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Abstract This paper presents an improved general

dynamic formulation, inverse and direct dynamics, of

6-UPS Gough–Stewart parallel robot based on the vir-

tual work method. The new formulation offers a reduc-

tion in the computational time and improves accuracy

of the dynamics equations. This method allows elim-

ination of constraint forces/moments at the passive

joints from equations of motion. Since, the dynamic

formulations are derived in joint space, the concept of

direct link Jacobian matrices are employed to obtain

all rigid bodies’ twists. The direct link Jacobian matri-

ces convert the twist of the rigid bodies to actuated

joints velocities. Moreover, more accurate formula-

tion is obtained by considering the angular velocity

and acceleration vectors of the robot’s legs. In the

process of solving the direct dynamics problem, a mod-

ified hybrid strategy is employed to obtain the near-

exact solution for the direct kinematics problem (DKP).

The modified hybrid strategy combines the artificial

neural network and the third-order Newton–Raphson

method. This strategy satisfies both goals to find the

nearest exact solution and reduces execution time for

H. Kalani · A. Rezaei · A. Akbarzadeh (B)

Mechanical Engineering Department, Center of Excellence

on Soft Computing and Intelligent Information Processing

(SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran

e-mail: ali_akbarzadeh@um.ac.ir

H. Kalani

e-mail: hadi.kalani@yahoo.com

A. Rezaei

e-mail: amirrezaei_aico@stu.um.ac.ir

the DKP. Next, two numerical examples are presented

and the results are verified using a commercial dynam-

ics modeling software. Finally, for comparison, Euler–

Lagrange formulation is also obtained. Results indi-

cates that the proposed dynamics formulation offers a

significant improvement in both accuracy and execu-

tion time.

Keywords Direct dynamic analysis · Principle of

virtual work · Modified hybrid strategy · Link Jacobian

matrix

List of symbols

B {x, y, z} Fixed coordinate frame which is atta-

ched to center of fixed platform

T {u, v, w} Moving coordinate frame which is atta-

ched to center of moving platform, P

{F i} Local coordinate frames which is atta-

ched to ith cylinder at ith passive U-

joint

αi A constant value denotes the angle of

vector of Bai , about x-axis of frame {B}

γi Rotation angle of ith passive U-joint

about y-axis of local frame {Bi }

ψi Rotation angle of ith passive U-joint

about x-axis of local frame {Ti}
B
TR Rotation matrix to transfer a vector

defined in {T} to {B}
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B
F i

R Rotation matrix to transfer a vector

defined in {F i} to {B} for ith U-joint
τϑ Arbitrary ϑ vector that is defined in

arbitrary coordinate frame {τ }

a1, . . . , a6 Distance between the center of fixed

platform and passive U-joints

b1, . . . , b6 Distance between the center of moving

platform and passive S-joints

qac
1 , . . . , qac

6 Translational variables for the actuated

prismatic joint

xP, yP, zP Translational variables of the tool tip,

point P

θ, ϕ, λ The Euler angles about the x-, y- and

z-axes of moving platform

e1 Center of gravity for cylindrical part of

the actuated prismatic joints

e2 Center of gravity for position of the

actuated prismatic joints

ai Position vector located on ith passive

U-joint in frame {B}

bi Position vector connecting the end-

effector to the ith passive S-joint, Si

qac
i Position vector which specifies length

of ith actuated prismatic joint

p Position vector of the tool tip, point P

q̂ac
i Unit vector along ith actuated link

r1i , r2i Position vectors located on the center

of gravity of ith actuator’s cylinder and

piston

q̇ac
1 , . . . , q̇ac

6 Values of prismatic actuated joints rate

ẋP, ẏP, żP Values of Cartesian velocities of the

tool tip

ωx , ωy, ωz Values of angular velocities of the mov-

ing platform

ẋSi , ẏSi , żSi Values for velocities of the ith passive

S-joint, Si

q̈ac
1 , . . . , q̈ac

6 Values of prismatic actuated joints acc-

eleration

ẍP, ÿP, z̈P Values of Cartesian accelerations of the

tool tip

ω̇x , ω̇y, ω̇z Values of angular accelerations of the

moving platform

ẍSi , ÿSi , z̈Si Values for accelerations of the ith pas-

sive S-joint, Si

q̇ac Vector of the prismatic actuated joint

rates, {q̇ac
1 . . . q̇ac

6 }T

vP Cartesian velocity vector for the tip,

{vPx vPy vPz}
T = {ẋP, ẏP, żP}T

ωMP Angular velocity vector of the moving

platform, {ωx ωy ωz}
T

vSi Velocity vector of the ith spherical

joint, {ẋSi
, ẏSi

, żSi
}T

ωLeg,i Angular velocity of the ith actuated link

vC.G.1 i Cartesian velocity of the mass center of

ith actuator’s cylinder

vC.G.2 i Cartesian velocity of the mass center of

ith actuator’s piston

q̈ac Vector of the prismatic actuated joint

accelerations, {q̈ac
1 , . . . , q̈ac

6 }T

v̇P Cartesian acceleration vector for the

tip, {v̇Px v̇Py v̇Pz}
T = {ẍP, ÿP, z̈P}T

ω̇MP Angular acceleration vector of the mov-

ing platform, {ω̇x ω̇y ω̇z}
T

v̇Si Acceleration vector of the ith spherical

joint, {ẍSi
, ÿSi

, z̈Si
}T

ω̇Leg,i Angular acceleration of the ith actuated

link

v̇C.G.1 i Cartesian acceleration of the mass cen-

ter of ith actuator’s cylinder

v̇C.G.2 i Cartesian acceleration of the mass cen-

ter of ith actuator’s piston

ṫMP Twist vector of the moving platform,

{vT
P

ωT
MP}T

F i tcyl,i Twist vector of ith actuator’s cylinder
F i tpis,i Twist vector of ith actuator’s piston

ṫMP Vector of the moving platform acceler-

ation, {v̇T
P ω̇T

MP}T

F i ṫcyl,i Acceleration vector of ith actuator’s

cylinder,
{

F i
v̇

T
C.G.1i

F i ω̇T
Leg,i

}T
in

{F i}
F i ṫpsi,i Acceleration vector of ith actuator’s

piston, {F i
v̇

T
C.G.2i

F i ω̇T
Leg,i }

T in {F i}

JMPi A 3×6 matrix which maps tMP to veloc-

ity of the ith spherical joint, vSi

JMP Inverse Jacobian matrix (6 × 6matrix)

which maps tMP to q̇ac

Jωi A 3 × 6 matrix which maps tMP to
F iωLeg,i

Jv1,i A 3 × 6 matrix which maps tMP to
F i

vC.G.1i

Jv2,i A 3 × 6 matrix which maps tMP to
F i

vC.G.2i

Jinv,cyl,i Inverse ith link Jacobian matrix (6 ×

6matrix) which maps tMP to F i tcyl,i

Jinv,pis,i Inverse ith link Jacobian matrix (6 ×

6matrix) which maps tMP to F i tpis,i
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Jdir,cyl,i Direct ith link Jacobian matrix (6 ×

6 matrix) which maps tMP to q̇ac

Jdir,pis,i Direct ith link Jacobian matrix (6 ×

6 matrix) which maps tMP to q̇ac

wext Applied external wrench exerted to

end-effector define in {B}

fac Actuated joints forces

wMP Resultant wrench due to external

wrench and inertia of the moving plat-

form
F i wcyl,i Resultant wrench due to inertia of ith

actuator’s cylinder defined in {F i}
F i wpis,i Resultant wrench due to inertia of ith

actuator’s piston defined in {F i}

δ qac Virtual translational vector of actuated

joints

δ tMP Virtual twist vector of the moving plat-

form

δ
F i tcyl,i Virtual twist vector of ith actuator’s

cylinder defined in {F i}

δ
F i tpis,i Virtual twist vector of ith actuator’s pis-

ton defined in {F i}

mMP Mass of the moving platform

mcyl,i Mass of the ith actuator’s cylinder

mpis,i Mass of the ith actuator’s piston

g Gravitational acceleration vector defi-

ned in {B} , g = {0 0 9.81}T

BIMP Inertia matrix of the moving platform

with respect to the base frame, {B}
F i Icyl,i Inertia matrix of ith actuator’s cylinder

defined in {F i}
F i Ipis,i Inertia matrix of ith actuator’s piston

defined in {F i}

1 Introduction

The Gough–Stewart platform is a type of parallel

manipulator, which consists of a mobile platform and

a stationary base, connected to each other using six

linear actuators. The first structure of this robot with

spherical joints at both end of a leg is called 6-SPS

(Spherical–Prismatic–Spherical) Gough–Stewart plat-

form, while the second one, having a universal joint

at the base and a spherical joint at the moving plat-

form is called 6-UPS (Universal–Prismatic–Spherical)

Gough–Stewart platform. A number of studies exist

on the kinematics, dynamics and control of paral-

lel manipulators. Kinematics problems can be divided

into two different branches: direct kinematics prob-

lems (DKP) and inverse kinematics problems (IKP).

In inverse kinematics, we determine the leg lengths

given the position and orientation of the mobile plat-

form. In the direct kinematics, we determine position

and orientation of the mobile platform by giving leg

lengths. Unlike serial manipulators, the application of

inverse dynamic for parallel manipulators in control

requires the additional solution of the direct kinemat-

ics [1]. In the inverse dynamics, the desired trajec-

tory of the end-effector as well as the mass distribu-

tion of each link is given, and the required actuator

moments and/or forces necessary to generate this tra-

jectory are determined. In the direct dynamics, initial

actuated joint positions, initial actuated joint veloci-

ties, applied actuated torques, applied external forces

to end-effector, and the mass distribution of all links

are supplied, and the resulting motion of the end-

effector is determined [2–4]. Several approaches have

been employed to solve inverse dynamic of Gough–

Stewart robot including the Newton–Euler laws [5–9],

the Euler–Lagrange formulation [10–14] and the prin-

ciple of the virtual work [15,16]. Although to the best of

author’s knowledge, only two studies, Kane’s method

[17] and the Newton–Euler method [18], exists for

obtaining the direct dynamic of Gough–Stewart Plat-

form. The Newton–Euler formulation is obtained from

the free-body diagrams. The approach is not suitable

for motion simulation, as it finds the internal moments

and forces that do not affect the motion of the sys-

tem [2–4,17]. The Euler–Lagrange equations results

from the kinetic and potential energies of the sys-

tem. Euler–Lagrange equations give an independent

set of equations of motion that is good for motion

simulation; however, it requires complex calculations

of partial derivatives. The principle of virtual work

is the most efficient method for the dynamic analy-

sis of parallel manipulators. This method allows elim-

ination of all reaction forces and moments. Moreover,

one can derive the equations of motions in terms of

independent generalized coordinates. The virtual work

method is an efficient approach to derive dynamic

equations for the inverse dynamics of the Gough–

Stewart platform. However, for the direct dynamics,

the method of virtual work is not straightforward

because of the complicated velocity transform between

the joint space and task space [17]. In this study,

we present a novel method to overcome this prob-

lem.
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The direct dynamic solution requires the solution of

direct kinematics. Similar to the dynamics, there exist

many studies on the kinematics. In general, there are

two approaches, analytical and numerical, for kinemat-

ics solution. Analytical approaches exist for solving the

DKP of Gough–Stewart robots such as ‘the elimination

method’ [19–21] and ‘the Gröebner basis method’ [22–

24]. These methods are not useful for real-time control

and simulation due to the need to determine the accept-

able solution among the many available solutions [25–

28]. Moreover, in general, DKP does not admit closed-

form solutions, and therefore, numerical approaches

need to be adopted [28,29]. There exist convenient

numerical iterative methods which start the search from

an initial guess and converge to one of the direct kine-

matics solutions. Newton’s method is widely employed

in the DKP of parallel robots [28–30]. However, the

initial guess plays an important role on the number of

iterations needed for finding a solution and even the

convergence of the process. Pratik and Lam [30] pre-

sented a novel strategy for providing an appropriate

initial guess for a standard Newton–Raphson technique

using neural network.

In this paper, the principle of virtual work is

employed for the first time, for solving both the

inverse and direct dynamics of a Gough–Stewart paral-

lel manipulator. Section 2 covers the Gough–Stewart

platform description and kinematical parameters. In

Sects. 3 and 4, the moving platform velocity is dis-

cussed and concept of inverse and direct link Jacobian

matrices is used to relate the motion between joints

(active and/or passive) and actuators velocity vector.

Next, in Sect. 5, the moving platform accelerations and

in Sect. 6 the link accelerations are analyzed. Section 7

covers resultant wrench and inertia of the moving plat-

form. In Sect. 8, the dynamics equations of motion are

formulated by employing the concept of virtual work.

In Sect. 9, improved hybrid strategy is applied for solv-

ing the DKP of Gough–Stewart platform. Two exam-

ples, covering the direct and inverse dynamics, are also

presented. In the first example, a robot trajectory is

selected, and the inverse dynamics using the virtual

work is solved to obtain required motor torques. Results

are next verified with commercial dynamics software.

In the second example, the input of the direct dynamics

is compared with the output of the inverse dynamics.

To do this, another trajectory is first selected and the

inverse dynamics is used to obtain the required motor

torques. These motor torques are next used as input for

the direct dynamics formulation, and a resulting MP

trajectory is obtained. This section also covers com-

parison between Lagrange–Euler formulation and the

proposed dynamics method.

2 Inverse position analysis

Consider Fig. 1a. Frame {T} and frame {B} are

attached to the moving platform, MP, and fixed base,

respectively.

The rotation matrix, B
TR, consists of three Euler

angles θ, ϕ and λ rotated about x, y and z-axes, respec-

tively and can be defined as

B
TR = R(x, θ)R(y,ϕ)R(z, λ)

=

⎡

⎣

cλ cϕ − cϕsλ sϕ

cθ sλ+ cλ sϕ sθ cλ cθ− sλ sϕ sθ −cϕ sθ

sλ sθ− cλ cθ sϕ cλ sθ+ cθ sλ sϕ cϕ cθ

⎤

⎦

(1)

where c and s represent cosine and sine, respectively.

Therefore, to express an arbitrary Tϑ , defined in {T}

to {B}, we have

Bϑ = B
TRTϑ (2)

In this paper, a leading superscript represents the coor-

dinate frame in which the vector is referenced. Addi-

tionally, bold lower and upper case lettering desig-

nate vectors and matrices, respectively. For brevity, the

superscript “B” denoting the frame {B} in which vec-

tors are defined is eliminated.

Figure 1b represents vectors and coordinate frames

used for the kinematic problem of the 6-UPS manip-

ulator. For each kinematic chain, a closed vector-loop

equation can be written as follows

ai + qac
i = B

TRTbi + p for i = 1, . . . , 6 (3)

where B
TR is a rotation matrix to transfer a vector

defined in {T} to {B}. Vectors ai ,
Tbi and p denote

position of point Ui relative to frame {B}, posi-

tion of point Si relative to frame {T} and the trans-

lation vector of the tip, point P, respectively. The

constraint equations, Eq. (3), is a system of nonlin-

ear algebraic equations as F(q) = 0, where q =
{

qac
1 , . . . , qac

6 , xP, yP, zP, θ, ϕ, λ
}

. The actuated joints
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Fig. 1 a The physical

model and b a closed loop

vector for ith leg of the

6-UPS parallel robot

(a) (b)

Fig. 2 a Local coordinates

frames for ith passive

universal joint, b position

vectors and dimensional

parameters of ith actuated

limb

(a) (b)

values, qac
i , and unit vectors along the actuated pris-

matic joints, q̂ac
i , can be obtained using Eq. (3) as fol-

lows

qac
i =

∥

∥

∥

B
TRTbi + p − ai

∥

∥

∥

q̂ac
i =

1

qac
i

(

B
TRTbi + p − ai

)

for i = 1, . . . , 6 (4)

As shown in Fig. 2b, the actuated prismatic joints

include two cylindrical parts. The center of gravity

positions of these parts can be calculated as follows

r1i = ai + e1q̂ac
i and r2i = ai +

(

qac
i − e2

)

q̂ac
i

for i = 1, . . . , 6 (5)

Furthermore, to calculate the rotation values of U-joint,

the following method is utilized. As shown in Fig. 1a,

the rotation matrix, which transfers local moving frame

{Fi } to fixed frame {B} for ith passive U-joint, can be

obtained as

B
F i R = R (z, αi ) R (y, γi ) R (x, ψi )

=

⎡

⎣

cαi cγ i −sαi cψ i + cαi sγ i sψ i sαi sψ i + cαi sγ i cψ i

sαi cγ i cαi cψ i + sαi sγ i sψ i −cαi sψ i + sαi sγ i cψ i

−sγ i cγ i sψ i cγ i cψ i

⎤

⎦

(6)

where αi is a constant value and is illustrated in Fig. 2a.

Using Eq. (6), we have

q̂ac
i = B

F i R
F i q̂ac

i =

⎧

⎨

⎩

sαi sψ i + cαi sγ i cψ i

−cαi sψ i + sαi sγ i cψ i

cγ i cψ i

⎫

⎬

⎭

=

⎧

⎪

⎨

⎪

⎩

q̂
ac
i x

q̂
ac
iy

q̂
ac
i z

⎫

⎪

⎬

⎪

⎭

for i = 1, . . . , 6 (7)

where F i q̂ac
i =

{

0 0 1
}T

. By comparing Eqs. (4) and

(7) and solving the inverse kinematics problem as well
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as solving Eq. (4), the rotation angles for ith passive

U-joint, i.e., γi and ψi , can be obtained as

sψi = sαi q̂ac
i x − cαi q̂ac

iy (8)

and

sγi cψi = cαi q̂
ac
i x + sαi q̂

ac
iy and cγi cψi = q̂ac

i z

→ tan γi =

(

cαi q̂
ac
i x + sαi q̂

ac
iy

)

q̂ac
i z

(9)

3 Inverse and direct velocity analysis

of the moving platform

The velocity vector equations are found by time differ-

entiating both sides of Eq. (3) as

q̇ac
i q̂ac

i + qac
i ωLeg,i × q̂ac

i = vP + ωMP × bi

for i = 1, . . . , 6 (10)

where vP =
{

ẋP ẏP żP

}T
and ωMP =

{

ωx ωy ωz

}T

denote Cartesian velocity vector of the tip, point P, and

angular velocity vector of the MP, respectively. The

velocity of ith S-joint, point Si , can be written in terms

of translational and rotational velocities of the MP as

follows

vSi = vP + ωMP × bi for i = 1, . . . , 6 (11)

where bi =
{

bi x biy bi z

}T
. For two arbitrary vectors

a and c, we can write

a × c = εi jka j ck (12)

where j and k are dummy indices and εi jk is the per-

mutation symbol. Therefore, to obtain inverse velocity

relation in matrix form, Eq. (11) can be rewritten as

vSi = JMPi tMP for i = 1, . . . , 6 (13)

where tMP =
{

v
T
P

ωT
MP

}T
represent the twist vector

of the MP and vSi =
{

ẋSi ẏSi żSi

}T
is velocity vector

of the ith S-joint as well as JMPi is the 3 × 6 matrix

which maps the twist vector of the MP to the ith S-joint

velocity. The matrix JMPi can be found in “Appendix

1.” Furthermore, we know that

q̇ac
i = F i

vSi · F i q̂ac
i = F i żSi for i = 1, . . . , 6 (14)

where F i żSi is the velocity of ith S-joint along the z-axis

of local moving frame {F i} which can be represented

as the ith actuator velocity. Note that,
(

B
F i

R
)−1

=
(

B
F i

R
)T

= F i
B R. Therefore, multiplying the both sides

of Eq. (13) by F i
B R yield

F i
vSi = F i

B R vSi = F i
B R JMPi tMP = F i JMPi tMP

for i = 1, . . . , 6 (15)

By comparing Eqs. (14) and (15) as well as selecting

the z component of velocity vector F i
vSi , the inverse

velocity relation for ith leg of the 6-UPS parallel robot

can be obtained as

q̇ac
i = F i żSi = F i JMPi(3×1−6)tMP for i = 1, . . . , 6

(16)

where F i JMPi(k×1−6) is the kth row of matrix F i JMPi .

The overall inverse velocity relation for the robot can

be obtained in familiar matrix form as

q̇ac = JMP tMP (17)

where q̇ac = {q̇ac
1 , . . . , q̇ac

6 } represents the linear actu-

ated joint velocities. Furthermore, JMP is a 6×6 square

matrix called inverse Jacobian matrix of the robot.

Using Eq. (16), Jacobian matrix JMP can be obtained.

This matrix can be found in “Appendix 1.” Note that

the angular velocity of MP, ωMP can be specified as

function of three Euler angular velocities, θ̇, ϕ̇, and λ̇

(see “Appendix 4”).

Clearly, to obtain the overall direct velocity relation

which maps the ith actuated joint velocities, q̇ac
i , to the

twist vector of the MP, tMP, Eq. (17) can be rewritten

as follows

tMP = J−1
MP q̇ac (18)

where J−1
MP is a 6 × 6 square matrix called direct Jaco-

bian matrix of the 6-UPS parallel robot.

4 Inverse and direct link Jacobian matrices

The velocity vector of ith S-joint in {F i} can be written

in terms of the ith actuator velocity and angular velocity

of the ith limb of the robot using Eq. (10) as follows

F i
vSi = F i

B R vSi = q̇ac
i

F i q̂ac
i + qac

i
F iωLeg,i

× F i q̂ac
i for i = 1, . . . , 6 (19)
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Furthermore, as illustrated in Fig. 2a, the ith leg of

robot can rotate around the y-axis of fixed frame {Bi }

by γi . Then it rotates around the x-axis of moving frame

{Ti } by ψi . Since these two rotation axes are not always

perpendicular to the leg, it means that we cannot state

that the ith leg of 6-UPS robot does not have spin about

z-axis of frame {F i}. Therefore, we can claim that the

statement of F iωLeg,i =
(

F i q̂ac
i × F i

vSi

)

/qac
i com-

monly used in previous literature [15] is not always

right. This formulation is only a good approxima-

tion and does not produce the accurate results. This is

because, the angular velocity of ith leg in its local frame

{Fi },
F iωLeg,i , cannot always be obtained by using

cross product of both sides of Eq. (19) with the unit

vector F i q̂ac
i . In the present paper, the angular velocity

of ith leg is obtained using the angular velocities of the

two consecutive R-joints of the ith U-joint. Therefore,

considering Fig. 2a, we obtain the angular velocity of

ith leg in {Fi } using the ith U-joint angular velocities

as follows

F iωLeg,i = γ̇i
F i êγ i + ψ̇ F i êψi for i = 1, . . . , 6

(20)

where

F i êγ i = RT (x, ψi ) RT (y, γi )

⎧

⎨

⎩

0

1

0

⎫

⎬

⎭

,

F i êψi = RT (x, ψi )

⎧

⎨

⎩

1

0

0

⎫

⎬

⎭

for i = 1, . . . , 6 (21)

where γ̇i and ψ̇i are the angular velocities and F i êγ i

and F i êψi represent the unit vectors along rotation axes

of the two R-joints of ith passive U-joint (see Fig. 2a).

Equation (21) can be rewritten in matrix form as follows

F iωLeg,i = F i kUi

{

γ̇i

ψ̇i

}

=

⎧

⎨

⎩

ψ̇i

γ̇i cos(ψi )

−γ̇i sin(ψi )

⎫

⎬

⎭

for i = 1, . . . , 6 (22)

where F i kUi is Jacobian matrix which maps the joint

angular velocities of ith passive U-joint to the angular

velocity of ith leg, and it can be expressed as follows

F i kUi =
[

F i êγ i
F i êψi

]

3×2
for i = 1, . . . , 6 (23)

To obtain values of γ̇i and ψ̇i , we can cross product both

sides of Eq. (19) with unit vector F i q̂ac
i . This yield

F i q̂ac
i ×

(

F iωLeg,i × F i q̂ac
i

)

=
(

F i q̂ac
i × F i

vSi

)

/qac
i for i = 1, . . . , 6 (24)

Consider

a × (b × c) = (a · c) b − (a · b) c and

a × b = −b × a (25)

Therefore, Eq. (24) can be simplified using Eq. (22) as
⎧

⎨

⎩

F iωLeg,i x
F iωLeg,iy

0

⎫

⎬

⎭

=

⎧

⎨

⎩

ψ̇i

γ̇i cos(ψi )

0

⎫

⎬

⎭

=
(

F i q̂ac
i × F i

vSi

)

/qac
i for i = 1, . . . , 6 (26)

Substituting F i
vSi from Eqs. (15) in (26), yields

ψ̇i =
−1

qac
i

(

F i JMPi(2×1−6)tMP

)

γ̇i =
1

qac
i cos (ψi )

(

F i JMPi (1×1−6)tMP

)

for i = 1, . . . , 6 (27)

Finally, substituting values of γ̇i and ψ̇i from Eq. (27)

in Eq. (22) yield

F iωLeg,i = Jωi tMP for i = 1, . . . , 6 (28)

where Jωi is a 3×6 matrix and can be found in “Appen-

dix 1.” The mass centers’ velocities of the actuators’

cylinder and piston can be derived by time differenti-

ating from Eq. (5). This yields

F i
vC.G.1i = F i

B RUi vC.G.1i

= e1
F iωLeg,i × F i q̂ac

i

F i
vC.G.2i = F i

B RUi vC.G.2i = q̇acF i q̂ac
i

+
(

qac
i − e2

)

F iωLeg,i × F i q̂ac
i

for i = 1, . . . , 6 (29)

Using Eq. (28), term F iωLeg,i ×
F i q̂ac

i can be simplified

as follows

F iωLeg,i × F i q̂ac
i

=
1

qac
i

[

F i JMPi(1−2×1−6)

01×6

]

3×6

tMP for i =1, . . . , 6

(30)

Substituting Eqs. (30) into (29) will yield

F i
vC.G.1i = Jv1,i tMP

F i
vC.G.2i = Jv2,i tMP for i = 1, . . . , 6 (31)
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where Jv1,i and Jv2,i are 3×6 matrices and can be found

in “Appendix 1.” Equations (28) and (31) are called

the inverse link velocity relations. By combining these

equations, the overall inverse link velocity relations are

obtained as follows

F i tcyl,i = Jinv,cyl,i tMP for i = 1, . . . , 6

F i tpis,i = Jinv,pis,i tMP for i = 1, . . . , 6 (32)

where F i tcyl,i =
{

F i
v

T
C.G.1i

F iωT
Leg,i

}T
and F i tpis,i

=
{

F i
v

T
C.G.2i

F iωT
Leg,i

}T
represent the twist vec-

tors for cylinder and piston of the ith robot’s leg,

respectively. Furthermore, Jinv,cyl,i =
[

JT
v1,i JT

ωi

]T

and Jinv,pis,i =
[

JT
v2,i JT

ωi

]T
denote the overall inverse

link Jacobian matrices which map the MP’s twist vec-

tor to the twist vectors of cylinder and piston of the

ith robot’s leg, respectively. Additionally, Eq. (18) is

used to derive the link velocity relations in terms of the

actuated joint velocities, q̇ac. Substituting Eq. (18) into

Eqs. (28) and (31) yields

F iωLeg,i = Jωi J
−1
MPq̇ac

F i
vC.G.1i = Jv1,i J

−1
MPq̇ac

F i
vC.G.2i = Jv2,i J

−1
MPq̇ac for i = 1, . . . , 6 (33)

Additionally, obtaining the twist vectors of each link

of the robot in terms of the actuated joint velocities

is necessary to derive the direct dynamics relations.

Therefore, the overall direct link velocity relations are

derived by combining Eq. (33) as follows

F i tcyl,i = Jdir,cyl,i q̇
ac

F i tpis,i = Jdir,pis,i q̇
ac for i = 1, . . . , 6 (34)

where, Jdir,cyl,i = Jinv,cyl,i J
−1
MP and Jdir,pis,i = Jinv,pis,i

J−1
MP denote the overall direct link Jacobian matrices

which map the actuators’ velocity vector to the twist

vectors of cylinder and piston of the ith robot’s leg,

respectively.

5 The moving platform acceleration analysis

By taking the time derivative of both sides of Eq. (10),

the acceleration relation of the ith robot’s leg can be

derived as follows

q̈ac
i q̂ac

i + 2q̇ac
i ωLeg,i × q̂ac

i + qac
i ω̇Leg,i × q̂ac

i

+ qac
i ωLeg,i ×

(

ωLeg,i × q̂ac
i

)

= v̇P + ω̇MP × bi + ωMP × (ωMP × bi )

for i = 1, . . . , 6 (35)

where v̇P = {ẍP ÿP z̈P}T and ω̇MP = {ω̇x ω̇y ω̇z}
T

denote Cartesian acceleration vector of the tip, point

P, and angular acceleration vector of the MP, respec-

tively. The acceleration of ith S-joint, point Si , can be

written in terms of velocities and accelerations of the

MP as follows

v̇Si = v̇P + ω̇MP × bi + ωMP × (ωMP × bi )

for i = 1, . . . , 6 (36)

By considering Eq. (25), the Eq. (36) can be rewritten

as

v̇Si = v̇P + ω̇MP × bi + (ωMP · bi )ωMP

− (ωMP · ωMP)bi for i = 1, . . . , 6 (37)

Therefore, Eq. (37) can be rewritten in matrix form as

v̇Si = JMPi ṫMP + NiωMP + mi for i = 1, . . . , 6

(38)

where ṫMP = {v̇T
P ω̇T

MP}T and v̇Si = {ẍSi ÿSi z̈Si }
T are

the acceleration vector of the MP and acceleration vec-

tor of ith S-joint, respectively. Matrix Ni and vector

mi can be found in “Appendix 1.” Additionally, the

acceleration of ith S-joint in {F i}, F i
v̇Si , can be writ-

ten in terms of the velocities and accelerations of the

actuators as follows

F i
v̇Si = F i

B Rv̇Si = q̈ac
i

F i q̂ac
i + 2q̇ac

i
F iωLeg,i

× F i q̂ac
i

F i ω̇Leg,i × F i q̂ac
i

+ qac
i

F iωLeg,i ×
(

F iωLeg,i × F i q̂ac
i

)

for i = 1, . . . , 6 (39)

By dot multiplying two sides of Eq. (39) with F i q̂ac
i ,

the inverse acceleration relation is obtained as

q̈ac
i = F i

vSi · F i q̂ac
i − qac

i �i = F i z̈Si − qac
i �i

for i = 1, . . . , 6 (40)

where F i
v̇Si .

F i q̂ac
i = F i z̈Si and

Ωi =
{

F iωLeg,i ×
(

F iωLeg,i × F i q̂ac
i

)}

.F i q̂ac
i

= −
(

F iω2
Leg,i x + F iω2

Leg,iy

)

for i = 1, . . . , 6 (41)

Therefore, value of Ωi can be obtained using Eqs. (28)

or (33) as function of tMP or q̇ac, respectively. Also, to

obtain value of F i z̈Si , Eq. (38) is employed as follows
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F i
v̇Si = F i

B Rv̇Si = F i JMPi ṫMP + F i NiωMP

+F i mi for i = 1, . . . , 6 (42)

where F i Ni = F i
B RNi and F i mi = F i

B Rmi . Substitut-

ing Eqs. (41)–(42) into (40) and rewriting Eq. (40) in a

familiar matrix form, we have

q̈ac = JMP ṫMP + NωMP + m (43)

Equation (43) is called the overall inverse accelera-

tion relation of the 6-UPS parallel robot where q̈ac =

{q̈ac
1 , . . . , q̈ac

6 }T is vector of the linear actuated joint

accelerations and N is a 6 × 3 matrix as well as m

is a 6 × 1 vector which are shown in “Appendix 1.”

Note that, the angular acceleration of the MP, ω̇MP, can

be obtained by time differentiating from Eqs. (107) or

(108). For more explanations, see “Appendix 4.” Fur-

thermore, the overall direct acceleration relation of the

robot can be obtained using Eq. (43) as follows

ṫMP = J−1
MPq̈ac − J−1

MP(NωMP + m) (44)

To obtain the overall direct acceleration relation as a

function of q̈ac and q̇ac, vectors ωMP and m must be

obtained as functions of q̇ac. Therefore, Eq. (44) can

be rewritten as

ṫMP = J−1
MPq̈ac + JCor,MPq̇ac (45)

“Appendix 2” provides the derivation of matrix

JCor,MP.

6 Link acceleration analysis

As stated earlier, since two rotation axes of the ith

robot’s leg, êγ i and êψi , are not always perpendicu-

lar to the leg, we cannot state that the ith leg of 6-UPS

robot does not have spin about z-axis of frame {Fi }

(see Fig. 2a). In other words, ω̇Leg,i · q̂ac
i is not always

equal to zero. Therefore, the angular acceleration of ith

leg in its local frame {Fi },
F i ω̇Leg,i cannot be always

obtained using cross product of both sides of Eq. (39)

with unit vector F i q̂ac
i . Similar to the previous deriva-

tion to obtain the link velocity relations, the angular

acceleration of ith leg can be obtained using the direct

time differentiation of Eqs. (20) or (22). This yield

F i ω̇Leg,i = γ̈i
F i êγ i + ψ̈i

F i êψi

+ψ̇i

(

γ̇i
F i êγ i × F i êψi

)

for i = 1, . . . , 6 (46)

Note that the direction of F i êγ i remains unchanged.

Therefore, we can write

F i ω̇Leg,i = F i k̇Ui

{

γ̇i

ψ̇i

}

+ F i kUi

{

γ̈i

ψ̈i

}

=

⎧

⎨

⎩

ψ̈i

γ̈i cos(ψi ) − ψ̇i γ̇i sin(ψi )

−γ̈i sin(ψi ) − ψ̇i γ̇i cos(ψi )

⎫

⎬

⎭

for i = 1, . . . , 6 (47)

where F i k̇Ui = d(F i kUi )/dt . The values of γ̇i and ψ̇i

are obtained in Eq. (27). The cross product of both sides

of Eq. (39) with unit vector F i q̂ac
i leads to obtain values

of γ̈i and ψ̈i . “Appendix 3” represents the derivation of

γ̈i and ψ̈i . Therefore, the angular acceleration of ith leg,
F i ω̇Leg,i will be rewritten in terms of the end-effector

acceleration vector in compact form as follows

F i ω̇Leg,i = Jωi ṫMP + �ωi tMP + NωiωMP

+ mωi for i = 1, . . . , 6 (48)

The 3 × 6 Matrix �ωi and 3 × 3 matrix Nωi as well as

vector mωi are found in “Appendix 1.” The mass cen-

ters’ accelerations of the actuators’ cylinder and piston

can be derived by time differentiating from Eq. (29).

These yields

F i
v̇C.G.1 i = e1

F i ω̇Leg,i × F i q̂ac
i + e1

F iωLeg,i

×
(

F iωLeg,i × F i q̂ac
i

)

F i
v̇C.G.2 i = q̈ac

i
F i q̂ac

i + 2q̇ac
i

F iωLeg,i

× F i q̂ac
i +

(

qac
i − e2

)

F i ω̇Leg,i

×F i q̂ac
i +

(

qac
i − e2

)

F iωLeg,i

×
(

F iωLeg,i × F i q̂ac
i

)

for i = 1, . . . , 6 (49)

Therefore, Eq. (49) can be rewritten in terms of the

end-effector acceleration vector in compact form using

Eqs. (17), (28), (43) and (48) as follows

Fi
v̇C.G.1 i = Jv1,i ṫMP + �v1,i tMP

+ Nv1,iωMP + mv1,i

Fi
v̇C.G.2 i = Jv2,i ṫMP + �v2,i tMP

+ Nv2,iωMP + mv2,i

for i = 1, . . . , 6 (50)

The matrices �v1,i , �v2,i , Nv1,i and Nv2,i as well

as vectors mv1,i and mv2,i are presented in “Appen-

dix 1.” Equations (48) and (50) are called the inverse
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link acceleration relations. By combining these equa-

tions, the overall inverse link acceleration relations are

obtained as

F i ṫcyl,i = Jinv,cyl,i ṫMP + �inv,cyl,i tMP

+ Ninv,cyl,iωMP + minv,cyl,i

F i ṫpis,i = Jinv,pis,i ṫMP + �inv,pis,i tMP

+ Ninv,pis,iωMP + minv,pis,i

for i = 1, . . . , 6 (51)

where

Jinv,cyl,i =

[

Jv1,i

Jωi

]

, �inv,cyl,i =

[

�v1,i

�ωi

]

,

Ninv,cyl,i =

[

Nv1,i

Nωi

]

, minv,cyl,i =

[

mv1,i

mωi

]

Jinv,pis,i =

[

Jv2,i

Jωi

]

, �inv,pis,i =

[

�v2,i

�ωi

]

,

Ninv,pis,i =

[

Nv2,i

Nωi

]

, minv,pis,i =

[

mv2,i

mωi

]

for i = 1, . . . , 6 (52)

Note that, F i ṫcyl,i = {F i
v̇

T
C.G.1 i

F i ω̇T
Leg,i }

T and
F i ṫpis,i = {F i

v̇
T
C.G.2 i

F i ω̇T
Leg,i }

T represent the acceler-

ation vectors of cylinder and piston of the ith robot’s leg,

respectively. Furthermore, obtaining the overall accel-

eration vectors of each leg in terms of q̈ac and q̈ac is

necessary to derive the direct dynamics relations. To do

this, first, substitute vectors ωMP and tMP from Eq. (18)

and vector ṫMP from Eqs. (45) into (51). Then vectors

mωi
, mv1,i and mv2,i should be obtained as function

of q̇ac. This procedure is presented in “Appendix 3.”

Therefore, the overall direct link acceleration relations

can be derived as follows

F i ṫcyl,i = Jdir,cyl,i q̈
ac + JCol,cyl,i q̇

ac

F i ṫcyl,i = Jdir,cyl,i q̈
ac + JCol,cyl,i q̇

ac

for i = 1, . . . , 6 (53)

where Jdir,cyl,i and Jdir,pis,i are obtained in Eq. (34).

Also, “Appendix 3” represents the derivation of JCor,cyl,i

and JCor,pis,i .

7 Rigid body dynamics

The direct dynamics problem aims to find the response

of a robot arm corresponding to given applied actua-

tors’ moments or forces. That is, given the vector of

actuated joint moments/forces, it computes the result-

ing motion of the manipulator as a function of time.

In the present paper, the principle of virtual work is

utilized to compute the actuated forces.

To obtain the equations of motion, the resultant

force/torque due to all rigid bodies can be considered.

In this subsection, we obtain the resultant wrench due to

applied external wrench for the MP and limbs as func-

tion of position, qac, velocity, q̇ac, and acceleration, q̈ac,

of the prismatic actuators. In the direct dynamics prob-

lem, the vector of initial actuated joint positions, vector

of initial actuated joint velocities and applied actuator

forces are given and the resultant position, velocity and

acceleration of the MP are obtained.

7.1 Resultant wrench due to applied external wrench

and inertia of the MP

The resultant wrench due to applied external wrench

and inertia of the MP in the base frame {B}, wMP can

be written as

wMP =

{

fMP

nMP

}

=

{

fext

next

}

+

{

mMPg

03×1

}

+

{

−mMPv̇p

−BIMP ω̇MP − ωMP ×
(

BIMP ωMP

)

}

(54)

where mMP and BIMP are the mass and inertia matrix of

the MP, respectively. Vectors fext and next are applied

external force and moment exerted to end-effector

which are all defined in frame {B} as

fext =
{

fx fy fz

}T
, next =

{

nx ny nz

}T
,

BIMP = B
TR TIMP

T
BR (55)

Also, vector g is the gravitational acceleration vector

which is defined in frame {B} as

g =
{

gx = 0 gy = 0 gz = 9.81
}T

(56)

We can state that

ωMP ×
(

BIMP ωMP

)

= (ωMP × I3×3)
B IMP ωMP

= (ωMP × I3×3)
BIMP J−1

MP(4−6)×6
q̇ac (57)

By substituting ωMP, v̇p and ω̇MP from Eqs. (18) and

(45) into Eq. (54), vector wMP can be obtained in terms

of q̇ac and q̈ac as follows
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wMP = MMP(q)q̈ac + CMP(q, q̇)q̇ac + wgMP + wext

(58)

where matrices MMP and CMP as well as vectors wgMP

and wext are shown in “Appendix 1.”

7.2 Resultant wrench due to inertia of the cylinder

and piston of actuators

The resultant wrench due to inertia of the cylinder and

piston of ith actuators in its local frame {Fi },
F i wLeg,i ,

can be written as follows

F i wcyl,i =

{

fcyl,i

ncyl,i

}

=

{

mcyl,i
F i
B Rg

03×1

}

+

{

−mcyl,i
F i v̇C.G.1i

−F i Icyl,i
F i ω̇Leg,i − F i ω̇Leg,i ×

(

F i Icyl,i
F i ω̇Leg,i

)

}

F i wpis,i =

{

fpis,i

npis,i

}

=

{

mpis,i
F i
B Rg

03×1

}

+

{

−mpis,i
F i v̇C.G.1i

−F i Ipis,i
F i ω̇Leg,i − F i ω̇Leg,i ×

(

F i Ipis,i
F i ω̇Leg,i

)

}

for i = 1, . . . , 6 (59)

where mcyl,i and mpis,i are the mass of the cylinder and

piston of the ith leg. We can state

F iωLeg,i ×
(

F i Icyl,i
F iωLeg,i

)

=
(

F iωLeg,i × I3×3

)

F i Icyl,i Jωi J−1
MP q̇ac

F iωLeg,i ×
(

F i Ipis,i
F iωLeg,i

)

=
(

F iωLeg,i × I3×3

)

F i Ipis,i Jωi J−1
MP q̇ac

for i = 1, . . . , 6 (60)

By substituting F iωLeg,i ,
F i ω̇Leg,i ,

F i v̇C.G.1,i and
F i v̇C.G.2,i from Eqs. (34) and (51) into Eq. (59), vec-

tors F i wcyl,i and F i wpis,i can be obtained in terms of

q̇ac and q̈ac as follows

F i wcyl,i = Mcyl,i (q) q̈ac + Ccyl,i (q, q̇)q̇ac + wgcyl,i

F i wpis,i = Mpis,i (q) q̈ac + Cpis,i (q, q̇)q̇ac + wgpis,i

for i = 1, . . . , 6 (61)

where matrices Mcyl,i , Mpis,i , Ccyl,i and Cpis,i as well

as vectors wgcyl,i
and wgpis,i

are shown in “Appendix 1.”

7.3 Equations of motion

Using principle of virtual work, the equations of motion

of the robot can be expressed as

(

δqac
)T

fac + (δtMP)T wMP

+

6
∑

i=1

(

(

δ
F i tcyl,i

)T
F i wcyl,i

+
(

δ
F i tpis,i

)T
F i wpis,i

)

= 0 (62)

where δqac is the virtual translational vector of the actu-

ated joints and δtMP is the virtual twist vector of the

MP. Vector fac is the actuated joints forces. Further-

more, δ
F i tcyl,i and δ

F i tpis,i are the virtual twist vector

for cylinder and piston of the ith leg, respectively. The

virtual twist vectors in Eq. (62) can be rewritten as func-

tions of δqac. Consequently, using Eqs. (18) and (34),

we have

δtMP = J−1
MPδqac,

δF i tcyl,i = Jdir,cyl,iδqac,

δF i tpis,i = Jdir,pis,iδqac for i = 1, . . . , 6 (63)

Substituting above equations as well as wMP, F i wcyl,i

and F i wpis,i from Eqs. (58) and (61) into Eq. (62) yield

(

δqac
)T

(

fac +

(

J−T
MPMMP +

6
∑

i=1

(

JT
dir,cyl,i Mcyl,i

+ JT
dir,pis,i Mpis,i

))

q̈ac +
(

J−T
MPCMP

+

6
∑

i=1

(

JT
dir,cyl,i Ccyl,i + JT

dir,pis,i Cpis,i

)

)

q̇ac

+

(

J−T
MPwgMP +

6
∑

i=1

(

JT
dir,cyl,i wgcyl,i

+ JT
dir,pis,i wgpis,i

))

+
(

J−T
MPwext

))

= 0 (64)

Since Eq. (64) is valid for any δ qac, it follows that

fac+M (q) q̈ac
3×1+C(q, q̇)q̇ac+G(q)+w = 06×1 (65)

where

M (q) = J−T
MPMMP

+

6
∑

i=1

(

JT
dir,cyl,i Mcyl,i + JT

dir,pis,i Mpis,i

)

C (q, q̇) = J−T
MPCMP

+

6
∑

i=1

(

JT
dir,cyl,i Ccyl,i + JT

dir,pis,i Cpis,i

)
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Fig. 3 The modified hybrid

solution

G (q) = J−T
MPwgMP

+

6
∑

i=1

(

JT
dir,cyl,i wgcyl,i

+ JT
dir,pis,i wgpis,i

)

w =
(

J−T
MPwext

)

(66)

Most familiar Eq. (65) is the dynamics equation in

terms of the actuators’ velocity and acceleration vec-

tors.

8 Results and discussion

In this section, the paper’s contributions are outlined

and a discussion on improvements is presented. In

direct kinematics, we are interested to determine the

position and orientation of the mobile platform based

on giving legs length. It should be mentioned that the

direct kinematics of parallel robot, like Gough–Stewart

platform, is very complicated than inverse kinematics.

Therefore, we proposed a numerical method, like [30],

to obtain a near-exact solution. In this paper, com-

bination of neural network and third-order Newton–

Raphson method is utilized to obtain modified hybrid

strategies. This strategy is presented in Fig. 3. In

this study, we used neural network, like [30], for ini-

tial guess and proposed using higher-order Newton–

Raphson [31] to decrease the time of simulation.

For the modeling of DKP, the leg length of the 6-

UPS robot as inputs and position and orientation of the

MP as outputs of MLPANN are considered. Thus, here

qac
i (i = 1, . . . , 6) as inputs and {xP, yP, zP, θ, ϕ, λ} as

output of MLPANN is investigated.

To train the network, we need to suitable data that

describe behavior of our models comprehensively. So,

in this study the inverse kinematics is utilized to obtain

these data. For this purpose, first the workspace of

Gough–Stewart robot movement is specified. Then, by

using inverse kinematics, the corresponding leg length

of number of position and orientation in this workspace

are obtained. Finally, the leg length and robot’s Carte-

Fig. 4 MLPANN architecture for direct kinematics

sian space parameters are used to input and outputs

of MLPANN, respectively. This MLPANN is shown

Fig. 4. Obviously, in this paper, two hidden layer were

chosen for MLPANN. Also, we have chosen 15 nodes

in the first layer and 20 nodes in the second layer.

As it mentioned before, we use MLPANN to fine

the appropriate initial guess. If the initial guess is cho-

sen near the acceptable solution, the Newton–Raphson

method yields very accurate results, given a sufficient

number of algorithm iterations [30,31]. For multiple

equations and variables, Newton–Raphson’s method is

Xm+1 = Xm −

(

∂F (Xm)

∂Xm

)−1

F (Xm) (67)

where X is a vector of the variables that we want to esti-

mate, F is a vector function which approaches zero as

the estimation of X and “m” represents iteration num-

ber.

For the robot considered in this study, we select

XT = {xP, yP, zP, θ, ϕ, λ} (68)

and

F(X) =

⎡

⎢

⎣

∥

∥
B
TRTb1 + p − a1

∥

∥− l1
...

∥

∥

B
TRTb2 + p − a2

∥

∥− l6

⎤

⎥

⎦
=

⎡

⎢

⎣

qac
1 − l1

...

qac
6 − l6

⎤

⎥

⎦

(69)
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Fig. 5 a Desired trajectory

and b error output of

modified hybrid strategy
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where qac
i and li are the actual and estimated length of

the ith leg, respectively. As we know, it is well known

the convergence of the Newton–Raphson technique

almost entirely depends on the selection of the initial

guess and the order of it. We can improve this method

by increasing the order of Newton–Raphson. Darvishi

and Barati [31] presented a third-order Newton-type

method to solve systems of nonlinear equations. In this

method, it is not required to calculate second deriva-

tives. Consider the nonlinear equation

F (X) = 0n×1 (70)

where Fn×1 is nonlinear function system and X is a vec-

tor of the variables we wish to estimate. They proposed

to solve the nonlinear system Eq. (70), the following

iteration scheme. Also, they showed that this method

has an order of convergence three

Xm+1 = Xm − F′(Xm)−1
(

F(Xm) + F(X∗
m+1)

)

(71)

X∗
m+1 = Xm − F′(Xm)−1F(Xm) (72)

where F′ is Jacobian matrix and defined by

F′(Xm) =
∂F(Xm)

∂(Xm)
(73)

It should be mentioned that in this study, the stop cri-

teria is ‖Xm+1 − Xm‖∞ < Emax. Figure 5 shows the

desired trajectory and error between this and modified

strategy.

To investigate the performance of the modified

method, the trajectory shown in Fig. 5 is used and

divided into 201 data points. Table 1 shows the total

execution time and the average iteration number for

the conventional Newton–Raphson, and our modified

method. In this table, for the entire trajectory, the

Newton–Raphson is repeated three times using differ-

ent initial guesses. As can be seen in this table, results of

the Newton–Raphson method are significantly depen-

dent on the initial guess. Additionally, using the modi-

fied method the total execution time and average itera-

tion number are significantly improved.

In this table, “N” and “t” are the average num-

ber of iterations and execution time of the corre-

sponding method, respectively. Next, in another case

study, to cover the entire workspace, 201 random data

points in the workspace are selected. Figure 6 com-

pares the performance of the modified hybrid method

(neural networks and third-order Newton–Raphson),

the hybrid method [30] (neural networks and second-

order Newton–Raphson) and the Newton–Raphson for

four accuracy levels Emax = 10−3, 10−4, 10−5 and

10−6. Six random values for the actuator length, qac
i ,

resulting in a position and orientation for the MP are

selected. This process is repeated 201 times and there-

fore covers much of the robot workspace. The dis-

tributions of the iteration numbers for the mentioned

accuracy levels are calculated. A better performance

(in terms of execution time) of the employed method

results in a distribution closer to the vertical axis.

As illustrated for all levels of accuracy, the proposed

methodology, modified hybrid method, performs faster

compared with the other two aforementioned methods.

Therefore, we can claim to have found a near-exact

solution to the DKP in a relative small number of iter-

ations. Moreover, Fig. 6 shows that for higher levels of

accuracy, the modified hybrid method has better time

performance and fewer iterations compared to the two
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Table 1 Performance

comparison of the modified

Hybrid and conventional

Newton–Raphson Methods

Precision

level

Stop criterion

(Emax)

The modified

hybrid method

Conventional

Newton–Raphson

1 10−12 Initial guess:

automatically

calculated by the

MLPANN

Initial

guess= [0.06,

0.12, 1.12,

0.15, 0.15,

0.11, 0.15]

N = 5.6 (average of 201 iterations)

t = 0.57 s (elapsed time for the

entire trajectory)

N = 3.82 Initial guess= [0,

0, 1, 0, 0.15, 0]

N = 5.74

t = 0.61 s

t = 0.26 (s) Initial guess= [0.09, 0.2, 1.2, 0.24,

0.034, 0.24]

N = 871.7

t = 32.7 s

Fig. 6 Distribution of

iteration number for four

accuracy levels.

a Emax = 10−3,

b Emax = 10−4,

c Emax = 10−5,

d Emax = 10−6

(b) (a) 

(d)(c) 
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others methods. For example, in Fig. 6d, for the mod-

ified hybrid method, 93 and 7 % of 201 random points

satisfy the fourth accuracy level, Emax = 10−6, in 3rd

and 4th iteration numbers, respectively. However, for

the Newton–Raphson method, 66, 30, 3 and 1 % of 201

random points satisfy this criterion in fourth, fifth, sixth

and seventh iteration numbers, respectively.

By applying the proposed method, it was demon-

strated that replacing the conventional Newton–Raphson

algorithm by the third-order counterpart leads to a

reduction in the number of iterations required to reach

the desired accuracy level and thus a reduction of the

DKP analysis time. By reducing the processing time

related to solving the DKP, more time can be devoted to
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Fig. 7 Computational algorithm for solving the inverse dynamics of the robot

the control calculations. Therefore, more complicated

control algorithms with better performances could be

implemented. It can be concluded that the proposed

method can decrease the iteration number and execu-

tion time in comparison with the hybrid method [30]

as well as the conventional Newton–Raphson method.

Therefore, both goals of finding the nearest exact solu-

tion and fast algorithm for the DKP are satisfied.

As stated earlier, the solution outlined in this paper

applies to a Gough–Stewart manipulator. Based on the

previous sections, a computer program is developed

using MATLAB software. Two examples with differ-

ent initial conditions and applied torques for actuators

are simulated and trajectory of this robot is calculated.

The results are verified in two ways. First, using inverse

dynamics problem, a trajectory for the Gough–Stewart

platform is supplied and required motor torques as well

as the angular position of actuators as a function of time

are calculated. Therefore, the initial conditions of actu-

ator angular positions and velocities can be calculated.

If these initial conditions along with torque trajectory,

the output of the inverse dynamics problem, are sup-

plied to the direct dynamics problem, then the same

trajectory for Gough–Stewart robot must be obtained.

Secondly, the results are also verified using a commer-

cial dynamics modeling software. Figures 7 and 8 rep-

resent computational algorithm for solving the inverse

and direct dynamics of the robot, respectively.

8.1 Specification of the Gough–Stewart platform

The kinematic and dynamic parameters of manipulator

are summarized in Table 2.

8.2 Case study 1

In this section, results are verified using a commer-

cial dynamics modeling package. In this simulation,

the moving does not rotate, while the center of mass

follows a helix curve. Therefore, the trajectory is spec-

ified as

θ = ϕ = λ = 0 and p =

⎡

⎣

0.1 cos (ωt)

1 + 0.01t

0.1 sin (ωt)

⎤

⎦

where ω = 2.0 rad/s. As shown in Fig. 9, the results of

the analytical and commercial software are very close.

These results verify the correctness of our mathemati-

cal model.

8.3 Case study 2

For the second simulation, the orientation of the MP is

rotated about x, while the center of mass moves with

a sinusoidal motion. Specifically, the trajectory of the

MP is given by
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Fig. 8 Computational algorithm for solving the direct dynamics of the robot

Table 2 Physical

parameters of the 6-UPS

robot

Position vectors of U-joints and S-joints

a1 = [0.7071,−7071, 0]Tm Tb1 = [0.4830,−0.1294, 0]Tm

a2 = [0.7071, 0.7071, 0]Tm Tb2 = [0.4830, 0.1294, 0]Tm

a3 = [0.2588, 0.9659, 0]Tm Tb3 = [−0.1294, 0.4830, 0]Tm

a4 = [−0.9659, 0.2588, 0]Tm Tb4 = [−0.3536, 0.3536, 0]Tm

a5 = [−0.9659,−0.2588, 0]Tm Tb5 = [−0.3536,−0.3536, 0]Tm

a6 = [0.2588,−0.9659, 0]Tm Tb6 = [−0.1294,−4830, 0]Tm

Gravity centers of cylinder and piston for all legs

e1 = e2 = 0.5 m

Mass of the MP, cylinder and piston of all legs:

mMP = 1.5 kg mcyl = mpis = 0.1 kg

Moments of inertia of cylinder and piston of all legs

as well as the MP (in local frames)

TIMP =

⎡

⎣

0.08 0 0

0 0.08 0

0 0 0.08

⎤

⎦ (kg m2)

F i Icyl,i =

⎡

⎣

6.25 0 0

0 6.25 0

0 0 0

⎤

⎦× 10−3 (kg m2)

F i Ipis,i =

⎡

⎣

6.25 0 0

0 6.25 0

0 0 0

⎤

⎦× 10−3 (kg m2)

θ = 0.15 sin (ωt) , ϕ = λ = 0 and

p =

⎡

⎣

0.15 sin (ωt)

0.15 sin (ωt)

1.0 + 0.15 sin (ωt)

⎤

⎦

where ω = 0.5 rad/s. Figure 10 shows the link length

in inverse and direct dynamics.

As it is obvious, by reducing execution time related

to solving the dynamics equations, more time could

be devoted to control calculations. Therefore, more

complicated control algorithms with better perfor-

mances could be implemented [32]. In the Newton–

Euler method, all unnecessary constraint forces appear
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Fig. 9 Input forces at the

six prismatic joints in case

study 1. a Prismatic joint 1,

b prismatic joint 2, c

prismatic joint 3, d

prismatic joint 4, e prismatic

joint 5, f prismatic joint 6
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in the robot’s dynamic formulations. These unneces-

sary computations are not essential for control scheme

of the robot, and they increase the execution time of

the dynamic procedure. Furthermore, the Lagrange

method is a strong method and dynamic formulation

that is obtained using this method is well structured,

but having a large symbolic computation to derive the

partial derivatives of the Lagrangian, increases the total

execution time of the dynamic procedure [2,17]. Since

one of the main goals of the present paper is to reduce

execution time, a comparison between execution time

for the virtual work and Euler–Lagrange methods is

presented.

To have a reasonable comparison, Euler–Lagrange

equations are calculated in two cases. The specifica-

tion of each case is summarized in Table 3. It should

be noted that for case 2, calculating partial derivatives

of kinetics and potential energy of the robot are very

complicated. Therefore, these operations were calcu-

lated symbolically. Table 3, compares execution time

when a 4-s-long motion trajectory is for the MP as

θ = λ = 0.25 sin (2t) , ϕ = 0.15 sin (2t) and

p =

⎡

⎣

0.1 sin (2t)

0.2 sin (2t)

1.0 + 0.2 sin (2t)

⎤

⎦ t = 4 s

As indicated in Table 3, the virtual work method

is faster than the Lagrange method. Moreover, Fig. 11

compares the required forces for the six actuators.

In this study, we calculate the dynamic equation of

this robot using Euler–Lagrange in two cases to show

the better ability of the virtual work method for both
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Fig. 10 Input forces at the

six prismatic joints in case

study 2. a Prismatic joint 1,

b prismatic joint 2, c

prismatic joint 3, d

prismatic joint 4, e prismatic

joint 5, f prismatic joint 6
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accuracy and execution time (Fig. 11; Table 3). By

investigating case 1 and case 2, we can compare the

effect of the simplifications on accuracy and execution

time. As can be seen, simplification has the direct effect

on decreasing the accuracy of the solutions. However,

by employing the virtual work methods, without any

simplifications, accuracy and execution time are rea-

sonable.

As stated earlier, many methods are employed to

obtain the robot’s dynamic equations. The compli-

cated partial derivatives, as present in the Lagrange–

Euler method, are not utilized in the process of deriv-
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Table 3 Performance

comparison of

Euler–Lagrange and virtual

work

Methods Execution time (s) Description

Euler–Lagrange

Case 1 1.15 Distributed mass for MP

Without considering mass for piston and

cylinder of legs

Obtaining partial derivatives manually

Case 2 14.83 Distributed mass for MP

Distributed mass for piston and cylinder

of each link

Obtaining partial derivatives symbolically

Virtual work 0.83 Distributed mass for MP

Distributed mass for piston and cylinder

of each link

Fig. 11 Required input

forces are obtained virtual

works and Lagrange

methods. a Prismatic joint

1, b prismatic joint 2, c

prismatic joint 3, d

prismatic joint 4, e prismatic

joint 5, f prismatic joint 6

(a) (b) 

(c) (d)

(e) (f)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5

F
o
rc

e 
(N

)

Time (sec)

Virtual Works
Lagrange-case 1
Lagrange-case 2

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

F
o
rc

e 
(N

)

Time (sec)

Virtual Works
Lagrange-case 1
Lagrange-case 2

-10

-5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4F
o
rc

e 
(N

)

Time (sec)

Virtual Works
Lagrange-case 1
Lagrange-case 2

-10

-5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4F
o
rc

e 
(N

)

Time (sec)

Virtual Works
Lagrange-case 1
Lagrange-case 2

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5

F
o
rc

e 
(N

)

Time (sec)

Virtual Works

Lagrange-case 1

Lagrange-case 2

-15

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5F
o
rc

e 
(N

)

Time (sec)

Virtual Works
Lagrange-case 1
Lagrange-case 2

123

Author's personal copy



2412 H. Kalani et al.

ing the dynamic equations. Additionally, the relatively

higher volume of the symbolic computation in the

Lagrangian formulation increases the total execution

time for the dynamic procedure. Finally, the use of

free-body diagrams in Newton–Euler method results

in internal moments and forces in the motion equa-

tion that are not necessary when simulation and con-

trol applications are used [2,3,10,14,17]. More specific

differences between the present work and the existing

dynamics method are

• To obtain the direct dynamics formulation using the

virtual work method requires obtaining the veloc-

ity and acceleration transformations between the

joint space and Cartesian space. This process is

rather complex and not straightforward [17]. How-

ever, in the present study, a systematic approach is

utilized in obtaining the direct dynamic equations

using the virtual work method. To do this, the con-

cept of direct link Jacobian matrices is used to map

the twist vector of all rigid bodies to the velocity

vector of actuated joints.

• The present approach includes the use of 3×3 trans-

formation matrices rather than the more common

4 × 4 homogeneous Denavit–Hartenberg transfor-

mations as well as the screw theory. This will elim-

inate the calculation of passive joint velocities and

accelerations. Consequently, there is no need to cal-

culate the Jacobian matrices which invert passive

joint velocities/accelerations to active joint veloci-

ties/accelerations [3,33,34]. Moreover, in the kine-

matic equations, the passive joints variables are not

obtained, and the constraint equations are indepen-

dent of the passive joints variables. This approach

can theoretically lower the execution time of the

dynamic solution.

• In some studies, it is assumed that the leg of the

6-UPS robot does not have a spin about its lon-

gitudinal axis [13,15,35]. This incorrect assump-

tion results in inaccurate form of the angular veloc-

ity/acceleration for the robot’s leg. In the present

paper, a more precise dynamics formulation is

obtained by including the spinning of the legs, con-

sequently the inertia effect, around their axial direc-

tion.

• The solution of the direct dynamics requires the

solution of the DKP. In the present paper, in an

effort to decrease the execution time for analy-

sis of the DKP, a modified hybrid strategy is pre-

sented. The new algorithm leads to a reduction in

the required iteration numbers to reach the desired

accuracy level and subsequently a reduction of the

DKP solution time. The reduced time in solving the

kinematic equations means more time can be dedi-

cated to more advanced control algorithms. More-

over, this numerical algorithm can be applied to

any DKP for serial or parallel robots and obtain the

near-exact solutions.

• The aim of this paper is to obtain the motion

dynamic equations of the Gough–Stewart robot in a

systematic form as well as to offer a workbench on

obtaining dynamic of the parallel robots. Although,

there exist prior studies on the inverse dynamic

solution of Gough–Stewart platform, a few of them

have verified dynamic equations using other meth-

ods. In the present paper, the dynamic equations

are verified by both commercial simulation soft-

ware and Lagrange method. The other goal of the

present study is to reduce execution time in order to

implement a model-based controller. To do this, vir-

tual work methodology as well as a modified hybrid

strategy is presented. The paper also compares the

execution time of the virtual work and well-known

Lagrange algorithms.

9 Conclusion

The need to study various control strategies and per-

form simulation has motivated us to study inverse and

direct dynamics problem of the Gough–Stewart par-

allel robot. A comprehensive model that takes into

account all the system parameters such as the MP,

cylinder and moving piston of each leg is considered.

The methodology involves four basic steps. First, we

investigated kinematics solutions. To solve the DKP,

an improved hybrid method is used by combining a

third-order Newton–Raphson with a Neural Network

method. An MLPANN is used to find the initial guess

for the Newton–Raphson. The modified hybrid strat-

egy obtains the near-exact solution of the DKP and is

computationally efficient. The second step included the

calculation of the direct velocity/acceleration analy-

sis using the invariant form for both active and pas-

sive joints. We showed that the common assumption

of F iωLeg,i · F i q̂ac
i = 0 is not always correct. This

assumption does not have a significant effect on the

calculated forces by the dynamic solution. Therefore,
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it is possible to use this assumption to obtain more sim-

plified equations of motion. In the third step, the con-

cept of direct link Jacobian matrix is utilized to relate

the actuator velocities with a related twist of the cor-

responding leg. In the fourth step, dynamics formula-

tion is presented. The formulation is also implemented

in MATLAB software. To demonstrate the methodol-

ogy, two numerical examples are presented. Results

are verified using a commercial dynamics modeling

package as well as the Lagrange–Euler method for an

inverse dynamics problem. Compared with the tradi-

tional Newton–Euler method and the Lagrange for-

mulation, the proposed modeling is more straightfor-

ward and systematic resulting in more concise dynamic

equations.

Appendix 1

A1.1 Matrices for the moving platform velocity rela-

tions

The matrix JMPi in Eq. (13) is given below

JMPi =
[

I3×3 −bi × I3×3

]

for i = 1, . . . , 6 (74)

where

bi × I3×3 =

⎡

⎣bi ×

⎧

⎨

⎩

1

0

0

⎫

⎬

⎭

bi ×

⎧

⎨

⎩

0

1

0

⎫

⎬

⎭

bi ×

⎧

⎨

⎩

0

0

1

⎫

⎬

⎭

⎤

⎦

=

⎡

⎣

0 −bi z biy

bi z 0 −bi x

−biy bi x 0

⎤

⎦ for i = 1, . . . , 6

(75)

and matrix JMP in Eq. (17) is given as follows

JMP =

⎡

⎢

⎣

F1JMP1(3×1−6)

...
F6JMP6(3×1−6)

⎤

⎥

⎦

6×6

(76)

A1.2 Matrices for the velocity relations of the robot’s

legs

The matrix Jωi in Eq. (28) is given below

Jωi =
1

qac
i

F i kUi

[

1
cos(ψi )

F i JMPi(1×1−6)

−F i JMPi(2×1−6)

]

=
1

qac
i

⎡

⎣

−F i JMPi(2×1−6)
F i JMPi(1×1−6)

− tan (ψi )
F i JMPi(1×1−6)

⎤

⎦

3×6

for i = 1, . . . , 6 (77)

and matrices Jv1,i and Jv2,i in Eq. (31) are given below

Jv1,i =
e1

qac
i

[

F i JMPi(1−2×1−6)

01×6

]

3×6

,

Jv2,i =
1

qac
i

[ (

qac
i − e2

)

F i JMPi(1−2×1−6)

qac
i

F i JMPi(3×1−6)

]

3×6

for i = 1, . . . , 6 (78)

A1.3 Matrices for the moving platform acceleration

relations

The matrices in Eqs. (38) and (43) are given as follows

Ni = (ωMP · bi ) I3×3, mi = − (ωMP · ωMP) bi

for i = 1, . . . , 6 (79)

and

N =

⎡

⎢

⎣

F1N1(3×1−3)

...
F6N6(3×1−3)

⎤

⎥

⎦

6×3

,

m =

⎧

⎪

⎨

⎪

⎩

F1m1(3) − qac
1 Ω1

...
F6m6(3) − qac

6 Ω6

⎫

⎪

⎬

⎪

⎭

6×1

(80)

where F i mi(k) is the kth element of vector F i mi and
F i Ni(k×1−3) is the kth row of F i Ni .
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A1.4 Matrices for the acceleration relations of the

robot’s legs

The matrices in Eqs. (48) and (50) are given as follows

�ωi = −2
q̇ac

i

qac
i

[

Jωi (1−2 × 1−6)

− tan (ψi ) Jωi (2 × 1−6)

]

3×6

,

Nωi =
1

qac
i

⎡

⎢

⎣

−F i Ni (2×1−3)
F i Ni (1 × 1−3)

− tan (ψi )
F i Ni (1 × 1−3)

⎤

⎥

⎦

3×3

mωi =
1

qac
i

⎧

⎪

⎨

⎪

⎩

−F i mi(2) + qac
i

F iωLeg,iy
F iωLeg,i z

F i mi(1) − qac
i

F iωLeg,i x
F iωLeg,i z

− tan (ψi )
F i mi(1) − qac

i

(

1 + 2 tan2 (ψi )
)

F iωLeg,i x
F iωLeg,iy

⎫

⎪

⎬

⎪

⎭

for i = 1, . . . , 6 (81)

and

�v1,i = −2e1

q̇ac
i

qac2

i

[

F i JMPi(1−2 × 1−6)

01×6

]

3×6

,

�v2,i = 2e2

q̇ac
i

qac2

i

[

F i JMPi(1−2 × 1−6)

01×6

]

3×6

Nv1,i =
e1

qac
i

[

F i Ni(1−2×1−3)

01×3

]

3×3

,

Nv2,i =
1

qac
i

[ (

qac
i − e2

)

F i Ni(1−2×1−3)

qac
i

F i Ni(3×1−3)

]

3×3

mv1,i =
e1

qac
i

{

F i mi(1−2)

qac
i Ωi

}

,

mv2,i =
1

qac
i

{ (

qac
i − e2

)

F i mi(1−2)

qac
i

(

F i mi(3) − e2Ωi

)

}

for i = 1, . . . , 6 (82)

A1.5 Matrices for equations of motion

The matrices in Eq. (58) are given as follows

MMP =

[

−mMPJ−1
vMP

−BIMPJ−1
ωMP

]

6×6

,

CMP =

[

−mMPJvCor,MP

−BIMPJωCor,MP − (ωMP × I3×3)
BIMPJ−1

ωMP

]

6×6

wgMP =

{

mMPg

03×1

}

, wext =

{

fext

next

}

(83)

where

J−1
vMP

= J−1
MP(1−3)×(1−6)

, J−1
ωMP

= J−1
MP(4−6)×(1−6)

JvCor,MP = JCor,MP(1−3)×(1−6),

JωCor,MP = JCor,MP(4−6)×(1−6) (84)

and matrices in Eq. (61) are given as follows

Mcyl,i =

[

−mcyl,i Jv1,i J
−1
MP

−F i Icyl,i Jωi J
−1
MP

]

6×6

,

wgcyl,i
=

{

mcyl,i
F i
B R g

03×1

}

Ccyl,i =

[

−mcyl,i JvCor,cyl,i

−F i Icyl,i JωCor,cyl,i
−
(

F i ωLeg,i × I3×3

)

F i Icyl,i Jωi J
−1
MP

]

6×6

for i = 1, . . . , 6 (85)

and

Mpis,i =

[

−mpis,i Jv2,i J
−1
MP

−F i Ipis,i Jωi J
−1
MP

]

6×6

,

wgpis,i
=

{

mpis,i
F i
B R g

03×1

}

Cpis,i =

[

−mpis,i JvCor,pis,i

−F i Ipis,i JωCor,pis,i
−
(

F i ωLeg,i × I3×3

)

F i Ipis,i Jωi J
−1
MP

]

6×6

for i = 1, . . . , 6 (86)

where

JvCor,cyl,i
= JCor,cyl,i(1−3)×(1−6),

JωCor,cyl,i
= JCor,cyl,i(4−6)×(1−6)

JvCor,pis,i
= JCor,pis,i(1−3)×(1−6),

JωCor,pis,i
= JCor,pis,i(4−6)×(1−6)

for i = 1, . . . , 6 (87)

Appendix 2

To obtain the overall direct acceleration relation,

Eq. (44), as a function of q̈ac and q̇ac, vectors ωMP
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and m must be obtained as functions of q̇ac. Using Eq.

(18), ωMP can be obtained as function of q̈ac as below

ωMP = J−1
MP(4−6)×6

q̇ac (88)

Therefore, using Eq. (88), we can write

ωMP · ωMP = ‖ωMP‖2 = ξ1×6q̇ac (89)

where

ξ1×6 =

3
∑

j=1

J−1
MP(4−6)×6 (row j)

(

q̇acT

J−T
MP(4−6)×6 (row j)

)

(90)

By substituting Eqs. (89) into (79), vectors mi and
F i mi can be rewritten in terms of q̇ac as follows

mi = − (ωMP · ωMP) bi = ηi3×6 q̇ac

F i mi = F iηi3×6 q̇ac for i = 1, . . . , 6 (91)

where ηi3×6 = −bi3×1ξ1×6 and F iηi3×6 = F i
B Rηi3×6 .

Also, value of Ωi , Eq. (41), can be derived as a function

of q̇ac using Eq. (33) as

Ωi = −
(

F iω2
Leg,i x + F iω2

Leg,iy

)

= ζi1×6 q̇ac

for i = 1, . . . , 6 (92)

where

ζi1×6
= −

2
∑

j=1

[

Jωi J−1
MP

]

(row j)

(

q̇acT
[

Jωi J−1
MP

]T

(row j)

)

for i = 1, . . . , 6 (93)

Consequently, substituting Eqs. (91) and (92) into Eq.

(80), vector m is rewritten as a function of q̇ac as follows

m = �6×6 q̇ac (94)

where vector m is shown in “Appendix 1” and matrix

�6×6 is obtained as below

�6×6 =

⎡

⎢

⎣

F1η1 3×(1−6)
− qac

1
ζ1

...
F6η6 3×(1−6)

− qac
6

ζ6

⎤

⎥

⎦

6×6

(95)

Therefore, using Eq. (44), we can write

JCor, MP

(

qac, q̇ac
)

= −J−1
MP

(

N J−1
MP(4−6)×6 + �6×6

)

(96)

where matrix N is shown in “Appendix 1.”

Appendix 3

A3.1 Obtaining the values of γ̈i and ψ̈i

As stated earlier, the cross product of both sides of Eq.

(39) with unit vector F i q̂ac
i leads to obtain values of γ̈i

and ψ̈i . This yields

F i q̂ac
i ×

(

F i ω̇Leg,i ×F i q̂ac
i

)

=
1

qac
i

(

F i q̂ac
i ×F i v̇Si

)

− 2
q̇ac

i

qac
i

(

F i q̂ac
i ×

(

F iωLeg,i ×F i q̂ac
i

))

− F i q̂ac
i ×

(

F iωLeg,i ×
(

F iωLeg,i ×F i q̂ac
i

))

for i = 1, . . . , 6 (97)

where F i q̂ac
i ×

(

F i ω̇Leg,i ×F i q̂ac
i

)

=
{

F i ω̇Leg,i x
F i ω̇Leg,iy 0

}T
. Using Eq. (28) yield

F i q̂ac
i ×

(

F iωLeg,i ×F i q̂ac
i

)

=

[

Jωi (1−2 × 1−6)

01×6

]

3×6

tMP for i = 1, . . . , 6

(98)

where Jωi(m−n×1−6) is a matrix composed of mth to

nth rows of matrix Jωi and

F i q̂ac
i ×

(

F iωLeg,i ×
(

F iωLeg,i ×F i q̂ac
i

))

=

⎧

⎨

⎩

−F iωLeg,iy
F iωLeg,i z

F iωLeg,i x
F iωLeg,i z

0

⎫

⎬

⎭

for i = 1, . . . , 6

(99)

Also, using Eq. (42) yield

F i q̂ac
i ×F i v̇Si =

⎡

⎣

−F i JMPi (2 × 1−6)
F i JMPi (1 × 1−6)

01×6

⎤

⎦ ṫMP

+

⎡

⎣

−F i Ni (2 × 1−3)
F i Ni (1 × 1−3)

01×3

⎤

⎦ωMP

+

⎧

⎨

⎩

−F i mi (2)
F i mi (1)

0

⎫

⎬

⎭

for i = 1, . . . , 6 (100)

Substituting Eqs. (47) and (98)–(100) into (97), as well

as substituting values of ψ̇i and γ̇i as functions of com-

ponents of vector F iωLeg,i as shown in Eq. (22), yield

{

ψ̈i

γ̈i

}

=
1

qac
i

([

−F i JMPi (2 × 1−6)
1

cos(ψi )
F i JMPi (1 × 1−6)

]

ṫMP
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+

[

−F i Ni (2 × 1−3)
1

cos(ψi )
F i Ni (1 × 1−3)

]

ωMP +

{

−F i mi (2)
1

cos(ψi )
F i mi (1)

})

− 2
q̇ac

i

qac
i

[

Jωi (1 × 1−6)
1

cos(ψi )
Jωi (2 × 1−6)

]

3×6

tMP

−

{

−F i ωLeg,iy
F i ωLeg,i z

2
cos(ψi )

F iωLeg,i x
F iωLeg,i z

}

for i = 1, . . . , 6

(101)

Therefore, by substituting Eqs. (101) into (47), vector
F i ω̇Leg,i , will be rewritten in terms of the end-effector

acceleration and velocity vectors in compact form as

shown in Eq. (48).

A3.2 Obtaining the matrices JCor,cyl,i and JCor,pis,i

To derive the overall acceleration vectors of each leg

in terms of q̈ac and q̇ac, the vectors of mωi , mv1,i and

mv2,i should be obtained as function of q̇ac. Similar to

Eq. (92), we can write

F i ωLeg,i m
F i

ωLeg,i n = ζmn
i 1×6

q̇ac for i = 1, . . . , 6

(102)

where

ζmn
i =

[

Jωi J−1
MP

]

(row m)
(

q̇acT
[

Jωi J−1
MP

]T

(row n)

)

for i = 1, . . . , 6

(103)

By utilizing Eqs. (91), (92) and (102), the vectors

mωi , mv1,i and mv2,i from Eqs. (81) and (82) can be

obtained as functions of q̇ac as follows

mωi = �ωi q̇
ac, mv1,i = �v1,i q̇

ac,

mv2, i = �v2,i q̇
ac for i = 1, . . . , 6 (104)

where

�ωi =
1

qac
i

⎡

⎢

⎣

−F iηi2×(1−6)
+ qac

i
ζ

yz
i 1×6

F iηi 1×(1−6)
− qac

i
ζxz

i 1×6

− tan (ψi )
F i ηi 1×(1−6)

− qac
i

(

1 + 2 tan2 (ψi )
)

ζ
xy
i 1×6

⎤

⎥

⎦

3×6

�v1,i =
e1

qac
i

[

F iηi (1−2 × 1−6)

qac
i ζ i1×6

]

3×6

,

�v2,i =
1

qac
i

[

(

qac
i − e2

)F i ηi (1−2 × 1−6)

qac
i

(

F iηi (3×1−6)
− e2ζi1×6

)

]

3×6

for i = 1, . . . , 6 (105)

Therefore, the overall direct link acceleration rela-

tions can be derived in terms of q̈ac and q̇ac as shown

Eq. (53) by substituting vectors ωMP and tMP from Eq.

(18) and vector ṫMP from Eq. (45) as well as vectors

mωi , mv1,i and mv2,i from Eq. (104) into Eqs. (48) and

(50). Consequently, matrices JCor,cyl,i and JCor,pis,i can

be obtained as follows

JCor,cyl,i

=

⎡

⎣

Jv1,i JCor,MP + �v1,i J
−1
MP + Nv1,i J

−1
MP(4−6)×6

+ �v1,i

Jωi JCor,MP + �ωi J
−1
MP + Nωi J

−1
MP(4−6)×6

+ �ωi

⎤

⎦

JCor,pis,i

=

⎡

⎣

Jv2,i JCor,MP + �v2,i J
−1
MP + Nv2,i J

−1
MP(4−6)×6

+ �v2,i

Jωi JCor,MP + �ωi J
−1
MP + Nωi J

−1
MP(4−6)×6

+ �ωi

⎤

⎦

for i = 1, . . . , 6 (106)

Appendix 4

The angular velocity of the MP can be derived as func-

tion of three angular velocities contain derivatives of

three Euler angles θ, ϕ and λ, as follows

ωMP = θ̇ı̂ + ϕ̇ĵ
′ + λ̇k̂′′

= θ̇ı̂ + ϕ̇R (x, θ) ĵ + λ̇R (x, θ) R (y,ϕ) k̂ (107)

where ı̂, ĵ and k̂ are unit vectors along x-, y- and z-axes

of the fixed coordinate frame {B} as well as θ̇, ϕ̇ and

λ̇ are the angular velocities about x-, y′- and z′′-axes,

respectively. Also, ĵ
′

and k̂′′ are the unit vectors along

rotated y′- and z′′-axes, respectively (for more details

see Fig. 12).

Therefore, Eqs. (107), (97) can be rewritten as

matrix form as follows
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θ

φ

λ

Fig. 12 Rotation from moving frame {T} to fixed coordinate

frame {B} using Euler angles θ , ϕ and λ

ωMP =

⎡

⎣

1 0 s ϕ

0 cθ −sθc ϕ

0 sθ cθc ϕ

⎤

⎦

⎧

⎨

⎩

θ̇
ϕ̇

λ̇

⎫

⎬

⎭

= U

⎧

⎨

⎩

θ̇
ϕ̇

λ̇

⎫

⎬

⎭

(108)

Furthermore, by time differentiating of Eqs. (107)

or (108), the angular acceleration of the MP can be

obtained as below

ω̇MP = θ̈ı̂ + ϕ̈ĵ
′ + ϕ̇

(

θ̇ı̂ × ĵ
′
)

+ λ̈k̂′′ + λ̇

{

(

θ̇ı̂ + ϕ̇ĵ
′
)

× k̂′′
}

= U

⎧

⎨

⎩

θ̈
ϕ̈

λ̈

⎫

⎬

⎭

+ U̇

⎧

⎨

⎩

θ̇
ϕ̇

λ̇

⎫

⎬

⎭

(109)

where

U̇ =

⎡

⎣

0 0 ϕ̇cϕ

0 −θ̇sθ −θ̇cθcϕ + ϕ̇sθsϕ

0 θ̇cθ −θ̇sθcϕ − ϕ̇cθsϕ

⎤

⎦ (110)
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