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Improved Gaussian beam-scattering algorithm

James A. Lock

The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical
particle provides a great simplification in the numerical implementation of the theory. We derive an
alternative form for the localized coefficients that is more convenient for computer computations and that
provides physical insight into the details of the scattering process. We construct a FORTRAN program for
Gaussian beam scattering with the localized model and compare its computer run time on a personal
computer with that of a traditional Mie scattering program and with three other published methods for
computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients
makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced
for far off-axis incidence of the Gaussian beam.

1. Introduction

Although the history of numerical Mie theory compu-
tations dates back almost to the time of Mie and
Debye,1 it was not until a widely published numeri-
cally stable computer code2–4 could be run quickly on
low-cost personal computers5 that plane-wave Mie
theory computations became commonplace. In re-
cent years progress has also beenmade on the numeri-
cal implementation of other scattering problems.
For example, a number of computational methods for
calculation of scattering of a focused Gaussian beam
by a spherical particle have been devised. In these
methods the Gaussian beam is expanded either in an
infinite series of particle waves6–8 or in an angular
spectrum of plane waves.9–11 These expansions have
considered not only the Gaussian shape of the domi-
nant component of the beam’s electric and magnetic
fields, but also included in an approximate way
smaller components of the fields induced by the
variation of the dominant component in the trans-
verse direction.12,13
Currently no consensus has been reached as to

which computational method for Gaussian beam scat-
tering is superior to the others or whether one method
possesses a richness of physical interpretation that is
not manifest in the others. This is because the
successes and limitations of each method have not yet
been fully explored. To this end, in two recent pa-

pers14,15 we examined the applicability of Gouesbet’s
localized model16,17 of Gaussian beam scattering to
the case of tight beam localization. We found that for
an on-axis beam, i.e., a beam propagating along the z
axis, the localized model accurately describes a fo-
cused Gaussian beam with the focal waist half-width
w0 satisfying l@12pw02 & 0.15. For an off-axis beam,
i.e., a beam propagating parallel to but not along the z
axis, the localizedmodel accurately describes a Gauss-
ian beam for l@12pw02 & 0.10, although the accuracy
depends to some extent on the aspect of the scattering
that is being examined. In this paper we consider a
different application of the localized model, namely,
the construction of a stable and relatively fast-
running computer code for Gaussian beam scattering
that can be implemented on a personal computer.
The body of this paper proceeds as follows. In

Section 2 we give the basic formulas for far-field
scattering of a focused off-axis Gaussian beam by a
spherical particle. We also give the localized model
expressions for the beam-shape coefficients that de-
scribe the Gaussian beam. We then simplify the
localized expressions, writing them in terms of either
Bessel functions or modified Bessel functions of a
complex argument. In Section 3 we describe algo-
rithms for numerical computation of the Bessel func-
tions and other expressions that appear in the far-
field scattering formulas. In Section 4 we examine
the computer run time of our Gaussian beam-
scattering program and compare it with the run time
of a standard plane-wave Mie theory program. We
also compare our program with three other computa-
tional methods for Gaussian beam scattering. Last,
in Section 5 we show that the analytical expressions
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for the beam-shape coefficients easily and correctly
predict the large enhancement in the excitation rate
of morphology-dependent resonances 1MDR’s2 by an
off-axis Gaussian beam focused somewhat beyond the
edge of a dielectric spherical particle.

2. Localized Model of Gaussian Beam Scattering

Consider a Gaussian beam focused to the half-width
w0 at the point 1xf, yf zf2 that is incident upon a
spherical particle whose center is at the origin of
coordinates. This is shown in Fig. 11a2. The radial
components of the beam’s electric and magnetic fields
are Einc

rad 1r, u, f2 and Binc
rad 1r, u, f2, respectively.

The spherical particle has radius a and refractive
index n. In the notation of Ref. 18, the far-field
scattered intensity is

I1r, u, f2 5
1

2µ0ck2r2
30S11u, f2 02 1 0S21u, f2 024, 112

where the scattering amplitudes S1 and S2 are given
by

S11u, f2 5 o
l51

`

o
m52l

l 2l 1 1

2l1l 1 12
32imalmpl

0m 01u2

1 blmtl
0m 01u24exp1imf2,

S21u, f2 5 o
l51

`

o
m52l

l 2l 1 1

2l1l 1 12
3imblmpl

0m 01u2

1 almtl
0m 01u24exp1imf2. 122

In Eqs. 112 and 122

k 5
2p

l
132

is the wave number of the incident beam. The
partial-wave scattering amplitudes alm and blm are
given by

alm 5 Almal,

blm 5 Blmbl, 142

respectively, where al and bl are the partial-wave
scattering amplitudes of plane-wave Mie theory.
Efficient algorithms for the computation of al and bl
are given in Refs. 3 and 4. The beam-shape coeffi-
cients Alm and Blm are

Alm 5
12i2l21

2p

kr

jl1kr2

1l 2 0m 0 2!

1l 1 0m 0 2! e0
p

sin u du

3 e
0

2p

dfPl
0m 01cos u2exp12imf2Einc

rad1r, u, f2,

Blm 5
12i2l21

2p

kr

jl1kr2

1l 2 0m 0 2!

1l 1 0m 0 2! e0
p

sin u du

3 e
0

2p

dfPl
0m 01cos u2exp12imf2cBinc

rad1r, u, f2,

152

1a2

1b2

1c2

Fig. 1. Focused Gaussian beam that is incident upon a spherical
particle. The center of the particle is at the origin of the coordi-
nates, and the center of the beam’s focal waist is at 1a2 xf, yf, zf;
1b2 xf fi 0, yf 5 0; and 1c2 xf 5 0, yf fi 0.
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respectively, where jl1kr2 are spherical Bessel func-
tions. The angular functions pl

0m 01u2 and tl
0m 01u2 are

given by

pl
0m 01u2 5

1

sin u
Pl

0m 01cos u2,

tl
0m 01u2 5

d

du
Pl

0m 01cos u2, 162

respectively, where Pl
0m 01cos u2 are associated Legen-

dre polynomials.
Calculation of the beam-shape coefficients of Eqs.

152 by the use of numerical integration is computation-
ally the most time-consuming task in the numerical
implementation of Eqs. 112–162. This is because the
integrands are rapidly varying functions of u and f,
i.e., because of the Pl

0m 01cos u2 and exp12imf2 factors
and the fact that Einc

rad and Binc
rad are proportional to

exp1ikr cos u2 with the usual evaluation criterion r 5
a. Thus dense grids are required in both the u and
the f directions to obtain convergence of the numeri-
cal integrations.18 The localized model approxi-
mates the integrals in Eqs. 152 with an analytical
function, thus decreasing the computer run time
many fold. For an off-axis-focused Gaussian beam,
the localized model of the beam-shape coefficients is17

Alm
loc 5

Klm

2
Flo

j50

`

o
p50

j

1Cjpdj22p11,m 1 Cjpdj22p21,m2,

Blm
loc 5

Klm

2i
Flo

j50

`

o
p50

j

1Cjpdj22p11,m 2 Cjpdj22p21,m2, 172

where

Fl 5 D exp32D1xf
2 1 yf2

w0
2 24exp32Ds21l 1

1

22
2

4
3 exp12i

s

zf
w0
2 , 182

s 5
1

kw0

, 192

D 5 11 2
2iszf
w0

2
21
, 1102

Klm 5 5
2il1l 1 12

l 1
1

2

if m 5 0

21
2i

l 1
1

2
2
0m 021

if m fi 0, 1112

Cjp 5 3s1l 1
1

22D4
j 1
xf 2 iyf
w0

2
j2p

1 j 2 p2!

1xf 1 iyf
w0

2
p

p!
. 1122

The accuracy of Eqs. 172–1122 in approximating Eqs. 152
for a focused off-axis Gaussian beam was exam-
ined in Refs. 15 and 17–19. Equations 172–1122,
however, are not in optimal form for numerical compu-
tations. In particular the Kronecker delta implies
that for a given value of j, only one value of p is
considered. When this is taken into account, the
resulting infinite series in j is recognized as that of a
Bessel function.20 The localized beam-shape coeffi-
cients Alm

loc and Blm
loc may then be written in the

more compact form

Alm
loc 5 5

Alm
1loc if m . 0

Alm
2loc if m , 0

Al0
loc if m 5 0, 1132

where

Alm
6loc 5 Fl1

2rf7

l 1
1

2
2
m21

3Jm211P2 2 1rf722Jm111P24,

Al0
loc 5 Fl

2l1l 1 12

1l 1
1

22
xf

1xf2 1 yf221@2
J11P2, 1142

with

rf6 5
xf 6 iyf

1xf2 1 yf221@2
, 1152

P 5

21l 1
1

22
zf@w0

1xf
2 1 yf2

w0
2 2

1@2

11 1
iw0

2szf2
21
. 1162

Similarly,

Blm
loc 5 5

Blm
1loc if m . 0

Blm
2loc if m , 0

Bl0
loc if m 5 0, 1172

where

Blm
6loc 5

6Fl

i 1
2rf7

l 1
1

2
2
m21

3Jm211P2 1 1rf722Jm111P24,

Bl0
loc 5 Fl

2l1l 1 12

1l 1
1

22
yf

1xf2 1 yf221@2
J11P2, 1182

Equations 1142–1182 simplify further when the beam
waist and the particle orientation are such that xf fi 0,
yf 5 0 or when xf 5 0, yf fi 0 3see Figs. 11b2 and 11c24.
If xf 5 yf 5 0, the coefficients reduce to their values in
the on-axis localized model.16
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Because Bessel functions and modified Bessel func-
tions are related to each other by21

Jn1x2 5 inIn12ix2, 1192

Eqs. 1142–1182may be rewritten as

Alm
6loc 5 Fl1

2irf7

l 1
1

2
2
m21

3Im211Q2 1 1rf722Im111Q24,

Al0
loc 5 Fl

2il1l 1 12

1l 1
1

22
xf

1xf2 1 yf221@2
I11Q2, 1202

Blm
6loc 5

6Fl

i 1
2irf7

l 1
1

2
2
m21

3Im211Q2 2 1rf722Im111Q24,

Bl0
loc 5 Fl

2il1l 1 12

1l 1
1

22
yf

1xf2 1 yf221@2
I11Q2, 1212

where

Q 5 2s1l 1
1

221
xf2 1 yf2

w0
2 2

1@2

11 2
2iszf
w0

2
21

5 2iP. 1222

Again Eqs. 1202 and 1212 further simplify when xf fi 0, yf
5 0 or when xf 5 0, yf fi 0. Because these special
cases are examined at length in Sections 3 and 5,
below, we present the simplified expressions here.
If xf fi 0 and yf 5 0, Eqs. 1202 and 1212 become

Alm
6loc 5 Fl1

2i

l 1
1

2

xf
0xf 02

m21

3Im211Q2 1 Im111Q24,

Al0
loc 5 Fl

2il1l 1 12

1l 1
1

22
xf
0xf 0

I11Q2,

Blm
6loc 5

6Fl

i 1
2i

l 1
1

2

xf
0xf 02

m21

3Im211Q2 2 Im111Q24,

Bl0
loc 5 0, 1232

and if xf 5 0 and yf fi 0, Eqs. 1202 and 1212 become

Alm
6loc 5 Fl1

71

l 1
1

2

yf
0yf 02

m21

3Im211Q2 2 Im111Q24,

Al0
loc 5 0,

Blm
6loc 5

6Fl

i 1
71

l 1
1

2

yf
0yf 02

m21

3Im211Q2 1 Im111Q24,

Bl0
loc 5 Fl

2il1l 1 12

1l 1
1

22
yf
0yf 0

I11Q2. 1242

In Section 3 we find Eqs. 1142, 1162, and 1182with Bessel
functions of a complex argument to be the most
efficient form of the localized model coefficients when
the Gaussian beam has spread beyond its focal waist
at the position of the particle. Similarly we find Eqs.
1202–1242 with modified Bessel functions of a complex
argument to be the most efficient form when the
particle is within the focal waist of the beam.

3. Numerical Implementation of the Localized Model for
Gaussian Beam Scattering

In Section 3 we discuss three numerical aspects of the
computation of the far-field scattered intensity of Eqs.
112 and 122. These are 1a2 the evaluation of Jn1P2 and
In1Q2 in the expressions for the beam-shape coefficients;
1b2 an algorithm patterned afterWiscombe’s method in
plane-wave Mie theory3 for calculation of the angular
functions pl

0m 01u2 and tl
0m 01u2; and 1c2 the finding that the

entire range of m values in Eqs. 122, i.e., 2l # m # l,
need not be computed. We determine the value of
mmax for which inclusion of the terms 2mmax # m #

mmax in Eqs. 122 yields accuracy of 1 in 108 in the
computation of I1r, u, f2.

A. Modified Bessel Functions

Consider themodified Bessel function In1Q2, where n is
a nonnegative integer and Q is complex. Reference
22 states that for Re Q # 12 or Re Q # n, the Taylor
series expansion

In1Q2 5 1Q2 2
n

o
k50

` 1Q2@42k

k!1n 1 k2!
1252

is rapidly convergent, and for Re Q . 12 and Re Q .

n, the asymptotic series

In1Q2 5
exp1Q2

12pQ21@2 51 1 o
k51

1212k

k!18Q2k
14n2 2 12

3 14n2 2 92 . . . 34n2 2 12k 2 12246 1262

may be used efficiently. No upper limit for the k sum
is given in Eq. 1262 because the asymptotic series
diverges; i.e., the terms of the series become smaller
and smaller, reach a minimum size, and then become
larger and larger. Using the remainder theorem for
an alternating series,23 we achieve the best approxima-
tion to In1Q2 when all the terms up to and including
one before the smallest term are summed. Examin-
ing Eqs. 1252 and 1262, we found that 1 in 108 conver-
gence could be achieved only if Arfken’s regions of
applicability were changed to Re Q # 12 or Re Q # n
1 2 for Eq. 1252 and Re Q . 12 and Re Q . n 1 2 for
Eq. 1262. The upper limit of the k sum in Eq. 1252 for 1
in 108 convergence was found to be

kmax 5 Re Q 1 7 1 0.5 0Im Q 0 . 1272
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For Eq. 1262 the upper limit of the k sum for the same
convergence criterion was found to be

kmax 5 n 1 12. 1282

For Im Q 5 0 we checked our computed values of In1Q2
by comparing them with the tabulated values in Ref.
24. For Im Q fi 0, the computed values of In1Q2 were
checked to make sure that they satisfied the symme-
try relation25

In1Q*2 5 In*1Q2. 1292

The value of kmax in Eqs. 1272 and 1282 is valid only if
Re Q $ 0Im Q 0 , or when

0zf 0 #
w0

2s
5
L

2
, 1302

where L is the spreading length of the Gaussian
beam. For Re Q , 0Im Q 0 it was found that the
number of terms required for convergence rapidly
increased, rendering this method of computation
inefficient.
Within the beam focal waist given by Eq. 1302, if

zf . 0, the beam is converging at the position of the
spherical particle and Im Q . 0. If zf 5 0, the beam
focuses in the plane that contains the particle, and
Im Q 5 0. If zf , 0, the beam is diverging at the
position of the particle, and Im Q , 0. The position-
ing of the particle in the beam and its corresponding
location in the complex Q plane are illustrated in
Fig. 2.

B. Bessel Functions

Consider the Bessel function Jn1P2. If Re P # 12 or
Re P # n 1 2, the Taylor series expansion

Jn1P2 5 1P22
n

o
k50

` 1212k1P2@42k

k!1n 1 k2!
1312

is rapidly convergent. Convergence of 1 in 108 was
achieved when the upper limit of the k sum was

kmax 5 Re P 1 12 1 0.5 Im P 1322

for

0zf 0 $
w0

2s
5
L

2
1332

or 0Re P 0 $ Im P. For Re P . 12 and Re P . n 1 2,
the asymptotic series is26

Jn1P25 1 2pP2
1@2531 2

14n2 2 1214n2 2 92

2!18P22

1
14n2 2 1214n2 2 9214n2 2 25214n2 2 492

4!18P24
2 · · · 4

3 cos3P2

1n1
1

22p
2 41 302

14n2 2 12

1!18P2

1
14n2 2 1214n2 2 9214n2 2 252

3!18P23
2 · · · 4

3 sin3P2

1n1
1

22p
2 46 1342

We call the first term in each series in Eq. 1342 the k 5

21 term, the second term k 5 1, the third term k 5 3,
etc. Equation 1342 also diverges if too many terms
are considered. But when 0Re P 0 $ Im P, it con-
verged to 1 in 108 for

kmax 5 n 1 9. 1352

Again, when 0Re P 0 , Im P, the number of terms in
Eqs. 1312 and 1342 required for 1 in 108 convergence
grew rapidly, rendering this method of computation
inefficient.
For real P, we checked our computed values of Jn1P2

by comparing them with the tabulated values in Ref.
27. If P is complex, care must be taken in the
evaluation of Eq. 1342. For the trigonometric func-

1a2

1b2

Fig. 2. 1a2 Complex Q plane as defined in Eq. 1222. 1b2 Focused
Gaussian beam that is propagating from left to right. The points
labeled A through E in the off-axis beam are the positions of the
spherical particle within the beam’s focal waist. They also corre-
spond to the indicated locations in the complexQ plane.
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tions in Eq. 1342, we have

cos3P 2

1n 1
1

22p
2

4

5 cos3Re P 2

1n 1
1

22p
2

4cosh1Im P2

2 i sin3Re P 2

1n 1
1

22p
2

4sinh1Im P2,

sin3P 2

1n 1
1

22p
2

4

5 sin3Re P 2

1n 1
1

22p
2

4cosh1Im P2

1 i cos3Re P 2

1n 1
1

22p
2

4sinh1Im P2. 1362

But the P1@2 factor in the denominator is potentially
problematical because the square root of a complex
variable is a two-sheet function. Thus the question
arises as to which sheet a particular value of P is on.
If the beam focuses upstream from the particle with
zf , 0, Eq. 1162 yields Re P . Im P and Im P . 0. In
this region of the complex P plane adjacent to the
positive real axis we have

P 5 reiu, 1372

P1@2 5 r1@2 exp1iu@22. 1382

On the other hand, if the beam focuses downstream
from the particle with zf . 0, Eq. 1162 yields 2Re P .

Im P and Im P. 0. The positioning of the particle in
the beam and its corresponding location in the com-
plex P plane are illustrated in Fig. 3. Contrary to the
situation in Fig. 2, the zf . 0 region is disjoint from the
zf , 0 region, but satisfies the symmetry relation

1P2zf.0 5 21P*2zf,0. 1392

Thus, rather than computing Jn1P2 separately for
zf . 0 in the disjoint region, we compute it by the use
of the identity28

Jn31P2zf.04 5 1212nJn*31P2zf,04. 1402

C. Angular Functions

The angular functions pl
0m 01u2 and tl

0m 01u2 satisfy the
recursion relations18

pl 1 1
m1u2 5

2l 1 1

l 1 1 2 m
cos upl

m1u2

2
l 1 m

l 1 1 2 m
pl21

m1u2, 1412

tl
m1u2 5 l cos upl

m1u2 2 1l 1 m2pl21
m1u2, 1422

with the starting values

pl21
l1u2 5 0,

pl
l1u2 5 12l 2 12!! sinl21u 1432

for m $ 1. For m 5 0, the starting values are given
in Ref. 18. Often one wishes to calculate the far-field
intensity at many angles u to construct an angular-
scattering diagram. Because the computation of
pl

m1u2 and tl
m1u2 is within a triple DO LOOP, i.e., m, l,

and u, savings in computer run timemay be realized if
the number of multiplications within the triple DO
loop is minimized. Following Wiscombe,3 for m $ 1
we compute the angular functions with

S 5 cos uPl
m1u2, 1442

T 5 S 2 Pl21
m1u2, 1452

tl
m1u2 5

l

m
T 2 Pl21

m1u2, 1462

1a2

1b2

Fig. 3. 1a2 Complex P plane as defined in Eq. 1162. 1b2 Focused
Gaussian beam that is propagating from left to right. The points
labeled A through D in the off-axis beam are the positions of the
spherical particle outside the beam’s focal waist. A–D also corre-
spond to the indicated locations in the complex P plane.

564 APPLIED OPTICS @ Vol. 34, No. 3 @ 20 January 1995



Pl11
m1u2 5 S 1

l 1 m

l 1 1 2 m
T, 1472

where

Pl
m1u2 5 mpl

m1u2. 1482

If the values of l@m and l 1 m@1l 1 1 2 m2 are
precalculated, we can use Eqs. 1442–1472 to compute
pl11

0m 01u2 and tl
0m 01u2 with 3 multiplications and 3

additions, whereas Eqs. 1412 and 1422 require 6multipli-
cations and 2 additions. No decrease in the number
of multiplications is obtained, however, by computa-
tion of the quantities S1 1 S2 and S1 2 S2 rather than
computation of S1 and S2 individually as in Eqs. 1492,
below.

D. Number of Terms in the m Sum

In previousGaussian beam-scattering calculations,18,29
it has been useful to interchange the order of the l and
m sums in Eqs. 122, yielding

S11u, f2 5 o
l51

lmax 2l 1 1

2l1l 1 12
Bl0bltl01u2

1 o
m51

mmax

o
l5m

lmax 2l 1 1

2l1l 1 12
ialPl

m1u2

3 32Alm
1 exp1imf2 1 Alm

2 exp12imf24

1 o
m51

mmax

o
l5m

lmax 2l 1 1

2l1l 1 12
bltlm1u2

3 3Blm
1 exp1imf2 1 Blm

2 exp12imf24

S21u, f2 5 o
l51

lmax 2l 1 1

2l1l 1 12
Al0altl01u2

1 o
m51

mmax

o
l5m

lmax 2l 1 1

2l1l 1 12
altlm1u2

3 3Alm
1 exp1imf2 1 Alm

2 exp12imf24

1 o
m51

mmax

o
l5m

lmax 2l 1 1

2l1l 1 12
iblPl

m1u2

3 3Blm
1 exp1imf2 2 Blm

2 exp12imf24,

1492

where the largest partial wave lmax is given by3,4

lmax 5 2 1 X 1 4.3X 1@3, 1502

the size parameter X is

X 5
2pa

l
, 1512

and the value of mmax is yet to be determined. For
the examination of low-order MDR’s, the value of lmax
may have to be increased somewhat.3 Numerically
it has been found that asm increases for a fixed value

of l, Alm
6 and Blm

6 rapidly decrease, and pl
m1u2 and

tl
m1u2 rapidly increase, but the product of the beam-

shape coefficients and the angular functions, which
we call the weighted beam-shape coefficients, also
rapidly decreases.18 This permits truncation of the
m sums in Eqs. 1492 at mmax 9 l with little loss in
accuracy.
This result may be demonstrated analytically as

follows. Consider for simplicity the case zf 5 0 so
thatQ is real. Consider also a relatively high partial
wave, a small beam focal waist, or a relatively large
off-center impact of the beam on the sphere so that
Q . 12. If xf fi 0 and yf 5 0, the beam-shape
coefficients are given by Eqs. 1232. We now examine
these expressions as a function of m. When m is
small, Im611Q2 may be approximated by the first two
terms of Eq. 1262, yielding

0Alm
6loc 0 <

exp32s21l 1
1

22
2

4exp12xf2@w0
22

1l 1
1

22
m21

3 12pQ221@2exp1Q212 2
3

4Q
2
m2

Q 2 ,

0Blm
6loc 0 <

exp32s21l 1
1

22
2

4exp12xf2@w0
22

1l 1
1

22
m21

3 12pQ221@2exp1Q212mQ 2 . 1522

Similar expressions occur if xf 5 0 and yf fi 0. For u
away from 0° or 180° and for large l, the angular
functions approach the asymptotic values18

Pl
m1u2 = 1ml 21

2

p2
1@2

lm11@21sin u223@2

3 cos31l 1
1

22u 1
mp

2
2

p

44 ,

tl
m1u2 = 12p2

1@2

lm11@21sin u221@2

3 sin31l 1
1

22u 1
mp

2
2

p

44 1532

or, retaining only the powers of l in expressions 1532,

0tl
m1u2 0 <

l

m
0Pl

m1u2 0 < lm11@2. 1542

We can now see from expressions 1522 that the
beam-shape coefficients decrease as a function ofm as
l2m11, whereas from expression 1542 the angular
functions increase as lm11@2. Thus for small m the
dominant m dependence of the two contributions
cancels, and the weighted beam-shape coefficient
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0Alm
6loctl

m 0 of Eqs. 1492 decreases only quadratically in
m. Likewise 0Blm

6loctl
m 0 starts out much smaller and

increases linearly in m. Because from expression
1542,mplm9 tl

m for smallm, the weighted beam-shape
coefficients 0Alm

6locmpl
m 0 and 0Blm

6locmpl
m 0 are much

smaller than 0Alm
6loctl

m 0 and 0Blm
6loctl

m 0 .
Whenm is large, Im611Q2may be approximated with

Eq. 1252 as

0Alm
6loc 0 < 0Blm

6loc 0 <

exp32s21l 1
1

22
2

4exp12xf2@w0
22

1l 1
1

22
m21

3
1Q@22m21

1m 2 12!
exp1Q2@4m2. 1552

Asimilar expression occurs if xf 5 0 and yf fi 0. Thus
the weighted beam-shape coefficients are approxi-
mately equal and rapidly decrease when Q2 9 4m.
To check this predicted dependence of the weighted
beam-shape coefficients onm, we computed 0Alm

6loctl
m 0

and 0Blm
6loctl

m 0 numerically with Eqs. 1232, 1252–1282,
and 1482 for l 5 430, xf 5 42.5 µm, yf 5 zf 5 0, w0 5
13.3 µm, and l 5 0.6328 µm corresponding to Q 5
20.83. The results are shown in Fig. 4. As pre-
dicted in expressions 1522, initially 0Alm

6loctl
m 0 is large

and slowly decreasing, and 0Blm
6loctl

m 0 is small and
increasing. For m * 14 the two weighted beam-

shape coefficients are roughly equal and decrease
almost exponentially as a function ofm.
Figure 4 suggests that the m sum in Eqs. 1492 may

be cut off for large Q and l at mmax 9 l with minimal
loss in accuracy. The cutoff value mmax was deter-
mined by the criterion

0Alm
6loctl

m 0mmax

0Alm
6loctl

m 0 smallm
5

21Q2 2
mmax21

1mmax 2 12!
exp1Q2@4mmax2

3 12pQ21@2exp12Q2& 1028. 1562

The solution of Eq. 1562was obtained numerically, and
it is well approximated by the relation

mmax 5 6.5Q1@2 for 6 # Q # 40. 1572

This result was tested with Eqs. 1202–1222 and 1252–1282
and expression 1542 to compute the weighted beam-
shape coefficients. Equation 1572 was found to be
accurate in every instance. When Q was made com-
plex, the weighted beam-shape coefficients fell by a
factor of 108 when

mmax 5 16.5 1 2.0
0Im Q 0

Re Q 21Re Q21@2

for 0Im Q 0 # Re Q. 1582

As a final check of Eqs. 1252–1282, 1312 and 1322,
1342–1402, and 1582 we calculated the far-field scattered
intensity for zf 5 w0@2s, the boundary between the
modified Bessel function representation and the Bes-
sel function representation of the beam-shape coeffi-
cients. The far-field scattered intensity was calcu-
lated with each representation, and the results agreed
to better than 1 in 108.

E. Inclusion of the Incident Beam

Before we examine the run time of our Gaussian
beam-scattering computer program, an important
addition to the scattering amplitudes of Eqs. 122 and
1492must be made. Equations 122 and 1492 give us the
amplitude for the far-field scattered portion of the
electromagnetic fields exterior to the spherical particle.
But the entire exterior field, the scattered field plus
the incident field, is measured in the experiments.
Thus the amplitude of the incident field should be
appended to Eqs. 122 to have the resultant expression
agree with experimental observations. The incident
beam is included in far-field plane-wave Mie theory
only at u 5 0 but is in included in the near-forward
direction in the near field.30 For Gaussian beam
scattering the incident beammust be included in both
the near field and the far field in the near-forward
direction because of the spreading of the incident
beam.31,32
In particular consider a narrow Gaussian beam

that is incident only slightly off-axis upon a large
particle. Because the particle obstructs most of the
incident beam, the near-forward diffracted field should

Fig. 4. Weighted beam-shape coefficients 0Alm
loctl

m 0 1filled circles2
and 0Blm

loctl
m 0 1open circles2 as a function of 0m 0 for l 5 430 and an

off-axis Gaussian beam with l 5 0.6328.
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be quite weak because only the tail of the Gaussian
beam passes the edge of the particle.31 Yet the
numerical implementation of Eqs. 112, 122, and 1492
yields a large unobserved diffraction like peak in the
near-forward direction,32 which is canceled by the
spreading of the incident beam. The addition of the
incident beam to the scattering amplitudes for an
off-axis beam is given by

S1
total1u, f2 5 5

S1
scattered1u, f2 for u . 10 s

S1
scattered1u, f2

2 sin f Sincident1u, f2 for u # 10 s,

S2
total1u, f2 5 5

S2
scattered1u, f2 for u . 10 s

S2
scattered1u, f2

2 cos f Sincident1u, f2 for u # 10 s,

Sincident1u, f2 5
1

2s2
exp12u2@4s22

3 exp32 iu

s 1
xf
w0

cos f 1
yf
w0

sin f24
3 exp12izf@sw02exp1iu2zf@2sw02. 1592

We obtain the corresponding equations for an on-axis
beam from Eqs. 1592 by setting xf 5 yf 5 0. The
inclusion of the incident beam is implemented in our
Gaussian beam-scattering computer program.

4. Timing Study of the Localized Model of Gaussian
Beam Scattering

To assess the performance of our Gaussian beam-
scattering program, we tested it on the situation in
which a 5 50 µm, n 5 1.333, l 5 0.6328 µm, w0 5 10
µm, xf 5 zf 5 0, yf 5 20 µm, f 5 90° and for 361 values
of u in the interval 2180° # u # 180°. The size
parameter for this case is X 5 496.46, the largest
partial wave is lmax 5 532, the degree of beam
confinement is s 5 0.01, and the off-centeredness of
the beam is Qmax 5 21.3. According to Eq. 1572 this
value of Qmax corresponds to mmax 5 30, which was
used as the upper limit of the m sum in Eqs. 1492.
This program, as well as all the other programs for
which timing studies were made, was run on a
Compaq 386-33 MHz personal computer equipped
with a Weitek numerical coprocessor. The run time
of the localized model Gaussian beam program was
195 s for the parameters given above. Less than 1 s
of this time was spent computing the incident beam of
Eqs. 1592 and the Mie partial-wave scattering ampli-
tudes for 1 # l # lmax. Because the localized approxi-
mation replaces the numerical integrations of Eqs. 152,
only 9 s were spent computing Alm

6loc and Blm
6loc for 1

# l # lmax and 0 # m # mmax with Eqs. 1242. The
program spent 3:05, or almost 95% of the run time,
computing pl

m1u2 and tl
m1u2, multiplying the beam-

shape coefficients by the angular functions, and add-
ing everything together to obtain the scattering
amplitudes. This division of run time is similar to

that reported byWiscombe for plane-waveMie theory.3
When zf fi 0, the beam-shape coefficients were calcu-
lated with Eqs. 1202 and 1212 rather than the simpler
Eqs. 1242. The fact thatQwas complex meant that 20
s more was required for the calculation of Alm

6loc and
Blm

6loc for 1 # l # lmax and 0 # m # mmax. The time
for all the other computations was unchanged. For
comparative purposes, a plane-waveMie theory calcu-
lation for a 5 50 µm, n 5 1.333, l 5 0.6328 µm and for
361 values of u in the interval 2180° # u # 180° took
slightly less than 3 s on the same computer. Thus
our Gaussian beam program runs almost 70 times
slower than Mie theory for these parameters.
In Eqs. 122, the full range of l and m values is 1 #

l # lmax and 2l # m # l. For the parameters of our
numerical experiment this requires the computation
and storage of 568,178 beam-shape coefficients.
Truncating the m sum at mmax 5 30 reduces the
number to 63,166, which is 11.1% of the total. Using
the symmetry-relations for Alm

1loc and Alm
2loc and for

Blm
1loc andBlm

2loc of Eqs. 1142, 1182, 1202, and 1212 further
reduces the number of coefficients computed to 32,116,
which is 5.6% of the total. Thus the truncation of the
m sum at 1 in 108 accuracy for the far-field intensity
represents a substantial savings in computer run
time in this example.
A program that also computes the scattering ampli-

tudes with Eqs. 1492 but computes Alm and Blm with
numerical integration of Eqs. 152 was written. The
grid size for the u and f integrations required for
convergence of the numerical integrations is given
elsewhere.18 For the parameters of our numerical
experiment with mmax 5 30, the run time for this
program when 32,116 beam-shape coefficients were
used was 4.5 h which is a factor of 83 slower than our
localized model program. If the full range of m
values had been used, the run time would have been
longer by another factor of at least 17.8.
In Refs. 9–11 the incident Gaussian beam is ex-

panded in an angular spectrum of plane waves. The
plane waves are then decomposed into vector spheri-
cal harmonics. We obtain the total vector spherical
harmonic coefficients by summing the individual
plane-wave coefficients over the angular spectrum.
The total vector spherical harmonic coefficients are
then input into a T-matrix program for calculation of
either the far-field intensity or the interior source
function.29 The computer run time required for the
computation of each set of total vector spherical
harmonic coefficients aemnt, aomnt, bemnt, and bomnt was
1.57 s. Thus computation of the 32,116 sets of coeffi-
cients required for our test situation takes 14 h.
The Rouen computer program for Gaussian beam

scattering described in Ref. 19 is in many aspects
similar to the program that we have described here.
The localized approximation is used and Eqs. 172 are
written as a single sum over j. But 1a2 the sum was
not recognized as being a Bessel function or a modi-
fied Bessel function, 1b2 the series was truncated
when an individual term fell below 10230 rather than
at 1 in 108 accuracy, and 1c2 the number of m values
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was set at mmax 5 10 rather than at mmax of Eqs.
1572–1582. This resulted in Alm

loc and Blm
loc being

computed to much greater than 1 in 108 accuracy.
But for Q . 2.4 a number of weighted beam-shape
coefficients were omitted that were larger than 1028 of
the coefficients that were included. For the param-
eters of our numerical experiment, the Rouen pro-
gram computed the localized approximation beam-
shape coefficients in 96 s which is a factor of 10.7
slower than with our program. But, when the local-
ization approximation is used, the most time-consum-
ing part of the program is the computation of tl

m, and
pl

m. Thus the entire Rouen program is only a factor
of 1.45 slower than ours.
The run-time study described here was for only one

particular example of Gaussian beam scattering, and
it would be unwarranted to extrapolate the compari-
son between the various computational schemes to all
cases of Gaussian beam scattering without further
testing. For example, consider the published calcula-
tions of Gaussian beam scattering given in Table 1.
Of particular interest in Table 1 are the values of lmax,
the highest partial wave in the computation, and
Qmax, which is a measure of the highest partial wave,
the extent of beam focusing, and the degree of off-
centeredness of the incident beam. In each of the
references cited in Table 1, the authors had a different
goal in mind when performing the calculations, thus
dictating different choices for lmax and Qmax. Lock18
was interested in rainbow formation and thus re-
quired a large particle, i.e., lmax 5 565. Because the
particle was large, the incident beam did not need to
be tightly focused, i.e., Qmax 5 9, to see the effect for
which he was looking. The combination of large lmax
and relatively small Qmax is tailor-made for both the
localized model and the truncation of the m sum
because computing the full range of Alm and Blm
coefficients by numerical integration for large l would
take a prohibitively long time on a personal computer.
The same consideration holds true in computation of
calibration curves for particle-sizing instruments in
the large-particle regime.36
Barton et al.8,33,34 were interested in smaller par-

ticles, i.e., lmax < 45. But for them to see the effects
that they were looking for, the incident beam had to
be more tightly focused, i.e., Qmax < 37. Their beam
localization of s 5 0.084 is near the limit of the
validity of the localized model for an off-axis beam, so

its use still yields a great decrease in computer run
time. But now becausemmax < 40, there is not much
point in truncating the m sum before m 5 l. Barton
et al. performed their computations on a Silicon
Graphics 4D@380 VGX Super Computer,37 taking
advantage of the much faster speed of 34 MFlops to
perform the numerical integrations for Alm and Blm in
Eqs. 152. Khaled et al.10,11,35 were also interested in
small particles, i.e., lmax < 75, and in particular with
MDR’s excited by a tightly focused beam, s 5 0.084,
that was incident upon a spherical particle somewhat
beyond the particle’s edge with Qmax < 100. Again
the s value is just within the range of applicability of
the localized model, but truncation of the m sum
again is not possible. If the beam had been even
more tightly focused, with s . 0.1, the localized beam
model might produce a relatively poor approximation
to the actual beam profile.15
The moral of the story is that the computational

cost of Gaussian beam-scattering calculations de-
pends on the size of the spherical particle through
lmax, on the degree of focusing and the degree of
off-centeredness of the incident beam through Qmax,
and on the speed of one’s computer. The computa-
tional method described here provides the greatest
computational savings for Qmax & 40 and large lmax,
thereby permitting the computation to be easily
handled by a personal computer. For much larger
values of Qmax or smaller values of lmax, the computa-
tional savings may not be as great. But the calcula-
tion is still very efficient on a personal computer.

5. MDR Excitation in the Localized Model

It has been found both experimentally38–40 and theo-
retically10,33 within the last few years that one can
greatly enhance the MDR excitation rate in a dielec-
tric microparticle by having a tightly focused Gauss-
ian beam that is incident somewhat beyond the
microparticle’s edge. Theoretically the reason for
this is that the spherical Bessel function jl1nkr2 inside
the particle couples to the spherical Bessel function
jl1kr2 outside the particle.10 Because the energy den-
sity of a MDR is largest just inside the particle
surface, we must have l * nka to make jl1nkr2 reach
its peak value there.41 But because the classical
impact parameter b of the geometric light ray associ-
ated with the particle wave l is42,43 l < kb, we needed
b@a & n for the excitation of the MDR. This impact
parameter describes a light ray that passes the par-
ticle somewhat beyond its edge.
The localizedmodel permits amore detailed descrip-

tion of the effect. Consider a focused Gaussian beam
with xf fi 0 and yf 5 zf 5 0. Assume that the
particle’s radius and refractive index and the beam’s
wavelength are such that the Mie particle-wave scat-
tering amplitude al resonates, producing a TM-type
MDR. In Eqs. 142 the effect that al has on the
far-field intensity is modulated by the beam-shape
coefficients Alm for 2l # m # l. If the Alm are small,
the MDR is suppressed. If the Alm are large, the

Table 1. Parameters in Published Gaussian
Beam-Scattering Calculations

Reference a 1µm2 l 1µm2 w0 1µm2 s lmax Qmax

18 43.3 0.5145 20.0 0.004 565 9.0

8 2.5 1.06 2.0 0.084 27 5.8
33 5.0 1.06 2.0 0.084 44 37.4
34 2.5 0.5145 1.0 0.082 45 37.3
10 8.0 1.06 2.0 0.084 64 86.5
11 8.0 1.06 2.0 0.084 64 64.9

13.4 100 113.4
35 9.45 1.06 2.0 0.084 74 88.7
19 38.08 0.5145 10.0 0.0082 500 8.2
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strength of the MDR is enhanced. The same holds
true for the interior source function because the Mie
interior amplitude cl and the scattering amplitude al
resonate simultaneously and because the interior
field is proportional to clAlm. As can be seen in Eqs.
1232 and Fig. 4, when xf fi 0 and yf 5 0, we have
Alm

loc : Blm
loc for small m. Thus the TM resonances

are orders of magnitude stronger than the TE reso-
nances. On the other hand, when xf 5 0 and yf fi 0,
Eqs. 1242 show that Blm

loc : Alm
loc for small m. Thus

the TE resonances that are proportional to Blm
locbl are

orders of magnitude stronger than the TM reso-
nances.
Consider the weighted beam-shape coefficient

Alm
6loctl

m of Eqs. 1232 and expression 1542. When m is
small and Im611Q2 may be approximated by the first
two terms of Eq. 1262, we have

0Alm
6loctl

m0 < l14ps0 xfw0
02

21@2

exp52 3s1l 1
1

22 2 0 xfw0
04
2

6
3 12 2

3

4Q
2
m2

Q 2 . 1602

As seen in Fig. 4, Eq. 1602 decreases quadratically as a
function ofm. But as a function of xfEq. 1602 peaks at

l 1
1

2
<

0xf 0

w0s
5
2p

l
0xf 0. 1612

Because the resonating partial wave l for a low MDR
order number i occurs for44,45

nx 5 1l 1
1

221 ai1l 1
1

22
1@3

221@3 2 V1n2 2 1221@2,

V 5 5
n for a TE resonance

1

n
for a TM resonance

, 1622

where46 Ai12ai2 5 0, the greatest enhancement in the
strength of theMDRoccurs for an incident beamwith

yf
a

< n 2 ai1n22
1@3 1

X2@3
1

n

1n2 2 121@2X
1
1

6 1
2
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1@3 ai
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xf
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< n 2 ai1n22
1@3 1
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n1n2 2 121@2X
1
1

6 1
2
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1@3 ai

2

X4@3

for a TM resonance, 1632

or for focusing somewhat outside the edge of the particle.
As an example, the TE58,1 resonance has
l 5 58, i 5 1, and X 5 47.3094299 for n 5 1.36.
Expressions 1632 yield yf@a5 1.24, which agreeswell with
the value of 1.23 in figure 2b of Ref. 10. Similarly the
TM34,1 resonance has l 5 34, i 5 1, and X 5 29.753 for
m 5 1.33. Expressions 1632 yield xf@a 5 1.16, which
agreeswellwith the value of approximately 1.14 infigure
7 of Ref. 33. Also the TE34,1 resonance has l5 34, i5 1,

and X 5 29.365 for m 5 1.33. Expressions 1632 yield
yf@a 5 1.18, which agrees well with the value of approxi-
mately 1.18 in figure 8 of Ref. 33. Expression 1602 also
shows that the low azimuthal modes m of the MDR are
all excited to nearly the same extent, whereas the degree
of excitation of the high azimuthal modes fall off rapidly.
This is illustrated in Fig. 5.
In summary, the most important result of this

paper is that Gouesbet’s localized model for the
beam-shape coefficients in scattering of a focused
Gaussian beam by a spherical particle may be written
in terms of either Bessel functions or modified Bessel
functions. On the one hand this simplified form
leads to the construction of a fast-running computer
program for Gaussian beam scattering that can be
implemented on a personal computer. On the other
hand the simplified form provides a simple analytical
formula for the beam-shape coefficients that permits
one to obtain an intuition of various effects that occur
in Gaussian beam scattering.
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Fig. 5. Weighted beam-shape coefficient 0Alm
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that remains nonzero in the on-axis limit and is proportional to the
MDR excitation rate by an incident plane wave.
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