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IMPROVED FRIEDMANN MODELS*
E. R. Harrison
(Received 1968 April 17)t

Summary

The improvement of the Friedmann models of the Universe with the inclusion
of non-interacting radiation was first made by Lemaitre in 1927. These
¢ improved Friedmann models’ are discussed and it is shown that they
require modification in the early Universe because of pair production at high
temperatures.

1. Introduction. The cosmological equations (without the cosmological constant)
for a uniform universe are

dR\%2 8= 9
dR
2R3 = =
7 (P R )+p o, (2)

' where R(#) scales the comoving coordinates, p(Z) is the density, p(¢) the pressure, «
* the curvature constant and ¢ is cosmic time. The Friedmann (1922, 1924) models
have the properties: p =0, k =0, +1 (x = o is in fact the Einstein—de Sitter
(1932) model), and were improved and made more realistic by Lemaitre (1927,
1930, 1931) who included non-interacting radiation.

Let the subscripts m and » denote respectively matter and radiation (neutrinos
~and photons). From equation (2), for non-interacting matter and radiation:

pm € R3, proc R4, for pm < pmc?, pr = %pyc2. Equation (1) becomes

(dR[dt)? = 4R~2+ opR1—k, (3a)
o = 87GprRY/3, am = 87GppmR3/3, (3b, c)

and this is the Lemaitre equation}. The solution for k = 1 is given by de Sitter
(x930), Tolman (1934) and Alpher & Herman (1949). The discovery of the 3°K
universal radiation (Penzias & Wilson 1965; Dicke, Peebles, Roll & Wilkinson
1965), predicted by Alpher & Herman (1948) and Gamow (1953), has reawakened
interest in the Lemaitre equation and solutions for k = o, + 1 are given by Chernin
(1965), Cohen (1967), and for « = o by Jacobs (1967).

For non-interacting matter and radiation: pyoc 74 and hence TocR-1; also
pmocnoc T3 where n is the mean nucleon density. The dimensionless quantity

n = n(fic/kT)3 = no(tic/kTo)3~ 1079, (4)
is therefore constant and is evaluated with np~ 1076cm=3, Tp~3°K. The ratio of

% Contribution No. 12 of the Four College Observatories.
1 Received in original form 1968 February 3.
t Radiation in an Eddington-Lemaitre model is considered by Roeder & Chambers

(1967).
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the heat capacities of matter and radiation is of the order » (Gamow 1956) and
consequently radiation is only slightly affected by interaction with matter. Further-
more, pm~npy and the smallness of 7 also justifies the neglect of the pressure of
matter. The Lemaitre equation is therefore reasonably realistic and except for the
earliest moments is valid throughout the lifetime of the Universe.
Let B = pro/pmo (zero subscript denotes present epoch); then because pyc2~
kT (kT |Ac)3,
B~ kTofnmac~ 1073, (5)

where m,, is the nucleon mass. If subscript* ¢ denotes the epoch where pr = pp, then
047/ am =R, = ﬁRO, (6)

and p; = 2pmof 3~ 109 me. Also, T, = f~1T~3000°K, and when 7'>T, the
density of radiation exceeds that of matter. The pressure and density are related by

the equation
3p/pc? = Re[(Re+R) = B(B+), 7

y = R[Ry. When T>Ty~me?lk~5x109°K (m, is the electron mass), the
Lemaitre equation breaks down because of lepton and hadron pair production. As
we go back in time, the progressive population of states of higher mass creates an
admixture of nonrelativistic particles and the pressure is then significantly less than
one third the energy density. Let us assume that in the early Universe pressure is
proportional to energy density and use Zeldovich’s (1962) equation

p = (—1)pe ®)

Thus pR3” is constant according to equation (2) and equation (1) becomes
(dRjdt)® = o, R —x, (9)
«, =87GpR¥|3. (9b)

In the early Universe the curvature term is negligible and for o <z <t

t = (67Gpr2)7172, (10)
At T = Tp we have

po~ (RTv[c2) (kT p[kc)3 ~ me(mec[hi)3 ~ 104 g cm 3,

and therefore fp~ 10 s. Equation (10) is for the early charge symmetric universe
(Zeldovich & Novikov 1966) in which the ratios of lepton number to number of
leptons and baryon number to number of baryons are small and of order 5 (Harrison
1967, 1968), whereas the Lemaitre equation (3) is for the subsequent charge
asymmetric universe in which the asymmetry is either local or global.

2. Relativistic thermodynamics and cosmology. In a comoving element of volume
V(t) of an ideally uniform universe the internal energy is £ = pc2V and for thermal
equilibrium

dE = TdS—pdV, (11)

where S is the entropy in V. Because VecR3, it follows that dS/dt = o from
equations (2) and (11), and entropy is conserved.

* Significant epochs are denoted by subscripts a, b, and ¢ (Harrison 1968).
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Let® = W—ST = ZuN; be the thermodynamic potential and W = V(pc2+p)
the heat function, where (Landau & Lifshitz 1958) V; is the number of the 7th kind
of particles inV of chemical potential p;. Because the lepton and baryon numbers
are relatively small and therefore negligible in the early Universe, equilibrium
conditions correspond to u; = o and (Harrison 1968)

w dp

=V —% = constant, (12)

S=7 =V

and also

d
ptp = TE%. (13)

From this last equation and p = (v— 1)pc? we find
pocR—sﬂx T»/v-1), (14)

The leptons are relatively unimportant and can be neglected. To each mass m; of
the hadron spectrum there are (2J;+ 1) (213 + 1)e states (J is the spin, J; the isospin,
e = 1 if particle = antiparticle, and ¢ = 2 if particle#antiparticle). When kT is
less than m;c2 then W is exponentially small and when 27 >m;c2 we have

pic2+p; = a;T4, (15)

and the a; are determined by the number of states and the statistics. As a crude
approximation we use the truncated summation

W =VT4Za;, mic2 < kT, (16)
and find from equations (12) and (14) that

Sazoc T 4-3)/0-1), (17)

If the mass spectrum terminates at mj, then Xa; is constant at T >myc2/k and
v = 4/3; however if the mass spectrum continues indefinitely then v <4/3. Let
f(m)dm be the number of states in the mass interval dm, then

Zai:leéf dm. (18)

0

The density of states increases with m (Rosenfeld et al. 1967) and assuming
focma, g >o, we have from equations (17) and (18) that

v =(5+9)/(4+9) (19)
and 1 <v<jg/g.*

* Hagedorn (1965, 1967) argues that the density of states increases exponentially and
compensates for the exponential smallness of the contributions to W of mass m; > kT}/c2. He
finds a limiting temperature of T, = m,c2/k~1012°K (m, is the pion mass) and in the
vicinity of T, particle creation is so violent that it is impossible to exceed this temperature. In
the early Universe of t<107%s, as T'— T}, we have dW = Vdp—o0 and therefore p/pc2—o0. A
limiting temperature implies that the early universe conforms to the Einstein—de Sitter model.
It is interesting that the statistical models of Fermi (1950) and Bialas & Weisskopf (1965) of
high energy collisions are relevant to the state and composition of the early Universe. Clearly,
if Hagedorn’s (1965, 1967) ideas are correct they are of far reaching consequence.
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3. Improved Friedmann models. The solutions of equations (3) and (9) are, for
t>tp, R>Rp: k = 0;

R = o127+ a2, (202)
t = 301272+ 78, (20b)
K =41
R = ol/2sin 7+ oy sin? 47, (21a)
t = 20412 sin2 47+ Loyy(r —sin 7), (21b)
K = —1I
R = al/2sinh 74 ay sinh? 47, (222)
t = 2041/2 sinh? 7+ Jap(sinh 7—7), (223)
and
Rb — 3V—' 2 ay1/2,7.b2/(311—2)’ (23)
2

(24)

2y = 2 0, 1/—2) <3v—2 Tb)3V/(3V_2).
3v 2
Since Ry and £y are small we neglect them in order to study the solutions of the
Lemaitre equation.
In terms of the Hubble parameter H = dR/Rdt, the deceleration variable
g = —d2R/RH?2dt? and the density variable o = 47nGp/3H2 (McVittie 1965) we
have
x = — Ro?Ho*{1—290(B+1)/(2B+ 1)}, (25)

g = o(2B+)[(B+1) = qo(2B+)/[290(B+y) +y*{2B+1—-290(B+7)].  (26)
The corresponding Friedmann values are found by setting 8 equal to zero. We
notice that

| kZo:  ¢2(2B+y)/(2B+2y), o2} (27)
also
(gor.—qow)/qor. = 2B/(2B+ 1)~ 1073, (28)
where the subscripts L and F denote Lemaitre and Friedmann solutions. In the case
of k =0
tajt, = y92[{(B -+ )V~ BUER{(B + )12+ 261, (29)
and

to.—tor _ {(/3+ 1)1/2_,31/2}2{(3+ 1)1/24281/2) — 1 ~ 38 .
for, {(B+1)12—B122{(B+ 1)12+ 2812} 2 (30)

and the inclusion of radiation reduces the age of the universe by approximately

3Btor 2. _
Recently Mclntosh (1968) has also discussed cosmological models containing

both matter and radiation.
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