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Abstract. We present a new garbled circuit construction for two-party
secure function evaluation (SFE). In our one-round protocol, XOR gates
are evaluated “for free”, which results in the corresponding improvement
over the best garbled circuit implementations (e.g. Fairplay [19]).

We build permutation networks [26] and Universal Circuits (UC) [25]
almost exclusively of XOR gates; this results in a factor of up to 4 im-
provement (in both computation and communication) of their SFE. We
also improve integer addition and equality testing by factor of up to 2.

We rely on the Random Oracle (RO) assumption. Our constructions
are proven secure in the semi-honest model.

1 Introduction

Two-party general secure function evaluation (SFE) allows two parties to evalu-
ate any function on their respective inputs x and y, while maintaining privacy of
both x and y. SFE is (justifiably) a subject of immense amount of research, e.g.
[27,28,17]. Efficient SFE algorithms enable a variety of electronic transactions,
previously impossible due to mutual mistrust of participants. Examples include
auctions [21,6,8,4], contract signing [7], distributed database mining [12,16], etc.
As computation and communication resources have increased, SFE has become
truly practical for common use. Fairplay [19] is a full-fledged implementation of
generic two-party SFE with malicious players. It clearly demonstrates feasibility
and efficiency of SFE of many useful functions, represented as circuits of up to
≈ 106 gates. Today, generic SFE is a relatively mature technology, and even
improvements by a small factor are non-trivial and are most welcome.

One area of SFE that especially benefits from our work is the SFE of private
functions (PF-SFE). It is an extension of SFE where the evaluated function is
known only by one party and needs to be kept secret (i.e. everything besides
the size, the number of inputs and the number of outputs is hidden from the
other party). Examples of real-life private functions include airport no-fly check
function, credit evaluation function, background- and medical history checking
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function, etc. Full or even partial revelation of these functions opens vulnera-
bilities in the corresponding process, exploitable by dishonest participants (e.g.
credit applicants), and should be prevented. It is known that the problem of
PF-SFE can be reduced to the “regular” SFE [24,23]. This is done by evaluat-
ing a Universal Circuit (UC) [25,15] instead of a circuit defining the evaluated
function. UC can be thought of as a “program execution circuit”, capable of
simulating any circuit C of certain size, given the description of C as input.
Therefore, disclosing the UC does not reveal anything about C, except its size.
At the same time, the SFE computes output correctly and C remains private,
since the player holding C simply treats description of C as additional (private)
input to SFE. This reduction is the most common (and often the most efficient)
way of securely evaluating private functions [24,23,15].

1.1 Related Work

General SFE has been a subject of immense amount of research, started by Yao
[27,28], which resulted in significant advances in the field [9,21,17]. Fairplay [19]
is a full practical implementation of general SFE based on garbled circuits.

Information-theoretic setting of SFE has also received a large amount of at-
tention, e.g. [13,11]. However, due to the restrictions of the model, the resulting
protocols are less efficient than those in the generous RO model. We apply some
of the ideas of this setting, such as the efficient XOR gate construction (e.g.
Construction 4 of [14]), in the RO setting, to obtain more efficient protocols.

1.2 Our Contributions

We present a new garbled circuit construction for two-party secure function eval-
uation (SFE) in the semi-honest model. In our one-round protocol, XOR gates
are evaluated “for free” (that is, without the use of the associated garbled tables
and the corresponding hashing or symmetric key operations). Our construction
is as efficient as the best garbled circuit implementations (e.g. Fairplay [19]) in
handling other gates.

We next show that free XOR gates bring significant benefit to many SFE
settings. We show how to build permutation networks [26] and UC [25,15] almost
exclusively of XOR gates; this results in a factor of up to 4 improvement (in both
computation and communication) of their SFE. As discussed above, SFE of UC
is the most efficient way of evaluating private functions; thus our work improves
performance of PF-SFE almost fourfold. We note that other useful functions
can benefit from free XOR gates. We show how to obtain a factor of up to 2
improvement of SFE of integer addition and equality testing.

We rely on the RO assumption; we discuss its (conservative) use in Sect. 3.1.

2 Setting and Preliminaries

We consider acyclic boolean circuits with k gates and arbitrary fan-out. That is,
the (single) output of each gate can be used as input to an arbitrary number of
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gates. We assume that the gates G1, . . . , Gk of the circuit are ordered topologi-
cally. This order (which is not necessarily unique) ensures that the i-th gate Gi

has no inputs that are outputs of a successive gate Gj , where j > i. A topological
order can always be obtained on acyclic circuits, with O(k) computation.

We concentrate on the semi-honest model, where players follow the protocol,
but try to learn information from the execution transcripts.

We use the following standard notation: ∈R denotes uniform random sam-
pling, || denotes concatenation of bit strings. 〈a, b〉 is a vector with two compo-
nents a and b, and its bit string representation is a||b. Wc = g(Wa, Wb) denotes
a 2-input gate G that computes function g : {0, 1}2 → {0, 1} with input wires
Wa and Wb and output wire Wc.

Let N be the security parameter. Let S be an infinite set and let X =
{Xs}s∈S and Y = {Ys}s∈S be distribution ensembles. We say that X and Y
are computationally indistinguishable, denoted X

c≡ Y , if for every non-uniform
polynomial-time distinguisher D and all sufficiently large s ∈ S, |Pr[D(Xs) =
1] − Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p.

Random Oracle. RO model is a useful abstraction, introduced and justified by
[3]. RO is simply a randomly chosen function {0, 1}∗ �→ {0, 1}N – a large object
which cannot be fully stored or traversed by polytime players. RO model gives
oracle access to such function to all players. In practice, ROs are modeled by
hash functions, such as SHA. Although it was shown [5] that a protocol secure
in the RO model may not be secure once RO is instantiated, “natural” RO
protocols maintain their security in practice, and are widely used.

Oblivious Transfer (OT). The 1-out-of-2 OT is a two-party protocol. The
sender P1 has two secrets m0, m1, and the receiver P2 has an selection bit i ∈
{0, 1}. At the end of the protocol, P2 learns mi, but nothing about m1−i, and
P1 learns nothing about i. One-round OT is a widely studied primitive in the
standard model [2,1], with improved implementations in the RO model [20,3].

Yao’s Garbled Circuit (GC). The GC approach, excellently presented in [17],
is the most efficient method of SFE of boolean circuits. Here we summarize its
idea. Player P1 first garbles circuit C: for each wire Wi, he randomly chooses two
secrets, w0

i and w1
i , where wj

i is a garbled value, or garbling, of the Wi’s value j.
(Note: wj

i does not reveal j.) Further, for each gate Gi, P1 creates and sends to
P2 a garbled table Ti, with the following property: given a set of garblings of Gi’s
inputs, Ti allows to recover the garbling of the corresponding Gi’s output, and
nothing else. Then garblings of players’ inputs are (obliviously) transferred to P2.
Now, P2 can obtain the garbled output simply by evaluating the garbled circuit
gate by gate, using the tables Ti. We call Wi’s garbling wj

i active if Wi assumes
the value j when C is evaluated on the given input. Observe that for each wire,
P2 can obtain only its active garbling. The output wires of the circuit are not
garbled (or their garblings are published), thus P2 learns (only) the output of
the circuit, and no internal wire values. P1 learns the output from (semi-honest)
P2. (This step is trivial in the semi-honest model, and is usually not considered
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in the analysis.) Correctness of GC follows from method of construction of tables
Ti. Neither party learns any additional information from the protocol execution.

3 Our Protocol

Overview. In our construction, we combine GC with the simple information-
theoretic SFE implementation of XOR-gates (e.g., Construction 4 of [14]). In
all GC implementations, XOR gates cost as much as AND or OR gates (i.e. in
computation and communication required for creation, transfer and evaluation
of the garbled tables). The XOR gates of Kolesnikov [14] are free of these costs.
However, his construction imposes a restrictive global relationship on the wire
secrets, which prevents its use in previous GC schemes. In this work, we show
how to overcome this restriction.

First, we show an SFE implementation of the XOR gate G, derived from one
of [14]. Let G have two input wires Wa, Wb and output wire Wc. Garble the wire
values as follows. Randomly choose w0

a, w0
b , R ∈R {0, 1}N . Set w0

c = w0
a ⊕ w0

b ,
and ∀i ∈ {a, b, c} : w1

i = w0
i ⊕ R. It is easy to see that the garbled gate output

is simply obtained by XORing garbled gate inputs:
w0

c = w0
a ⊕ w0

b = (w0
a ⊕ R) ⊕ (w0

b ⊕ R) = w1
a ⊕ w1

b

w1
c = w0

c ⊕R = w0
a ⊕(w0

b ⊕R) = w0
a ⊕w1

b = (w0
a ⊕R)⊕w0

b = w1
a ⊕w0

b . Further,
garblings wj

i do not reveal the wire values they correspond to.
We can now pinpoint the restriction that the above XOR construction imposes

on the garbled values – the garblings of the two values of each wire in the circuit
must differ by the same value, i.e. ∀i : w1

i = w0
i ⊕ R, for some global R. In con-

trast, in previous GC constructions, all garblings wj
i were chosen independently

at random, and proofs of security relied on that property.
Our main observation is that it is not necessary to select all garblings

independently. In our construction (Sect. 3.1), we choose a random R once, and
garble wire values, so that ∀i : w1

i = w0
i ⊕ R.

3.1 Our Garbled Circuit Construction

Let C be a circuit. We first note that NOT gates can be implemented “for free”
by simply eliminating them and inverting the correspondence of the wires’ values
and garblings. We thus do not further consider NOT gates.

We implement XOR gates as discussed above in Sect. 3. Further, we replace
each XOR-gate with n > 2 inputs with n − 1 two-input XOR-gates.

We implement all other gates using standard garbled tables [19]. Namely,
each gate with n inputs is assigned a table with 2n randomly permuted entries.
Each entry is an encrypted garbling of the output wire, and garblings of the
input wires serve as keys to decrypt the “right” output value. For simplicity,
we present our construction and proof for the case n = 2. The generalization to
n-input gates (n ≥ 1) is straightforward.

In Alg. 1 below, each garbling w = 〈k, p〉 consists of a key k ∈ {0, 1}N and a
permutation bit p ∈ {0, 1}. The key is used for decryption of the table entries,
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and p is used to select the entry for decryption. The two garblings w0
i , w1

i of
each wire Wi are related as required by the XOR construction: for a chosen
R ∈R {0, 1}N , ∀i : w1

i =
〈
k1

i , p1
i

〉
=

〈
k0

i ⊕ R, p0
i ⊕ 1

〉
, where w0

i =
〈
k0

i , p0
i

〉
.

H : {0, 1}∗ �→ {0, 1}N+1 is a RO.
We now formalize the above intuition and present the GC construction (Alg.

1) and evaluation (Alg. 2). In SFE, Alg. 1 is run by P1 and Alg. 2 is run by P2.

Algorithm 1. (Construction of a garbled circuit)

1. Randomly choose global key offset R ∈R {0, 1}N

2. For each input wire Wi of C
(a) Randomly choose its garbled value w0

i =
〈
k0

i , p0
i

〉
∈R {0, 1}N+1

(b) Set the other garbled output value w1
i =

〈
k1

i , p1
i

〉
=

〈
k0

i ⊕ R, p0
i ⊕ 1

〉

3. For each gate Gi of C in topological order
(a) label G(i) with its index: label(Gi) = i
(b) If Gi is an XOR-gate Wc = XOR(Wa, Wb) with garbled input values

w0
a =

〈
k0

a, p0
a

〉
, w0

b =
〈
k0

b , p0
b

〉
, w1

a =
〈
k1

a, p1
a

〉
, w1

b =
〈
k1

b , p1
b

〉
:

i. Set garbled output value w0
c =

〈
k0

a ⊕ k0
b , pa ⊕ pb

〉

ii. Set garbled output value w1
c =

〈
k0

a ⊕ k0
b ⊕ R, pa ⊕ pb ⊕ 1

〉

(c) If Gi is a 2-input gate Wc = gi(Wa, Wb) with garbled input values
w0

a =
〈
k0

a, p0
a

〉
, w0

b =
〈
k0

b , p0
b

〉
, w1

a =
〈
k1

a, p1
a

〉
, w1

b =
〈
k1

b , p1
b

〉
:

i. Randomly choose garbled output value w0
c =

〈
k0

c , p0
c

〉
∈R {0, 1}N+1

ii. Set garbled output value w1
c =

〈
k1

c , p1
c

〉
=

〈
k0

c ⊕ R, p0
c ⊕ 1

〉

iii. Create Gi’s garbled table. For each of 22 possible combinations of
Gi’s input values va, vb ∈ {0, 1}, set

eva,vb
= H(kva

a ||kvb

b ||i) ⊕ wgi(va,vb)
c

Sort entries e in the table by the input pointers, i.e. place entry eva,vb

in position 〈pva
a , pvb

b 〉
4. For each circuit-output wire Wi (the output of gate Gj) with garblings

w0
i =

〈
k0

i , p0
i

〉
, w1

i =
〈
k1

i , p1
i

〉
:

(a) Create garbled output table for both possible wire values v ∈ {0, 1}. Set

ev = H(kv
i ||“out”||j) ⊕ v

Sort entries e in the table by the input pointers, i.e. place entry ev in
position pv

i . (There is no conflict, since p1
i = p0

i ⊕ 1.)

Note, our encryption of table entries (Step 3(c)iii) is similar to that of Fairplay
[19, Section 4.2]. Fairplay uses eva,vb

= H(kva
a ||i||pva

a ||pvb

b ) ⊕ H(kvb

b ||i||pva
a ||pvb

b )
⊕w

gi(va,vb)
c . This is a non-essential difference; we could use Fairplay’s encryption.

Intuition for security. (A formal proof is given in Sect. 3.2.) Alg. 1 uses the
output of the RO H as a one-time pad to encrypt the garbled output values
in the garbled tables (Step 3(c)iii) and the garbled output tables (Step 4a).
Note, any specific combination of H ’s inputs (keys and gate indices) is used for
encryption of at most one table entry throughout our construction. (We assume
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that concatenation and string representation inside H is done “right”.) Further,
since the evaluator of the garbled circuit only knows one garbled value per wire,
he can decrypt exactly one entry of Gi’s garbled table. All other entries are
encrypted with at least one key that cannot be guessed by a polytime evaluator.
Therefore, one of the two of garbled values of every wire looks random to him.

We now give the corresponding GC evaluation algorithm, run by P2. Recall,
P2 obtains all garbled tables and the garblings of P1’s input values from P1.
Garblings of input values held by P2 are sent via OT.

Algorithm 2. (Evaluation of a garbled circuit):

1. For each input wire Wi of C
(a) Receive corresponding garbled value wi = 〈ki, pi〉

2. For each gate Gi (in the topological order given by labels)
(a) If Gi is an XOR-gate Wc = XOR(Wa, Wb) with garbled input values

wa = 〈ka, pa〉 , wb = 〈kb, pb〉
i. Compute garbled output value wc = 〈kc, pc〉 = 〈ka ⊕ kb, pa ⊕ pb〉

(b) If Gi is a 2-input gate Wc = gi(Wa, Wb) with garbled input values wa =
〈ka, pa〉 , wb = 〈kb, pb〉
i. Decrypt garbled output value from garbled table entry e in position

〈pa, pb〉: wc = 〈kc, pc〉 = H(ka||kb||i) ⊕ e
3. For each C’s output wire Wi (output of gate Gj) with garbling wi = 〈ki, pi〉

(a) Decrypt output value fi from garbled output table entry e in row pi :
fi = H(ki||“out”||j) ⊕ e

The GC construction and evaluation algorithms can be directly used to obtain
the GC-based SFE protocol, in a standard manner. For completeness, we include
the description of this protocol.

Protocol 1. (Two-party SFE protocol):

– Inputs: P1 has private input x = 〈x1, .., xu1〉 ∈ {0, 1}u1 and P2 has private
input y = 〈y1, .., yu2〉 ∈ {0, 1}u2.

– Auxiliary input: A boolean acyclic circuit C such that ∀x ∈ {0, 1}u1, y ∈
{0, 1}u2, it holds that C(x, y) = f(x, y), where f : {0, 1}u1 × {0, 1}u2 →
{0, 1}v. We require that C is such that if a circuit-output wire leaves some
gate G, then gate G has no other wires leading from it into other gates (i.e.,
no circuit-output wire is also a gate-input wire). Likewise, a circuit-input
wire that is also a circuit-output wire enters no gates. We also require that
C is modified to contain no NOT-gates and all n-input XOR-gates with n > 2
replaced by 2-input XOR-gates as described in Section 3.1.

– The protocol:
1. P1 constructs the garbled circuit using Algorithm 1 and sends it (i.e. the

garbled tables) to P2.
2. Let W1, .., Wu1 be the circuit input wires corresponding to x, and let

Wu1+1, .., Wu1+u2 be the circuit input wires corresponding to y. Then,
(a) P1 sends P2 the garbled values wx1

1 , .., w
xu1
u1 .
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(b) For every i ∈ {1, .., u2}, P1 and P2 execute a 1-out-of-2 oblivious
transfer protocol, where P1’s input is (k0

u1+i, k
1
u1+i), and P2’s input

is yi. All u2 OT instances can be run in parallel.
3. P2 now has the garbled tables and the garblings of circuit’s input wires. P2

evaluates the garbled circuit, as described in Alg. 2, and outputs f(x, y).

It is easy to verify protocol’s correctness; we do not discuss it further.

On Our use of RO. In previous GC work, RO’s use improves efficiency in the
malicious model, but is not inherent. Here, while we rely on RO, we do so conser-
vatively. First, we use non-programmable RO [22], i.e. we don’t allow simulator
to fake RO’s answers. Second, (a variant of) correlation-robust functions [10], a
weaker notion than RO, is sufficient for our purposes. (Recall, if h is correlation-
robust and R, t1, .., tn are random, (h(t1 ⊕ R), .., h(tn ⊕ R)) is pseudo-random,
given t1, .., tn.)

Further, concrete security of our construction is comparable to that of stan-
dard GC with RO as the encryption function. This makes even constant-factor
efficiency improvements, such as those suggested in this work, meaningful. For
the lack of space, we omit the detailed analysis. We only note that the main fea-
ture of our protocol, the use of the global R, has very slight impact on security
(e.g., our adversary can decrypt all garbled tables, once he breaks any one of
them and learns R). Further, our use of RO is not vulnerable to birthday attacks
in the semi-honest model. Indeed, the circuit is small, and P2 w.h.p. will not see
RO collisions.

3.2 Proof of Security

Our protocol is secure against semi-honest adversaries, who are not allowed to
deviate from the protocol. Analogously to [19,18], (w.h.p.) malicious behavior
of players can be prevented by using cut-and-choose method; we don’t discuss
malicious players further.

We prove security in the simulation paradigm. Intuitively, a protocol π is
secure if whatever is seen by its party, can be computed only from that party’s
input and output. The view of a party Pi, viewπ

Pi
(x, y), consists of the party’s own

input, randomness, and all messages that Pi receives in the execution of π. Thus,
a protocol is secure, if there exist simulators S1, S2, such that {S1(x, f(x, y)} c≡
{viewπ

P1
(x, y)} and {S2(y, f(x, y)} c≡ {viewπ

P2
(x, y)}.

Case 1 - P1 is corrupted. P1’s view in Protocol 1 consists only of the view
in the OT protocols in Step 2b. The following S1(x, f(x, y)) simulates the view
of P1. Let SOT

1 be the simulator that is guaranteed to exist for P1 in the secure
1-out-of-2 OT protocol. S1 constructs a garbled circuit using Alg. 1. Then S1
feeds the constructed garblings of the input wires corresponding to y to SOT

1 ,
and obtains the simulated transcript of the OT, which he outputs. S additionally
outputs x and the randomness used in construction of GC. It is not hard to see
that the output of the simulator is indistinguishable from the view of P1.
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Case 2 - P2 is corrupted. We construct a simulator S2 that given input
(y, f(x, y)) simulates the view of P2. P2 receives a garbled circuit (including
garbled inputs), which S2 must simulate. However, S2 doesn’t know P1’s input
x. Thus, S2 can not honestly generate the garbled circuit, since it doesn’t know
which of the input garblings corresponding to x to hand to P2 in Step 2a of
the protocol. Instead, S2 generates a fake garbled circuit that always evaluates
to f(x, y), using a slightly modified Alg. 1. The only modification, in Step 4a,
appropriately forges the output tables:

4. For each circuit-output wire Wi (the output of gate Gj) with garblings
w0

i =
〈
k0

i , p0
i

〉
, w1

i =
〈
k1

i , p1
i

〉
:

(a) Create fake garbled output table for both possible wire values v ∈ {0, 1}
of the same encrypted output value. Set

ev = H(kv
i ||“out”||j) ⊕ fi(x,y)

Sort entries e in the table by the input pointers, i.e. place entry ev in
position pv

i .

Let SOT
2 be an OT simulator for P2. S2 outputs y, and the fake garbled circuit

(i.e. its tables). Further, for each input wire Wi held by P2, S2 runs and outputs
SOT

2 (yi, w
yi

i ). Finally, S2 simulates the received garblings of the input wires Wj

held by P1 simply by outputting w0
j (fake garblings corresponding to x = 0..0).

Theorem 1. The output of S2 is indistinguishable from the real view of P2.

Proof. (sketch) First, observe that S2 feeds SOT
2 proper inputs (i.e. y and the

corresponding honestly generated garblings). Thus, simulation of Step 2b of the
protocol is indistinguishable from the real execution. The crux of the proof is in
showing the indistinguishability of the fake and real circuits (which include the
tables and the input garblings that P2 sees). This is addressed next.

First, observe, pointers pj
i are independent of the parties’ inputs, and thus are

easily simulated by S2. For ease of presentation, we omit the details of pointer
simulation from the proof.

We now show that no polytime procedure D can distinguish simulated and
real garbled circuit transcripts with non-negligible probability. We proceed in-
ductively, gate by gate in topological order, in proving this for each partial
transcript τi, where τ0 includes all active secrets on the input wires, and each τi

additionally includes the garbled tables of first i gates.
Induction base. It is easy to see that the partial transcript τ0 – active secrets

on the input wires – is distributed identically in real and simulated cases. In-
deed, these secrets are uniformly random in the domain. Moreover, clearly, no
distinguisher D0 can output with non-negligible probability the global key offset
R̂ used in the construction of the (either simulated or real) transcript.

For the induction step, suppose no polytime Di−1 can with non-negligible
advantage distinguish the τi−1 transcripts (i.e. those including the active secrets
on the inputs and the first i − 1 garbled tables). Moreover, assume that no
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polytime Di−1 can output the global key offset R̂ with non-negligible probability
when given τi−1. We show that these properties hold also when additionally given
the i-th garbled table.

Recall, the i-th garbled table contains (a permutation of) entries:
H(ka||kb||i) ⊕ v00
H(ka||kb ⊕ R̂||i) ⊕ v01
H(ka ⊕ R̂||kb||i) ⊕ v10
H(ka ⊕ R̂||kb ⊕ R̂||i) ⊕ v11

where v00, .., v11 ∈ {kc, kc ⊕ R̂} are the output secrets that correspond to the
four possible gate input combinations. (Garbled output tables have one input
and consist of two entries. The corresponding claims hold for these cases as well,
via a natural modification of the following argument addressing two-input gates.)

Without loss of generality, suppose the active gate input secrets are ka and
kb. By the induction assumption, no polytime Di−1 can compute both ka and
ka ⊕ R̂, or both kb and kb ⊕ R̂ (otherwise Di−1 can output R̂). Thus, Di−1
can call functions H(ka||kb ⊕ R̂||i), H(ka ⊕ R̂||kb||i), or H(ka ⊕ R̂||kb ⊕ R̂||i)
only with negligible probability. Further, because of the inclusion of the gate
index i, these function calls have not been made in the construction of (real
or simulated) τi. Therefore, due to RO properties, except with negligible prob-
ability, all the inactive entries in the i-th table are distributed identically to
random strings, from the point of view of Di−1, and thus do not provide help
to Di−1 in computing R̂. Therefore, polytime Di cannot output R̂ or call any of
H(ka||kb ⊕ R̂||i), H(ka ⊕ R̂||kb||i), or H(ka ⊕ R̂||kb ⊕ R̂||i), except with negligible
probability. Therefore, no polytime Di can distinguish the real and simulated
transcripts τi with non-negligible probability.

This completes the induction and the proof of the theorem. �


4 Application of Our SFE Constructions

We now present several motivating examples – practical functions whose SFE
benefits from improvements of our construction. Universal circuit (UC) construc-
tions [25,15] do not explicitly use many XOR gates. We show how to modify these
circuits to mainly consists of XOR gates, achieving fourfold reduction of garbled
circuit size. This construction may be of independent interest. Further, we show
how to reduce in half the size of garbled circuits of commonly used blocks, such
as integer addition and equality test.

Universal Circuits [25,15] and Permutation Networks [26]. The size of
a UC mainly comes from programmable switching networks (such as permuta-
tion network [26]) connecting the simulated gates. In turn, these networks are
constructed from two types of switching blocks shown in Fig. 1, as discussed in
[26,25,15]. The Y -block can be programmed to output one of its two inputs. The
X-block can be programmed to either pass or cross over its two inputs to the two
outputs. A natural SFE implementation of the Y -block uses a 2-input garbled
gate with a garbled table with 22 = 4 encrypted table entries. Similarly, X-block
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: = orY

a1 a2

b1

a1 a2
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a1 a2
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A) B)

(a) Y switching block

: = orX

a1 a2

b1 b2

A)

a1 a2

b1 b2

B)
a1 a2

b1 b2

(b) X switching block

Fig. 1. Switching blocks

is implemented by two 2-input garbled gates (one for each of its two outputs),
resulting in a garbled table of 2 · 22 = 8 entries.

We show how to take advantage of free XOR gates and implement both X-
and Y -gates with only two garbled table entries each. Since permutation network
[26] consists only of X-gates, this results in 75% size reduction of its SFE. UC
consists almost exclusively of X-gates. Valiant’s UC [25] for a circuit of k gates
has size ∼ 19k log k. The ∼ 19k log k − k overhead gates are X-gates that come
from switching networks. A recent UC construction [15] similarly consists almost
exclusively of X-gates, and of very few Y -gates and simulated gates. Thus, UC
enjoys almost 75% garbled table size reduction.

Let f : {0, 1} �→ {0, 1} be a function (implemented with two garbled table
entries). We implement X- and Y -blocks as follows (see Fig. 2). Y (a1, a2) = b1 =
f(a1⊕a2)⊕a1; X(a1, a2) = (b1, b2), where b1 = f(a1⊕a2)⊕a1, b2 = f(a1⊕a2)⊕
a2. It is easy to see that setting f = f0 to the zero function results in Y choosing
left input, and X passing the inputs. Further, setting f = fid to the identity
function results in Y choosing the right input, and in X crossing its inputs:
f = f0 : b1 = 0 ⊕ a1 = a1; b2 = 0 ⊕ a2 = a2.
f = fid : b1 = (a1 ⊕ a2) ⊕ a1 = a2; b2 = (a1 ⊕ a2) ⊕ a2 = a1.

f

a1 a2

b1

(a) Y switching block

f

a1 a2

b1 b2

(b) X switching block

Fig. 2. Efficient implementation of switching blocks
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This construction can be extended to implement programmable switching
blocks X and Y , which take an additional programming input bit p. This bit
determines behavior of X- (pass or cross) and Y -blocks (left or right input). The
natural construction for the Y - (resp. X-) switching block uses one (resp. two)
3-input gate(s) with 23 = 8 (resp. 16) encrypted table entries. In our XOR-based
construction, function f is then replaced by a two-input AND-gate (with p being
the second input) with 22 = 4 encrypted table entries. Clearly, p = 0 sets f = f0,
and p = 1 sets f = fid, allowing to program X- and Y -blocks. As above, the
size of Y - and X-blocks is reduced by 50% and 75% respectively.

Integer Adder and Multiplier. An adder for n-bit integers a, b is composed
from a chain of n full adder (FA) blocks as shown in Fig. 3(b). (The last FA
block can be replaced by a smaller half-adder block.) A FA block (see Fig. 3(a))
has as inputs a carry-in ci from the previous FA block and the two input bits
ai and bi. It outputs two bits: carry-out ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)
and sum si = ai ⊕ bi ⊕ ci. The straightforward implementation of a FA uses two
3-input gates with 2 · 23 = 16 encrypted table entries. We can compute si “for
free” using free XOR-gates, and use only one 3-input gate with 23 = 8 encrypted
table entries to compute ci+1. The size of a FA block, and hence that of an n-bit
adder is reduced by 50%.

FA

ai bi

si

cici+1

(a) Full Adder (FA)

FA

an-1 bn-1

sn-1

0
cn

FA

a0 b0

s0

FA

a1 b1

s1

...
c1c2cn-1 c0

sn

(b) n-bit Adder built from n FA blocks

Fig. 3. Adder for two n-bit integers a and b

As circuits for integer multiplication consist of bit-multipliers (2-input AND-
gates) and adders, the improved implementation of adders can directly be used
to correspondingly improve integer-multiplication circuits.

Integer Equality Test. A similar construction is used to test equality of two n-
bit integers a and b. Now, we do not compute si, and use carry bits as inequality
flags. The carry-out bit is defined as ci+1 = (ai �= bi) ∨ ci = (ai ⊕ bi) ∨ ci. A
simple implementation uses two 2-input gates or one 3-input gate (each costs
8 encrypted table entries). Free XOR gate reduces the cost to that of one 2-
input OR gate (4 encrypted table entries). The size of equality test block is thus
reduced by 50%.
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