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Abstract

In this paper, we consider the problem of information transfer across shapes and propose an extension to the widely used

functional map representation. Our main observation is that in addition to the vector space structure of the functional spaces,

which has been heavily exploited in the functional map framework, the functional algebra (i.e., the ability to take pointwise

products of functions) can significantly extend the power of this framework. Equipped with this observation, we show how

to improve one of the key applications of functional maps, namely transferring real-valued functions without conversion to

point-to-point correspondences. We demonstrate through extensive experiments that by decomposing a given function into a

linear combination consisting not only of basis functions but also of their pointwise products, both the representation power

and the quality of the function transfer can be improved significantly. Our modification, while computationally simple, allows

us to achieve higher transfer accuracy while keeping the size of the basis and the functional map fixed. We also analyze the

computational complexity of optimally representing functions through linear combinations of products in a given basis and

prove NP-completeness in some general cases. Finally, we argue that the use of function products can have a wide-reaching

effect in extending the power of functional maps in a variety of applications, in particular by enabling the transfer of high-

frequency functions without changing the representation size or complexity.

CCS Concepts

•Computing methodologies → Shape analysis; •Theory of computation → Computational geometry;

1. Introduction

Shape correspondence is one of the key problems in digital ge-
ometry processing with applications in fields ranging from man-
ufacturing to shape morphing [KMP07], statistical shape analy-
sis [HSS∗09, BRLB14], texture mapping, animation and deforma-
tion transfer [SP04] among a wide variety of others. In all of these
applications, the key requirement of shape matching algorithms is
to enable information transfer across two or more shapes.

Over the past several decades, a large number of computational
techniques has been developed for addressing the shape matching
problem. While most early methods have concentrated on rigid
shape matching, more recently numerous approaches have also
been proposed in the more general context of finding correspon-
dences between non-rigid shapes, such as humans in arbitrary poses
[VKZHCO11]. One of the major challenges arising in this setting is
that the space of possible correspondences between points on a pair
of shapes is exponential, which gives rise to difficult optimization
problems when establishing reliable point-to-point maps.

† Equal Contribution

Figure 1: Transferring a real-valued function from a source shape

(left) onto the target using a fixed functional map with the standard

approach (center) vs. our extended method (right).

To address this challenge, recent works have focused either on
defining a consistent parameterization for a pair of shapes, of-
ten with the use of landmarks (e.g., [LF09, APL15, AL16]), or
by choosing a different representation for shape correspondences,
which is more amenable to direct optimization and manipula-
tion. These include either soft maps or measure couplings, which
can benefit from computational techniques in optimal transport
[SNB∗12,SPKS16], and a class of techniques based on the recently
introduced functional map representation [OBCS∗12, OCB∗17].
This latter is based on the idea of using correspondences between
real-valued function rather than points on the shapes. Since cer-
tain (e.g., square integrable) function spaces admit a vector space
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structure and therefore can be endowed with a multi-scale func-
tional basis (e.g., the Laplacian eigenbasis), a common approach is
to restrict the search for an optimal correspondence to a subspace
spanned by a small number of basis functions. This implies that the
optimal functional map can be represented using a moderate-sized
matrix, independent of the number of points on a pair of shapes.

This restriction to functional maps between small subspaces sig-
nificantly reduces the computational complexity of the shape cor-
respondence problem as it leads to simpler optimization problems
with fewer unknowns (in the simplest setting, the shape corre-
spondednce boils down to a least-squares problem [OCB∗17]). At
the same time, it also somewhat reduces the utility of the com-
puted functional map especially since converting a functional to a
point-to-point map can be a challenging problem in itself [RMC15,
VLB∗17]. Motivated by this fact, several applications have argued
for using functional maps directly, by exploiting their ability to
transfer real-valued functions across shapes without recovering the
point-to-point map. Examples of applications include segmentation
transfer, demonstrated in the original article [OBCS∗12], tangent-
vector field design [ABCCO13], image and shape co-segmentation
[WHOG14, HWG14] and even more recently, consistent mesh
quadrangulation [ACBCO17]. In all of these works, a given func-
tion on the source shape is represented as a linear combination
of the basis functions which are then transferred using the func-
tional map onto the target. Since in most cases, the basis consists
of the first few eigenfunctions of the Laplace-Beltrami operator,
in practice functional maps can only transfer sufficiently smooth
functions, leaving out high-frequency details, which severely lim-
its the applicability of the entire functional maps framework. As a
possible remedy, several recent works considered alternatives to the
Laplace-Beltrami basis [KBB∗13, NVT∗14, MRCB17].

In this work, we argue that more accurate function transfer can be
achieved within the functional maps framework without changing
the basis or increasing its size. In particular, we propose to use the
algebraic structure of function spaces [HGK04], which means that
in addition to defining a vector space through scalar multiplication
and addition, functions can also naturally be multiplied pointwise.
Moreover, most natural functional maps (i.e., those arising from
point-to-point ones) must preserve this algebraic structure. Putting
these two properties together, our key observation is that the ability

to transfer basis functions also gives us the ability to transfer their

pointwise products. This means that if a given function on a source
shape can be represented via not just the elements of the basis, but
also their pointwise products, a given functional map can be used
to transfer it accurately onto the target, as shown in Figure 1.

We demonstrate through extensive experiments that this obser-
vation can lead to a significant improvement in the function trans-
fer quality without changing the functional map representation. Re-
markably, it allows us to map even high frequency information by
using only a low-frequency basis without converting a functional
map to a point-to-point one. As a result, our approach can have a
direct impact on all applications of the functional map framework.

2. Related Work

As mentioned above, relating information across different shapes
is among the most basic problems in shape analysis. Since our

approach is designed to better exploit a given functional map

and is such more closely related to representing correspondences,
rather than computing them, in the following we primarily give an
overview of the most common representations for maps between
shape, and refer an interested reader to recent surveys on shape
matching [VKZHCO11, TCL∗13, BCBB16] for a more in-depth
discussion of correspondence problems.

Most early models of correspondences between non-rigid shapes
are based on the standard notion of pointwise mappings, e.g.,
[BBK06, LF09, OMMG10, KLF11]. A particular instance of this
class of methods is based on spectral embeddings defined by
the Laplace-Beltrami eigenfunctions, followed by a correspon-
dence procedure in the embedding space, e.g. [MHK∗08, DK10].
Shtern and Kimmel proposed constructing spectral embedding us-
ing pointwise products of Laplace-Beltrami eigenfunctions [SK14]
and the triple products of their gradients with the surface normal
[SK15] as a means of capturing additional information. The main
drawback of pointwise correspondence models is that such frame-
works can often be unstable and lead to difficult non-linear non-
convex optimization problems. As a result, several authors have
proposed to consider more general notions of mappings, which are
more amenable to direct optimization. In the most basic setting,
such generalized mappings arise as relaxations of pointwise corre-
spondence problems, as e.g., in [LH05, BBM05]. In these scenar-
ios, however, such representations are typically used as intermedi-
ate steps, aimed at facilitating pointwise map recovery.

A more principled approach to soft mappings is provided by the
notion of measure couplings, that have been used for both repre-
senting and finding correspondences [Mém07, Mém11, SNB∗12]
and that are intimately related to the formalism of optimal trans-
port. These representations have a probabilistic interpretation and
benefit from computational advances in efficiently solving certain
optimal transport problems [Cut13,SDGP∗15]. Consequently, they
have recently gained prominence in addressing shape matching and
alignment tasks [SPKS16, MCSK∗17]. Nevertheless, the complex-
ity of these representations is directly related to the sampling den-
sity of the shapes, and can quickly become prohibitive, often re-
quiring heuristics and multi-resolution schemes.

A different formalism that our work directly builds on is pro-
vided by the functional maps framework [OBCS∗12]. This repre-
sentation is based on representing correspondences through their
action (via pull-back) of real-valued functions. Since the pull-
back of functions is linear and since functional spaces can be
endowed with a multi-scale basis, this leads to a representation
of correspondences as moderately-sized matrices, which can be
directly manipulated and optimized for. Although initially intro-
duced as a tool for shape matching, functional maps have been
used for relating tangent vector fields [ABCCO13], extending the
Generalized Multi-Dimensional Scaling to the spectral domain
[AK13], computing maps between symmetric [OMPG13] and par-
tial [RCB∗17,LRB∗16,LRBB17] shapes, coupled bases [KBB∗13]
and even consistent quadrangulation [ACBCO17] among others.
Most recently, functional maps were integrated as differentiable
layers into intrinsic deep learning architectures [LRR∗17].

All of these applications benefit from the properties of the func-
tional representation, including its compactness, which often trans-
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lates into relatively simple optimization problems, and its capac-
ity for information transfer. Indeed, although the original article
[OBCS∗12] proposed an approach for recovering a point-to-point
map from a functional one, follow-up works, have observed that, in
many scenarios functional maps can be used directly for transfer-
ring information such as tangent vector fields [ABCCO13] or seg-
mentations in shape collections [HWG14] among others. In these
works, the information being transferred is represented by using
the vector space structure of functional spaces. At the same time,
as we argue in this paper, real-valued functions also have a natu-
ral algebra defined through pointwise products, which can be used
directly to improve the quality of function transfer without relying
on point-to-point maps. Remarkably, we show how this property
can be exploited to transfer high-frequency functions even in the
presence of a functional map relating only low-frequency bases.

Perhaps most closely related to ours is a recent work by Nog-
neng and Ovsjanikov [NO17], in which the authors showed that
by representing descriptors as linear operators acting on functions
through pointwise multiplication, it is possible to obtain a signifi-
cant improvement in the quality of the recovered functional map.
Similarly to theirs, our work is also motivated by the classical result
that a non-trivial functional map acts as a point-to-point map if and
only if it preserves pointwise function products [SM93]. However,
rather than trying to improve the quality of an optimized functional
map through better use of descriptors, our emphasis is on showing
how a given functional map can be used more effectively by allow-
ing the transfer of not just basis functions but also their (possibly
high-order) point-wise products. More concretely, unlike previous
works, including [NO17], which have always restricted the func-
tional subspaces to linear combinations of basis functions, we show
that a much richer space can be constructed and used without sacri-
ficing the computational and storage efficiency of functional maps,
by exploiting pointwise products of basis functions.

3. Motivation and Overview

Suppose we are given a pair of shapes M and N consisting of nM
and nN points.

A method for constructing the so-called “functional maps” be-
tween them was proposed in [OBCS∗12] and then significantly ex-
tended in the follow-up works (see [OCB∗17] for an overview) and
consists of the following general steps:

1. Construct a set of basis functions on both M and N . Store them
as columns of matrices Φ

M = (φM
1 , . . . ,φM

kM
) and Φ

N =

(φN
1 , . . . ,φN

kN
) for some small kM,kN . The most commonly

used basis consists in taking the eigenfunctions corresponding
to the smallest eigenvalues of the Laplace-Beltrami operator, al-
though the ideas presented below are not tied to this choice.

2. Compute q descriptor functions (e.g., Wave Kernel Signature
[ASC11]) on the source and target shapes. Express them in
the corresponding bases and store the expansion coefficients as
columns of matrices A and B, of size kM × q and kN × q re-
spectively.

3. Compute the optimal functional map matrix C of size kN ×kM.

The most basic approach, introduced in [OBCS∗12] consists in
finding a matrix that as best as possible aligns the descriptor

functions and also commutes with the Laplace-Beltrami opera-
tors on the two shapes. Formally this can be written as:

C = argmin
X

‖XA−B‖+ ε‖ΛN
X−XΛ

M‖,

where Λ
N
,Λ

M are diagonal matrices of Laplace-Beltrami
eigenvalues on the two shapes, and ε is a small regularizer.

4. Convert the functional map C to a point-to-point map between
the shapes.

One of the main advantages of the functional map representation
is that the key optimization step 3. above can be solved efficiently
using standard numerical linear algebra tools, and in the most ba-
sic case reduces to solving a simple linear system of equations.
This step has been extended considerably, by both employing man-
ifold constraints, robust optimization methods [KGB16], and by
formulating better descriptor preservation, commutativity, and reg-
ularization terms [LRB∗16, NO17]. On the other hand, as has been
observed in several follow-up works (see, e.g. [RMC15]), con-
verting a functional map to a point-to-point one in step 4. of the
pipeline can be a challenging and error-prone step in itself. At
the same time, as argued in the original article [OBCS∗12] (Sec-
tion 8.3), the knowledge of a point-to-point map might not be re-
quired in certain applications. Indeed, the functional map matrix
C can be used, e.g. to transfer real-valued functions across shapes,
which can be directly used, e.g. to transport segmentations across
shapes [OBCS∗12] or images [WHOG14] as well as other infor-
mation such as tangent vector fields [ABCCO13] or cross-fields
[ACBCO17]. Thus, given a real-valued function f, its image under
the functional map C can be computed as:

g = Tf =Φ
N

C(ΦM)†f,

where † denotes the Moore-Penrose pseudo-inverse. Note that the
large nN × nM matrix T representing the functional map in the
‘spatial’ domain is never actually constructed explicitly.

While very simple and intuitive, this procedure also has a severe
limitation: it only allows to transfer functions (or their projections)
that lie within the vector space spanned by Φ

M
. When the basis

is given by the first kM eigenfunctions of the Laplace-Beltrami
operator, which is the most choice in practice, this implies that only
sufficiently smooth or low-frequency functions can be transferred
using the map C.

Functional Algebra In this paper, we argue that this is an unnec-
essary restriction, which can be, at least partially lifted in many
settings. For this we propose using the algebraic structure of the
functional spaces on the shapes, which has so far not been exploited
fully. The key property we consider is that in addition to defining
a vector space via inner products, real-valued (square integrable)
functions also have a well-defined point-wise product operation:
f1 ⊙ f2 → f3, where f3(x) = f1(x) f2(x) at every point x ∈M.

This point-wise product operation is compatible with functional
maps: it is well-known [SM93] that a non-trivial linear functional
map corresponds to a point-to-point one if and only if it preserves
the functional algebra. I.e. the distributivity of the functional map
over point-wise product:

T( f1 ⊙ f2) = T( f1)⊙T( f2) ∀ f1, f2. (1)
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Figure 2: The first 5 standard 1D Fourier basis functions (in blue)

and their pairwise products (in red) on a periodic domain. Above

each function we report the product from which it is generated. Note

how the products exhibit higher frequencies compared to the orig-

inal functions. Note also some linear dependencies among some of

these functions (e.g.: ϕ2 ⊙ϕ2 +ϕ3 ⊙ϕ3 +λϕ1 = 0 for a scalar λ).

Intuitively, if a functional map corresponds to a point-to-point
one, then product preservation follows directly from the definition
of composition. Conversely, if a functional map preserves point-
wise products, then T( f 2) = T( f )⊙T( f ), which implies that indi-
cator functions should be mapped to indicator functions.

Remark: It is interesting to measure how Eq. (1) changes when
the functional map deviates from a pointwise map. A simple com-
putation shows that if T̃ = T+δ, where T satisfies Eq. (1), then:

T̃( f1 ⊙ f2) =T̃( f1)⊙ T̃( f2)+δ( f1 ⊙ f2)−δ( f1)⊙δ( f2)

−δ( f1)⊙ T̃( f2)− T̃( f1)⊙δ( f2)

Note that the result involves the cross-terms T̃(.)⊙δ(.). Therefore,
to bound the deviation, one needs not only a bound on the error
δ but also potentially a bound on the functional map itself. Some
analysis of such bounds was presented in [HCO17] (Condition 3.1
and Proposition 3.3), and we leave the precise analysis of the failure
of product preservation as interesting future work.

Now, suppose that a functional map is expected to be of suf-
ficiently “high-quality” to satisfy the product preservation prop-
erty. For example, the functional map should approximate some
unknown point-to-point map. Then, we can use Eq. (1) explicitly
without computing that point-to-point map. Namely, if we would
like to transfer a given real-valued function, we can decompose it
into a linear combination of the basis functions and of their point-

wise products, and then transfer the coefficients by combining the
linearity of the map with Eq. (1) to compute the image of products
of basis functions, and thus of the given function.

Our main motivation for using this construction is that it allows
us to extend the space of functions that can be transferred by a given
functional map C without changing the basis and without convert-
ing it to a point-to-point map. For example, consider the standard
Fourier basis functions and their pairwise products shown in Fig-
ure 2. Note that some products exhibit higher frequency behavior.
As a result, they allow a significantly more accurate function re-

0 2π

0

1

std = 0.80 prod = 0.63

0 2π

std = 0.63 prod = 0.37

0 2π

std = 0.49 prod = 0.31

kM = 4 kM = 8 kM = 12

Figure 3: A 1D indicator function defined on the standard periodic

domain (in black), its reconstruction using the standard first five

Laplacian basis functions (in blue) and using all the products of

the first five eigenfunctions (in red). With an increasing value of k

from left to right kM = 4, kM = 8 and kM = 12. The bases used

are the ones from Figure 2. Note the significant improvement in

reconstruction error shown above for all the different values of k.

construction, shown in Figure 3 for different values of kM. Finally,
since Eq. (1) allows us to transfer coefficients of products of basis
functions, given the knowledge of images of basis functions them-
selves, this enables a more accurate function transfer, which can
have a direct effect on all applications that use this aspect of func-
tional maps, e.g., [ABCCO13, WHOG14, ACBCO17].

4. Method Description

More concretely, suppose that we are given a pair of discrete shapes
M and N , represented as triangle meshes containing nM and nN
points respectively. Moreover, suppose both shapes are endowed
with a reduced functional basis, stored as columns of matrices
ΦM,ΦN of size nM× kM,nN × kN for some small kM,kN . In
practice we use the eigenfunctions of the Laplace-Beltrami opera-
tors to construct the basis, although the ideas presented below are
not tied to this choice.

We also suppose that we are given a functional map, represented
in the reduced basis as a matrix C of size kN ×kM, which is either
induced by a point-to-point map or is close to such a map. For ex-
ample, if C comes from the optimization pipeline outlined in Sec-
tion 3, then we would expect it to be close to satisfying this prop-
erty, as this pipeline is intended to recover a point-to-point map.
Such a functional map should therefore satisfy the distributive re-
lation of Eq. (1). Finally, we are also given a function f , stored
simply as a vector f of size nM, that we would like to transfer from
M to N . Our goal then is to use the distributive property of multi-
plication, to extend the definition of our map to a space larger than
that spanned by the original basis functions.

4.1. Function Representation

To achieve higher accuracy transfer, our approach will be to first
represent a given function f as a linear combination of the basis
functions ϕ1, . . . ,ϕk and of their pointwise products. I.e., we look
for the best coefficients ai and b j to approximate f as

f ≈
k

∑
i=1

aiϕi +
P

∑
j=1

b j

r j

∏
l=1

ϕi jl
, (2)

where i jl are indices drawn from {1, . . . ,k} (possibly with repeti-

tions) and r j is the number of terms used in the jth product. Note
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that a single basis function can appear multiple times in the same
product, which allows representing higher order powers of basis
functions. Also note that, in principle, both the number of products
P and the number of terms r j in each product is arbitrary.

Once we find such an approximation, we can transfer f by using
the given functional map C and exploiting Eq. (1).

One difficulty with this approach is that if the functional map
is approximate and does not satisfy Eq. (1) exactly, then terms in-
volving function products can amplify the noise present in the map.
In order to avoid this effect, we should look for a way to make as
few products as possible to approximate f . However, the follow-
ing theorem (proved in the supplementary material) shows that this
problem is NP-hard:

Theorem 1 We consider the following problem (APPROX):
INPUT: A positive integer nM, K basis functions ϕ1, . . . ,ϕK :
{1, . . . ,nM} → R, a “target” function f : {1, . . . ,nM} → R, and
ε > 0
OUTPUT: Minimum cost c ∈N, g1,1, . . . ,g1,r1 , . . . ,gP,1, . . . ,gP,rP

∈
{1, . . . ,k}, α1, . . . ,αP ∈ R such that:

• ‖ f −∑
P
i=1 αi ·Gi‖∞ < ε, where Gi = ∏

ri

j=1 ϕgi, j

• ∑
P
i=1(ri −1)≤ c

(APPROX) is NP-hard.

Note that c corresponds to the cost that we would like to minimize,
since it represents the number of pointwise products used in the
approximation. Intuitively, this theorem is related to the optimal
sparse (L0 norm) function approximation, which is also known to
be NP-hard [Nat95]. However, due to the special structure of our
problem, which involves pointwise products of basis functions, our
proof is independent and uses a reduction of 3-SAT directly.

4.2. Extended Functional Basis

Due to Theorem 1 and also because we have observed that using
high order products usually brings little improvement in practice,
we focus on only using point-wise products between pairs of basis
functions ϕM

i ⊙ϕM
j , where potentially i = j. Therefore, we look

for the best coefficients ai and bi, j to approximate f :

f ≈ ∑
i

aiϕ
M
i +∑

i, j

bi jϕ
M
i ⊙ϕM

j . (3)

For this, we define an extended basis on M as BM =
(ΦM

,Φ̃
M), where each column of the matrix of Φ̃M is of the

form ϕ̃i = ϕM
l ⊙ ϕM

m for some unique pair l,m ∈ {1, . . . ,kM}.
Note that we exclude products with the constant function from
Φ̃

M
, but include both ordered pairs (l,m) and (m, l). We include

both ordered pairs only for simplicity of the computation and the
formulas involved, although they carry the same information.

Given the extended basis, our goal then is to approximate a given
function f by computing a vector of coefficients a that would min-
imize ‖BMa− f‖. Note, however, that the matrix BM is not full
rank, and, therefore the best approximation of f may involve a large
amplification of noise.

To handle this issue, we use two solutions:

original

0.23 0.10 0.06 0.04

standard basis

0.09 0.02 0.01 0.006

extended basis

Figure 4: Surface reconstruction via approximation of the 3-

coordinates functions. On the left the original shape. On the right,

for different values of k (9,29,49,69), some surface reconstruc-

tion results. On the top using the first k + 1 Laplacian eigenfunc-

tions, bottom adding also pairwise products. Under each shape is

reported the error. The colormap encodes reconstruction error, de-

creasing from dark red to white.

20 MH 2nd order 3rd order 4th order

Figure 5: Surface reconstruction via approximation of the 3-

coordinates functions using different orders of products. From left

to right using 20 eigenfunctions, their second order products, third

order and finally fourth order products.

• Approach A: compute the optimal coefficients a by solving the
Lasso-type problem:

argmin
a

‖B
M

a− f‖2 + ε‖a‖p, (4)

where we use p = 1 or p = 2, which respectively promote spar-
sity and penalize large coefficients, and ε is a small regularizer.
To solve Equation 4 with p = 1 we use a toolbox for non-smooth
convex optimization [Pey] which implements the FISTA method.

• Approach B: compute the singular value decomposition (SVD)
of

√
AMBM as

√
AMBM = UΣV⊤, where AM is the area

matrix associated with the triangle mesh M. We then set all sin-
gular values in Σ that are below 0.1% of the maximal value to
zero and compute:

a = VΣ
†
U
⊤
√

AMf, (5)

Note that this approach is nearly identical to using the pseudo-
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Figure 6: Reconstruction of an indicator function of a region, using

the standard and extended bases. On top we plot the original indi-

cator function and its transfer using standard basis (middle) and

extended basis (right). The second row shows the regions detected

by thresholding the functions above using the same fixed value, the

corresponding error shown below each plot.

inverse of BM to compute a = (BM)†f with the thresholding
parameter 0.001σmax. However we use the area matrix to prop-
erly scale the basis with respect to the area elements on the mesh.

The first approach has the advantage of continuously depending
on ε, while in the second case computing the optimal coefficients
can be done effectively once the matrix VΣ

†U⊤ is pre-computed,
which allows us to use it to transfer many functions. For these rea-
sons, unless specified, we adopt the Approach B below.

We show an example of the reconstruction quality of the coor-
dinate functions using the standard and extended basis in Figure 4
and the same for an indicator function of a region in Figure 6. Note
that the use of the extended basis allows to capture higher frequency
details even for the same size of the original basis. Therefore, intu-
itively, we would expect that it would allow more accurate function
transfer across shapes.

4.3. Extended Function Transfer

Once the optimal coefficients a of the function f in the extended
basis BM are computed, we use the given functional map C to
transfer f onto shape N . For this, we first construct an extended
basis BN using the same procedure as described in Section 4.2
above. We then construct an extended transfer matrix:

C̃(C) =

[
C R(C)

0 C(1 : k,1 : k)⊗C(1 : k,1 : k)

]

with

R(C) =




φ0C(0,1 : k)⊗C(0 : k,1 : k)

+φ0

[
0 . . .0

C(1 : k,1 : k)

]
⊗C(0,1 : k)




where ⊗ is the Kronecker product of matrices, C(0,1 : k) means
that we consider the row of index 0 and the columns of indices
going from 1 to k, and φ0 = ΦN (0,0) is the constant value taken
by the constant eigenfunction on any point.

The following result (proved in the appendix) shows that C̃ al-
lows us to transfer functions expressed in the extended basis

Lemma 2 The image of a function f = BMa on shape N is given
by BN C̃a

This lemma shows that transferring functions in the extended
basis can simply be done by matrix-vector multiplication, as is the
case in the standard basis. Note that the transfer is not linear in
the original functional map C, since the construction of C̃ involves
Kronecker products. This implies that it is not straightforward to
include the extended basis in the pipeline for computing functional
maps, since this would involve terms with products of the unknown
map, which could significantly increase the optimization complex-
ity. Nevertheless, once the map C is computed, using it for function
transfer with the extended basis can be done in closed form.

4.4. Function Comparison and Pointwise Map Recovery

We note that in some applications (e.g., converting a functional map
to a point-to-point one) it is important to compare functions by sim-
ply comparing their coefficients in a reduced basisWhen consider-
ing the extended basis BN for example, this can lead to problems
because the basis is not orthonormal, and furthermore not neces-
sarily full-rank. This means, in particular, that a single function can
be represented using multiple different coefficients in the extended
basis. To alleviate this issue, similarly to the procedure described
in Section 4.2 we compute the SVD of

√
AN BN = UΣV⊤, and

for every function f with coefficients a in the extended basis, such
that f=BN a we define its canonical coefficients using ã=ΣV⊤a.
Note that in this case

‖f‖2
A = f

⊤
A
N

f = a
⊤(BN )⊤A

N
B
N

a = a
⊤

VΣ
2
V
⊤

a
⊤ = ã

⊤
ã,

where the second and third equations hold because f = BN a by
assumption and because the area matrix and the diagonal matrix Σ

are symmetric, such that (BN )⊤
√

AN
⊤√

AN BN = VΣ
2V⊤.

It follows that given two functions f1, f2 with coefficients a1,a2
in the extended basis, we can compute the norm of their difference
as simply the L2-norm of the difference ‖ã1 − ã2‖2.

Pointwise map recovery With this procedure in place, we can ex-
ploit Eq. (1) and the extended basis for recovering a point-to-point
map from a given functional map C. Note that the input functional
map is always given in the original basis, and we only use extended
basis for more accurate function transfer. For converting C to a
pointwise map, we first compute the canonical coefficients of Dirac
δ functions at each point y on shape N in the extended basis. We
then compute the image of each δ function of points on shape M
and compute its canonical coefficients. Finally, following the pro-
cedure described in [OBCS∗12] we construct a point-to-point map
by looking at the nearest neighbors in the coefficient space. This
procedure has the advantage of being efficient, since functions are

represented in the space of dimension at most k̃N = kN +
k2
N+kN

2 ,
where the second terms represents the number of distinct pairwise
products of basis functions. For small values of kN the value k̃N
is still significantly lower than the number of vertices. In practice
we use (squared) heat kernel instead of Dirac δ functions for repre-
senting points, as described in Section 5.3 below.
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original

transfer

approximation

std 0.76 prod 0.32

std 0.76 prod 0.41

Figure 7: Approximation (top) and transfer (bottom) of a real-

valued function from a source shape onto a target shape using a

fixed functional map with the standard approach (center) vs. our

extended method (right).

5. Results

In the following experiments we use two standard datasets: FAUST
[BRLB14] an TOSCA [BBK08]. The former consists of 100
shapes, with 10 subjects in 10 poses, represented as triangle meshes
with the same connectivity and with ground truth point-wise cor-
respondences. TOSCA high resolution dataset contains synthetic
models in 7 different shape classes with ground truth correspon-
dences given in each class.

5.1. Function approximation and transfer

In our first application, we evaluate the utility of our function trans-
fer procedure using both ground truth (arising from known point-
wise maps) and computed functional maps. Namely, given a set of
pairs of (source, target) shapes and a collection of different func-
tions on each source, we evaluate: i) the approximation of each
function on the source shape, and ii) the transfer of a function be-
tween the source and the target shape. Figure 7 shows a qualitative
example of approximation and transfer of a real-valued function,
with the original function shown on the left. This function is gen-
erated as a combination of an indicator function (on the left leg) a
gaussian around a point (top of the right leg) a sine function of the y

coordinate (on the tail) and a continuously increasing function (on
the ears). We compare the standard approach (std) vs. our extended
method (prod), for both function approximation and transfer onto
a different pose of the same shape. Note the improvement with our
approach (Approach B) as captured by the mean squared error re-
ported under each plot.

In our quantitative experiments we consider the following fami-
lies of functions:

• hk k, hk K: the heat kernel functions ht(x, ·) between a random
point x and the rest of the shape approximated using kM + 1
eigenfunctions (for hk k) and using 200 eigenfunctions (for hk

ground truth approx transfer

function std our l1 std our l1 our l2 our B

hk k 0.00 0.01 0.06 0.06 0.06 0.05

hk K 0.91 0.86 0.91 0.87 0.92 0.86

HKS 0.54 0.00 0.54 0.15 0.15 0.15

WKS 0.21 0.00 0.21 0.04 0.04 0.04

Random 0.38 0.03 0.38 0.07 0.06 0.06

XYZ 0.29 0.21 0.29 0.23 0.27 0.23

Indicator 0.36 0.28 0.37 0.28 0.32 0.28

SHOT 0.84 0.82 0.84 0.82 0.84 0.82

AWFT 0.31 0.26 0.31 0.27 0.30 0.27

Table 1: Approximation and transfer quality results using a ground

truth functional map with kM = kN = 9 of various functions on 20
shape pairs from the FAUST dataset. Note that for all functions ex-

cept hk k, which lies in the span of the original basis, our approach

produces a significant improvement.

K). Note that in the former case, the function is contained in the
span of the original basis, while in the latter 200 > kM.

• HKS, WKS: the Heat and Wave Kernel Signatures [SOG09,
ASC11] for 10 randomly time and energy values respectively.

• Random: the function obtained as a linear combination of the
extended basis using a random set of coefficients.

• XYZ: the X , Y , Z, coordinates of vertices.
• Indicator: the binary indicator function of a random region.
• SHOT, AWFT: the SHOT [TSDS10] and AWFT [MRCB16] de-

scriptors for 10 randomly chosen dimensions.

We compare the function approximation and transfer using the
standard method (std) with the two approaches described in Sec-
tion 4.2. For Approach A we have two different regularizations us-
ing the L1-norm and the L2-norm (our l1 and our l2). We denote
our Approach B with our B. For the L1 regularization we used the
Sparse Optimization Toolbox for Matlab [Pey].

Table 1 shows the results for function approximation and
transfer using ground truth functional maps on a set of shape
pairs from the FAUST dataset [BRLB14]. Here and below, the
errors are computed as the normalized integral of the differ-
rence between the function f and the ground truth g as err =√∫

M( f −g)2dx
/√∫

M(g)2dx, where, dx is the area element in-

duced by the metric. Note that all of our approaches result in a
significant improvement for approximation and transfer. Note also
that although the L1 regularization produces good results, it per-
forms similarly to other approaches. At the same time, as it is sig-
nificantly more time-consuming, and requires solving a convex op-
timization problem for every function to be transferred, we omit it
from further evaluation and rely on the L2 regularization for Ap-
proach A.

In Table 2 we show a similar evaluation but on a computed func-
tional map, using a recent approach of [NO17], which estimates
a functional map by exploiting a set of descriptors on each shape,
where we use the WKS for some energy values. Here again, our ap-
proaches show a significant improvement with respect to the base-
line standard method for all functions. Throughout our experiments
we observed that when increasing the basis size kM on the source,
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computed approx transfer

function std our A our B std our A our B

hk k 0.00 0.03 0.01 0.13 0.13 0.13
hk K 0.82 0.54 0.49 0.82 0.57 0.58
HKS 0.55 0.14 0.00 0.55 0.22 0.22

WKS 0.14 0.03 0.00 0.14 0.07 0.06

Random 0.48 0.04 0.01 0.49 0.15 0.15

XYZ 0.12 0.09 0.06 0.13 0.11 0.11

Indicator 0.28 0.19 0.17 0.28 0.20 0.19

SHOT 0.81 0.76 0.74 0.81 0.77 0.78
AWFT 0.24 0.19 0.17 0.25 0.20 0.20

Table 2: Approximation and transfer quality using a computed
functional map with kM = 29,kN = 39 using the method from

[NO17] of various functions on 20 shape pairs from the FAUST

dataset. Note in particular that our transfer approach produces a

significant improvement.

computed kM = 6, kN = 7 kM = 27, kN = 35
function std our B std our B

hk k 0.77 0.60 0.08 0.06

hk K 0.92 0.87 0.79 0.58

HKS 0.66 0.61 0.55 0.17

WKS 0.47 0.25 0.17 0.04

Random 0.75 0.69 0.46 0.09

Coordinates 0.34 0.24 0.12 0.10

Indicator 0.58 0.34 0.28 0.19

SHOT 0.90 0.88 0.84 0.81

AWFT 0.35 0.29 0.25 0.21

Table 3: Transfer quality comparison using a ground truth func-

tional map with kM = 6 and kN = 7 and kM = 27 and kN = 35,

average on 20 pairs from FAUST dataset. Note in particular that

our transfer approach produces a significant improvement as the

number of basis functions used increases.

it is often beneficial to have kN > kM since this allows to better
represent the transfer of basis functions.

Table 3 shows how the transfer using standard and our approach
benefit from the increase in the basis size. In the first two columns
we use a ground truth functional map represented by a matrix C

with kM = 6 and kN = 7. In the last two columns we use kM = 27
and kN = 35 non-constant basis functions. These dimensions are
chosen since e.g., starting with k basis functions, the number of
different functions obtained by adding the pairwise products is at

most: k+
k(k+1)

2 . The transferred functions that depend on the basis
dimension (e.g., the HKS) are computed using the larger value of
kM in all cases. As can be seen in Table 3, both the standard and
our approach benefit from the increase in the basis size, while our
approach is always better for a given basis size. Observe that the
results obtained with the standard approach using more basis func-
tion are close to those obtained with our approach and fewer basis
functions. This is remarkable, given the optimality of the Lapla-
cian eigenfunctions for representing functions with bounded vari-
ation, as shown by Aflalo et al. [ABK15]. Furthermore increasing
the number of basis functions in the standard approach requires
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Figure 8: Plots of the percentage of the surface area for which the

function approximation and transfer is below some threshold for

the HKS (left) and the indicator function of a region (right), using

computed functional maps on 20 pairs of shapes from the FAUST

dataset. Dashed and solid lines represent function approximation

and transfer respectively.

original non uniform pathological

std 0.57 prod 0.27 std 0.60 prod 0.22

Figure 9: An example of function transfer from a source shape

with a regular mesh (left), to two different meshes with different

triangulations. From left to right: a non uniform resampling (fewer

vertices on the legs), a mesh with pathological triangles (around

the 60% are very thin triangles).

solving an eigen-problem and the estimation of new coefficients in
the functional map. Conversely our approach improves the repre-
sentation and the transfer of functions without any new estimation
of coefficients. Please see the Appendix for results using functional
maps of various sizes. We also compared our method with first con-
verting the functional map to a point-to-point one and using the lat-
ter for function transfer. This approach produces even more error
than the standard method, as it introduces an additional source of
noise.

In Figure 8 we show a different representation of the results
from Table 2 for the HKS and the indicator functions. Namely, we
plot the fraction of the surface area for which the difference be-
tween the approximated and the ground truth functions is below a
threshold γ ∈ [0,1]. I.e., the x-axis represents the error threshold
γ, whereas the y axis shows the surface area of all points x such
that ( f (x)− g(x))2

< γ
√∫

g(x)2dx. Figure 9 shows some results
on the stability of transfer between different meshes. Starting from
an original mesh and a function (left), we compare the transfer
using the standard basis and our extended basis. The two meshes
on which we compare the transfer have a different connectivity: a
mesh with non uniform resampling (fewer vertices on the bottom of
the shape), a mesh with around 60% of pathological triangles (very
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region 20 MH 70 LMH MH+ prod LMH+ prod

0.16 0.06 0.04 0.00

Figure 10: Surface reconstruction via approximation of the 3-

coordinates functions using two different bases: the standard man-

ifold harmonics (MH) and localized manifold harmonics (LMH).

On the left we show the original shape and the region (in red) in

which are localized the LMH. On the right of each shape we report

the reconstruction error. The colormap encodes reconstruction er-

ror, decreasing from dark red to white.
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Figure 11: Comparison on the transfer for HKS and WKS, average

on 5 pairs from FAUST dataset [BRLB14]. Starting with k+1 = 10
basis functions on the source shape we compute HKS and WKS

for 1 scale, and their coefficients in the k + 1 fixed basis and its

products extension. Varying the basis dimension on the target shape

from 10 to 100, we define the C and the C̃ and compute the tranfer

of HKS and WKS on the target shape. Here we plot the transfer

error (y-axis) for HKS (left) and WKS (right) varying the basis di-

mension on the target shape (x-axis).As can be seen the error with

products is smaller and decreases with increasing basis dimension

while without products error stops decreasing.

thin triangles). As can be seen, our approach gives better results
and is stable with respect to changes in mesh connectivity.

Approximation in other bases As mentioned above, our extended
basis construction is not tied to the Laplacian eigenfunctions. To
illustrate this, in Figure 10 we show how the pointwise products
improve the functional space representation in a different basis.
Namely, we perform the same test that is in Figure 4, but using dif-
ferent basis manifold harmonics (MH) and the recently proposed
localized manifold harmonics (LMH) [MRCB17]. As can be seen,
for both of these bases pairwise products allow a more accurate
representation of the surface.

5.2. HKS and WKS approximation and transfer

One interesting observation related to our method is that both the
Heat Kernel Signature and the Wave Kernel Signature functions are
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Figure 12: Quality of correspondences obtained from a given

ground truth functional map of dimension 40×30, between all the

possible pairs of shapes for one subject from FAUST dataset (left),

and for all the pairs of shapes for the centaur from TOSCA high

resolution dataset (right).
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Figure 13: Quality of correspondences obtained from a computed
functional map of size 40× 30, between all the possible pairs of

shapes for one subject from FAUST dataset (left), and all pairs of

shapes for the centaur from TOSCA high resolution dataset (right).

of the form ht(x,x) = ∑
kM
i=1 αiφ

2
i (x), for some scalar coefficients

αi. In other words, they are constructed explicitly using squares of
eigenfunctions and therefore it must be possible to represent and
transfer them exactly in our extended basis. Therefore, they pro-
vide a good test for the correctness of both our extended function
approximation and transfer methods. To demonstrate the difference
between the transfer of these functions using the standard and the
extended basis we show in Figure 11 the transfer error using the
ground truth functional map of size kN × kM for increasing kN .
Note that for large values of kN we can approximate the transfer
of all kM basis functions from the source well, which means that
we would expect our extended transfer method to produce progres-
sively better results. This can clearly be seen in Figure 11 where
our method converges to a very small value while the standard tech-
nique does not improve. This is because the functions φ2

i cannot be
well-approximated in the basis of the source shape, which means
that regardless of the basis size on the target, we cannot achieve
small error.

5.3. Point-to-point map recovery

We also demonstrate the utility of our approach for converting func-
tional maps to point-to-point ones. As mentioned in Section 4.4,
our extended basis can also be used to embed points in a coeffi-
cient space where function comparison can be done directly, which
can be useful for point-to-point map recovery. In particular, we
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Figure 14: Joint quadrangulation of two triangle meshes using the

approach of [ACBCO17] with the standard Laplacian k = 5 eigen-

functions (left) and our extended (right) basis. Note that the pres-

ence of products of basis functions allows us to transport higher

frequency information, which leads to a more consistent result.

represent each point on the shape as the square of the heat ker-
nel for a small time scale centered at that point. We then convert
a functional map to a point-to-point staring with a ground truth
map and also a computed one using the method of [NO17] on a
set of pairs from the FAUST [BRLB14] TOSCA high resolution
datasets [BBK08]. We plot the conversion results in Figures 12 and
13 using the ground truth and estimated functional maps respec-
tively, both of size 40× 30. Note that as explained in Section 5.1
it is beneficial to rectangular matrices C in order to take full ad-
vantage of the use of the products. As can be seen in Figures 12
and 13 the extended basis and our improved function transfer also
contribute to better point-to-point map recovery.

5.4. Joint quadrangulation

We also used our approach in the context of joint quadrangula-
tion of triangle meshes by adapting the recent technique presented
in [ACBCO17]. This method is based on using functional maps for
constructing consistent cross fields on a pair of surfaces, which are
in turn used for designing approximately consistent quad-meshes.
Moreover, the pipeline presented in [ACBCO17] only relies on the
ability of functional maps to transfer real-valued functions and does
not require point-wise correspondences. We adapted this method
to take advantage of the extended basis by simply enabling the
transfer of pointwise products of basis functions, without any other
modification, using the code provided by the authorss. Figure 14
presents a result on a pair of shapes using the standard Laplacian
basis with k = 5 eigenfunctions and using our extended basis. Note
that the presence of pointwise products in the extended basis allows
us to transfer higher frequency information which leads to a more
consistent result overall. In this application we used a functional
map arising from a ground truth pointwise correspondence. Al-
though preliminary, this result suggests the utility of our extended
function transfer for joint quadrangulation, and we leave a more
in-depth exploration of this application as future work.

6. Conclusion, Limitations and Future Work

In this paper, we presented a novel method for function transfer
with functional maps, by exploiting the algebraic structure of func-
tion spaces. We showed that by extending the functional basis to
include pointwise products of basis functions, we can significantly
improve both the reconstruction and the transfer quality of func-
tions, while maintaining the computational complexity of the orig-
inal functional map. Our approach has direct consequences on all

applications of functional maps, and in particular shows how high-
frequency information can be transferred even in the presence of
only low frequency basis functions.

Our main limitation is that in the current formulation we only use
products of pairs of basis functions. Although we have observed
that higher-order products do not often bring significant improve-
ment, a more in-depth analysis of the scenarios in which they can
be useful is necessary. In the future, we also plan to work on more
scalable methods for function approximation, by removing the need
to explicitly compute the entire extended basis, which can be pro-
hibitive for large bases.
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computed approx transfer

function std our A our B std our A our B

hk k 0.00 0.01 0.01 0.05 0.05 0.05
hk K 0.88 0.75 0.78 0.88 0.82 0.79

HKS 0.54 0.00 0.00 0.54 0.11 0.11

WKS 0.22 0.00 0.01 0.22 0.04 0.04

Random 0.38 0.00 0.00 0.38 0.05 0.05

XYZ 0.28 0.18 0.20 0.28 0.25 0.23

Indicator 0.40 0.28 0.29 0.41 0.33 0.31

SHOT 0.84 0.80 0.81 0.84 0.83 0.82

AWFT 0.31 0.24 0.25 0.32 0.29 0.27

Table 4: kM = 9 and kN = 9, average on 20 pairs from FAUST

dataset. Computed functional map

ground truth approx transfer

function std our A our B std our A our B

hk k 0.00 0.03 0.01 0.26 0.20 0.20

hk K 0.79 0.52 0.45 0.80 0.57 0.75
HKS 0.57 0.14 0.00 0.57 0.43 0.54
WKS 0.12 0.03 0.00 0.12 0.07 0.05

Random 0.47 0.04 0.01 0.48 0.17 0.18
XYZ 0.12 0.09 0.06 0.12 0.13 0.16
Indicator 0.27 0.18 0.17 0.27 0.20 0.25
SHOT 0.82 0.76 0.75 0.82 0.78 0.88
AWFT 0.24 0.19 0.17 0.25 0.22 0.27

Table 5: kM = 29 and kN = 29, average on 20 pairs from FAUST

dataset. Given a ground truth functional map

ground truth approx transfer

function std our A our B std our A our B

hk k 0.00 0.03 0.01 0.09 0.09 0.08

hk K 0.79 0.54 0.49 0.79 0.57 0.61
HKS 0.55 0.14 0.00 0.56 0.18 0.14

WKS 0.13 0.03 0.00 0.13 0.05 0.04

Random 0.46 0.04 0.01 0.46 0.09 0.09

XYZ 0.12 0.09 0.06 0.12 0.10 0.09

Indicator 0.28 0.19 0.18 0.28 0.20 0.19

SHOT 0.82 0.76 0.75 0.82 0.77 0.78
AWFT 0.24 0.19 0.17 0.25 0.20 0.20

Table 6: kM = 29 and kN = 39, average on 20 pairs from FAUST

dataset. Given a ground truth functional map

[WHOG14] WANG F., HUANG Q., OVSJANIKOV M., GUIBAS L. J.:
Unsupervised multi-class joint image segmentation. In Proc. CVPR

(2014), pp. 3142–3149. 2, 3, 4

7. Appendix

7.1. Additional Results

Tables 4, 5 and 6 show approximation and transfer quality of dif-
ferent functions using ground truth and computed functional maps
of different sizes.

7.2. Proof of Theorem 1

Please see the supplementary material.

7.3. Proof of Lemma 2:

The image of a function f = BMf on shape N is given by BN C̃f.
where

C̃ =




C

φ0C(0,1 : k)⊗C(0 : k,1 : k)

+φ0

[
0 . . .0

C(1 : k,1 : k)

]
⊗C(0,1 : k)

0 C(1 : k,1 : k)⊗C(1 : k,1 : k)




(6)

Proof Let KM = 1 + kM + kM
2 be the number of columns in

BM. By linearity, it is sufficient to prove the statement for each

e
(KM)
i = (0, . . . ,0,1,0, . . . ,0) ∈ R

KM (the 1 is at position i).

• if 0 ≤ i ≤ kM:

By definition of C̃, BN C̃f = ΦN Ce
(kM+1)
i which is the image

of BMe
(kM+1)
i = f .

• if i > kM:
we write i = kM+ kM(i1 − 1)+ i2, which represents the pair
of indices 1 ≤ i1, i2 ≤ kM.

BN C̃f = ΦN (φ0(Ce
(kM+1)
i1

)0(Ce
(kM+1)
i2

))

+φ0(Ce
(kM+1)
i2

)0(Ce
(kM+1)
i1

)1:kM)

+(ΦN ⊗ΦN )((Ce
(kM+1)
i1

)1:kM ⊗ (Ce
(kM+1)
i2

)1:kM)

= (ΦNCe
(kM+1)
i2

)⊙ (ΦN (Ce
(kM+1)
i1

)0)

+(ΦN (Ce
(kM+1)
i1

)1:k)⊙ (ΦN (Ce
(kM+1)
i2

)0)

+(ΦN (Ce
(kM+1)
i1

)1:k)⊙ (ΦN (Ce
(kM+1)
i2

)1:k)

=(ΦNCe
(kM+1)
i2

)⊙ (ΦN (Ce
(kM+1)
i1

)0)

+(ΦN (Ce
(kM+1)
i1

)1:k)⊙
(
(ΦN (Ce

(kM+1)
i2

)0)

+(ΦN (Ce
(kM+1)
i2

)1:k)
)

=(ΦNCe
(kM+1)
i2

)⊙ (ΦN (Ce
(kM+1)
i1

)0)

+(ΦN (Ce
(kM+1)
i1

)1:k)⊙ (ΦNCe
(kM+1)
i2

)

=(ΦNCe
(kM+1)
i2

)⊙ (ΦNCe
(kM+1)
i1

),

which is the point-wise product of the images of BMe
kM+1
i1

and

BMe
(kM+1)
i2

, which is, by Eq. (1), the image of BMe
(kM+1)
i1

⊙
BMe

(kM+1)
i2

= f .
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