ) ( )

( )
( )

( )ω

ω

πω

πωπω

πω

πω

reference
xj

x
xj

reference
xj

x
xj

reference

x
xj

ondond

Fe

dxexfe

dxexxf

dxexfF

T

TT

T

T

∆−

−∆−

−

−

=

==

=∆+=

==

∫∫

∫∫

∫∫

2

'
'22

2

2
secsec

''
.       (3) 

 
The conjugate gradient algorithm has been used to estimate 
the regular sampled image by minimization of the cost 
function (6). The principle step of the CG algorithm 
consists in computing the gradient of ( )xψ , which may be 
expressed as follows:  

Shifts values may be evaluate by computing 
reference

ond

F
Fsec∠ . 

3. RECONSTRUCTION STEP 

 Assuming that motion estimation problem has been solved 
the reconstruction step may be applied. The previous part of 
the algorithm results in motion estimators. Then,  
registration of motion estimated samples on previously 
computed irregular positions in the space domain are done. 
After mapping onto High Resolution grid, the next step 
needs computation of values of samples on Cartesian 
spatial domain grid. To solve this problem we have 
employed the Conjugate Gradient method with the 
Nonuniform Fast Fourier Transform at its core. This 
iterative algorithm results in high quality images and is 
computationally efficient. 
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The most computationally complex operation here is to  
compute the matrix-vector multiplication Ax and its 
transpose A’v, without storing A or A’. Fortunately, we 
have here efficient and accurate algorithms for computing 
these matrix-vector multiplications, it may be done by using 
nonuniform fast Fourier transform (INUFFT).      
The algorithm finishes with the inverse fast Fourier 
transform to get the reconstructed image in the spatial 
domain. 



3.2 NUFFT [6] 

 

In our paper the roles of space and frequency domains of 
the NUFFT are interchanged. In the following text, and that 
from section 3.3, the unmodified notation from [6] and [7] 
is used. 
Consider regularly-spaced signal samples , n=0,…,N-1, 
having Fourier transform: 
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 Our goal is to compute the Fourier transform on a set of 

(irregularly spaced) frequency locations{ }:  mω
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The  can be arbitrary real numbers. This form has been 
called the non-uniform discrete Fourier transform (NDFT). 
Directly evaluating would require O(MN) operations, which 
would be undesirably slow. Fast computation of (10) is 
called NUFFT. The first step of most NUFFT algorithms is 
to choose a convenient value  and compute a 
weighted K-point FFT of{ }: 
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Figure 2. Images after SR restoration: upper left: MSE 
motion estimation, upper right: frequency domain algorithm 
[3], lower left: algorithm by Keren with Taylor series 
motion estimation, lower right: our algorithm.  

where  is the fundamental frequency of the K-
point DFT. The nonzero  values are algorithm design 
variables that have been called “scaling factors”, we call 

 the scaling vector. The first step requires 
O(KlogN) operations.  

K/2πξ =

( )Ns,...,
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4. EXPERIMENT The next step of NUFFT algorithms is to approximate each 
 by interpolating the Y  using   for some of the 

neighboring  in the frequency set 
. The general form of linear 

interpolator is:  
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In the experiment a cropped test image ‘Lena’ has been 
used, figure 1. The image has been two times subsampled, 
rotated and shifted. Four such prepared images have been 
combined into one super - resolution image, having two 
times higher sampling density. Our algorithm has been 
compared to three another methods [3], see figure 2. 

}

 
In the paper [3] it is claimed, that the frequency domain 
method presented there usually gives better results than two 
other compared here ones: MSE algorithms and algorithm 
by Keren. Our technique has improved reconstruction stage 
and if frequency based motion estimation is done correctly 
then our method should be even better, which is reflected in 
figure 2. The improvement is due to replacement of straight 
bicubic interpolation by iterative reconstruction algorithm, 
the described above CG-INUFFT method. However some 
other results show that the frequency domain motion 
estimator need not be always the best. In fact the motion 
estimation problems seem to be much more important, than 
those linked with reconstruction step. We then think that 
the principle challenge of future research is the 
improvement of the motion estimation phase.  
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where ’s denote interpolation coefficients, “*” denotes 
comples conjugate, and v . Choosing the 
scaling vector s and the interpolators {  are the main 
problems of designing NUFFT algorithm. 
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3.3 Inverse nonuniform fast Fourier transform 
(INUFFT, section 3.2) [7] 
We compute an oversampled IFFT of the given 2D signal, 
and then we interpolate it optimally onto the desired 
nonuniform spatial locations using small local 
neighborhoods in the spatial domain. 



5. CONCLUSION 

A new improved scheme of Super-Resolution restoration 
has been described in this paper. Motion estimation of the 
method is done in the Fourier transform domain which is 
time and memory effective. The reconstruction step is 
based on iterative CG-NUFFT method which is the new 
feature of this algorithm. It is shown that for correctly 
estimated motion parameters the new technique 
outperforms a similar one described in [3], as well as those 
from [4, 5]. Nevertheless the performance of the compared 
methods strongly depends on the success of the estimation 
phase, hence, its optimization seems to be a challenging 
problem for future research.    
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