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Abstract. Recent theoretical results have shown that the generalization performance of thresholded convex
combinations of base classifiers is greatly improved if the underlying convex combination has largemarginson
the training data (i.e., correct examples are classified well away from the decision boundary). Neural network
algorithms and AdaBoost have been shown to implicitly maximize margins, thus providing some theoretical
justification for their remarkably good generalization performance. In this paper we are concerned with maximizing
the margin explicitly. In particular, we prove a theorem bounding the generalization performance of convex
combinations in terms of general cost functions of the margin, in contrast to previous results, which were stated
in terms of the particular cost function sgn(θ −margin). We then present a new algorithm, DOOM, for directly
optimizing a piecewise-linear family of cost functions satisfying the conditions of the theorem. Experiments on
several of the datasets in the UC Irvine database are presented in which AdaBoost was used to generate a set of
base classifiers and then DOOM was used to find the optimal convex combination of those classifiers. In all but
one case the convex combination generated by DOOM had lower test error than AdaBoost’s combination. In many
cases DOOM achieves these lower test errors by sacrificing training error, in the interests of reducing the new cost
function. In our experiments the margin plots suggest that the size of the minimum margin is not the critical factor
in determining generalization performance.
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1. Introduction

In pattern classification problems, learning algorithms aim to choose a classifier with small
error, where the error of a classifier is the probability of misclassifying a random example.
Many learning algorithms do this by optimizing some cost function that is defined in terms
of the training data. This cost function can be thought of as an error estimate. One example
of such a cost function is the training error, i.e. the proportion of training data that is
misclassified. When a classifier is chosen from some set to optimize the training error, it
gives a biased estimate of the error of the classifier. The magnitude of the bias depends on the
complexity of the set of classifiers, which can be quantified in terms of its VC-dimension,
and can be excessive.

Recent results have examined alternative cost functions that provide better error estimates
in some cases. For example, Bartlett (1998) gives bounds on error for sigmoid networks
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in terms of the proportion of training examples which are classified correctly with a large
margin. Themarginof a real-valued functionf : X → R on a training example(x, y) ∈
X × {−1, 1} is defined asy f (x), so that the sign off is correct whenever the margin
is positive, and the further the valuef (x) is from the threshold at zero, the larger the
magnitude of the margin. The size of the margin can be interpreted as an indication of the
confidence of the classification. For two-layer sigmoid networks, the bounds in (Bartlett,
1998) show that the error of a classifier is no more than the sample average of themargin
cost functionsgn(θ − y f (x)), which otherwise takes value 1 when the margin is no more
thanθ and 0 otherwise, plus a complexity penalty term that scales as‖w‖1/θ , where‖w‖1
is the sum of the magnitudes of the output weights. Neural network learning algorithms
typically minimize squared error on the training examples, which tends to increase the
margins. This may well explain why neural networks are much better generalizers than the
VC bounds would suggest.

More recently, Schapire et al. (1998) have shown a similar result for convex combinations
of classifiers, such as those produced by voting methods (Freund & Schapire, 1997; Breiman,
1997). In this theorem, co(H ) denotes the set of convex combinations of functions fromH .

Theorem 1 (Schapire et al.(1998)). Let P be a distribution over X× {−1, 1}, and let
S be a sample of m examples chosen independently at random according to P. Assume
that the base-hypothesis space H is finite, and letδ > 0. Then with probability at least
1− δ over the random choice of the training set S, every function f∈ co(H ) satisfies the
following bound for allθ > 0:

Pr
P

[y f (x) ≤ 0] ≤ Pr
S

[y f (x) ≤ θ ]

+O

(
1√
m

(
logm log|H |

θ2
+ log

(
1

δ

))1/2
)
. (1)

Hence, the error of a convex combination of classifiers is no more than the sample average
of the cost function sgn(θ − y f (x)) plus a complexity penalty term that scales as 1/θ .

One way to think of these results is as a technique for adjusting the effective complexity of
the function class by adjusting a parameter of the cost function. Large values ofθ correspond
to low complexity and small values to high complexity. If the learning algorithm were to
optimize the parametrized cost function PrS[y f (x) ≤ θ ] for large values ofθ , it would not
be able to make fine distinctions between different functions in the class, and so the effective
complexity of the class would be reduced. Note that any variation iny f (x)on a scale less than
θ is “collapsed” to zero by the cost function. If the algorithm is able to find a solution with
small cost at largeθ , then the second term in the error bounds (i.e., the regularization term
involving the complexity parameterθ and the size of the base hypothesis classH ) would be
correspondingly reduced and we would obtain a good bound on the generalization error off .

Even though neural network and boosting algorithms do notexplicitly minimize
PrS[y f (x) ≤ θ ], they have been shown toimplicitly minimize such cost functions of the
margin (Bartlett, 1998; Schapire et al., 1998), typically giving reasonable results for the
whole range of values of the complexity parameterθ . In this case we use different values
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of the complexity parameter in the cost functions only in explaining their generalization
performance.

Given that algorithms performing implicit margin optimization generalize so well, it is
natural to consider whether we can do better by explicitly optimizing some cost function
of the margin. This is the main subject of the present paper. In particular, we address
the questions: what are suitable cost functions for convex combinations of classifiers, and
how useful are they as error estimates? In the next section we give general conditions on
parametrized families of cost functions that ensure that they can be used to give error bounds
for convex combinations of classifiers. These cost functions are all defined as the sample
average of some function of the margin of an example. We prove that the error of a combined
classifier is no more than the sample average of the cost function plus a regularization term
involving the complexity parameter and the size of the base hypothesis class. The proof
uses similar ideas to previous proofs, especially (Schapire et al., 1998), but is simpler.

In the remainder of the paper, we investigate learning algorithms that choose the convex
coefficients of a combined classifier by minimizing these cost functions. To overcome some
severe computational difficulties, instead of the optimal family, we consider a related family
of piecewise linear cost functions. Section 3 describes a gradient descent algorithm for this
purpose. In Sections 4 and 5 we describe experiments with this algorithm on classification
problems from the UC Irvine database. Even when the base hypotheses are chosen by
the AdaBoost algorithm, and we only use the new cost functions to adjust the convex
coefficients, we obtained an improvement on the test error of AdaBoost in all but one of
the experiments. Margin distribution plots show that in many cases the algorithm achieves
these lower errors by sacrificing training error, in the interests of reducing the new cost
function. Section 6 presents some conclusions and ideas for further work.

2. Theory

In this section, we derive upper bounds on the misclassification probability of a thresholded
convex combination of classifiers, in terms of the sample average of certain functions of
the margin, which we callmargin cost functions. These are functions mapping from the
interval [−1, 1] to R+. Theorem 1 can be derived from this result by considering margin
cost functions that are decreasing step functions of the form sgn(θ − y f (x)) + cθ , for
some thresholdθ > 0 and constantcθ . In this caseθ defines the resolution at which we
examine the margins, and hence defines the effective complexity of the convex combination;
the penalty term in Theorem 1 arises because a convex combination looks more complex
on a small scale than on a larger scale. Similarly, the more general result derived in this
section involves a family of cost functions, indexed by an integer-valued parameterN,
which measures the resolution at which we examine the margins. We shall see that the
cost function sgn(θ − y f (x)) from the results in Section 1 for neural networks and boosted
classifiers is an example of a suitable parametrized family of cost functions, withN growing
roughly as 1/θ2. A large value ofN (i.e., high resolution and high effective complexity of
the convex combination) gives a margin cost function that is close to the threshold function
sgn(−y f (x)). Equivalently, the sample average of the cost function is a close approximation
to the training error. A small value ofN gives a larger margin cost function. There is a
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trade-off between the effective complexity and how much larger the margin cost function
is than the function sgn(−y f (x)). The following definition gives suitable conditions on
the margin cost functions that ensure this trade-off is not violated. The particular form of
this definition is not important; it arises from the proof technique that is used for the main
theorem. Later in this section, we discuss how to optimize over the families of margin cost
functions that satisfy this condition; in later sections we shall be concerned with only one
family. In particular, the functions9N are only used in the analysis in this section, and will
not concern us later in the paper.

Definition 2. A family {CN : N ∈ N} of margin cost functions isB-admissiblefor B ≥ 0
if for all N ∈ N there is an intervalY ⊂ R of length no more thanB and a function
9N : [−1, 1]→ Y that satisfies

sgn(−α) ≤ EZ∼QN,α (9N(Z)) ≤ CN(α)

for all α ∈ [−1, 1], whereEZ∼QN,α (·) denotes the expectation whenZ is chosen randomly
asZ = (1/N)

∑N
i=1 Zi with Zi ∈ {−1, 1} and Pr(Zi = 1) = (1+ α)/2.

As an example, consider the following modification of the margin cost functions that
appear in the results for neural networks and boosted classifiers. DefineCN(α) = sgn(θ −
α) + 1/N2 whereθ = c

√
log(N)/N with c a constant. It is straightforward to show that

this is aB-admissible family of margin cost functions, for someB. This is exhibited by
the functions9N(α) = sgn(θ/2− α)(1+ 1/(2N2)); the proof involves two applications
of Chernoff bounds. Notice that, for larger values ofN, the cost functionsCN are closer to
the threshold function sgn(−α).

The following theorem is the main result of this section. In this theorem, co(H ) is the set
of convex combinations of functions fromH .

Theorem 3. For any B-admissible family{CN : N ∈ N} of margin cost functions, any
finite hypothesis class H and any distribution P on X× {−1, 1}, with probability at least
1− δ over a random sample S of m labelled examples chosen according to P, every N and
every f inco(H ) satisfies

Pr[y f (x) ≤ 0] < ES[CN(y f (x))] + εN,

where

εN =
√

B2

2m

(
N ln |H | + ln

(
N(N + 1)

δ

))
.

A similar result applies for infinite classesH with finite VC dimension, using a similar
proof. (Ignoring constant factors, VCdim(H) logm replaces ln|H |.) We omit the details.
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Proof: Fix N and f ∈ co(H ), and suppose thatf =∑i αi hi for hi ∈ H . Define

coN(H ) =
{

1

N

N∑
j=1

h j : h j ∈ H

}
,

and notice that|coN(H )| ≤ |H|N. As in the proof of Theorem 1 in (Schapire et al., 1998),
we shall show that there is a functiong in coN(H ) that approximatesf , in the sense that
a large difference between the misclassification probability off and the sample average
of CN(y f (x)) leads to a large difference between the expectation and sample average of
9N(yg(x)). We prove the existence of the functiong using the probabilistic method. LetQ
be the distribution on coN(H ) corresponding to the average ofN independent draws from
{hi } according to the distribution{αi }, and letQN,α be the distribution of the average ofN
independent draws from{−1, 1} with Pr(Z = 1) = (1+ α)/2, as in Definition 2. Then for
any fixed pairx, y, the distribution ofyg(x) wheng is chosen according toQ is QN,y f (x).
Now, fix the function9N implied by theB-admissibility condition. By the definition of
B-admissibility,

Eg∼QEP[9N(yg(x))] = EPEg∼Q[9N(yg(x))]

= EPEZ∼QN,y f (x) [9N(Z)]

≥ EP sgn(−y f (x))

= Pr[y f (x) ≤ 0].

Similarly, ES[CN(y f (x))] ≥ Eg∼QES[9N(yg(x))]. Hence, if

Pr[y f (x) ≤ 0]− ES[CN(y f (x))] ≥ εN,

then,

Eg∼Q[EP[9N(yg(x))] − ES[9N(yg(x))]] ≥ εN .

It follows that

Pr[∃ f ∈ co(H ) : Pr[y f (x) ≤ 0] ≥ ES[CN(y f (x))] + εN ]

≤ Pr[∃g ∈ coN(H ) : EP[9N(yg(x))] ≥ ES[9N(yg(x))] + εN ]

≤ |H |N exp

(−2mε2
N

B2

)
,

where the last inequality follows from the union bound and Hoeffding’s inequality. Setting
this probability toδN = δ/(N(N + 1)), solving for εN , and summing over values ofN
completes the proof, since

∑
N∈N δN = δ.

Theorem 1 follows if we chooseCN(α) = sgn(θ − α) + 1/N2, with θ chosen roughly
as
√
(ln N)/N. We have seen that this family isB-admissible, with9N(α)= sgn(θ/2−
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Figure 1. (a) The functionsCN(α) = EZ∼QN,α [9N(Z)], for N = 20, 50 and 200, compared to the function
sgn(−α). Larger values ofN correspond to closer approximations to sgn(−α). (b) Piecewise linear upper bounds
on the functionsCN(α), and the function sgn(−α).

α)(1+ 1/(2N2)). ChoosingCN(α) = EZ∼QN,α [9N(Z)] gives an immediate improvement
on the result of Theorem 1. Figure 1(a) compares sgn(−α)with the cost functionsCN(α) =
EZ∼QN,α9N(Z), for N = 20, 50 and 200. As in the example above, for large values ofN the
functionCN(α) is close to sgn(−α). In this case, the sample average of the cost function is
close to the training error. AsN is decreased, the cost functionCN(α)moves away from the
step function, and when we use it to compare functions in co(H ), fine distinctions become
more blurred.

3. Algorithm

We now consider how to select convex coefficientsw1, . . . , wT for a sequence of{−1, 1}
classifiersh1, . . . , hT so that the combined classifierf (x) =∑T

t=1wt ht (x) has small error
(i.e., P[y f (x) ≤ 0] is small). We do not supply a procedure for also selecting the base
hypotheses. In all experiments we simply used the hypotheses provided by AdaBoost, since
the aim of the experiments was to investigate how useful are the error estimates provided
by the cost functions of the previous section.

3.1. Approximation to the cost function

If we take Theorem 3 at face value and ignore log terms, the best error bound is obtained if
the weightsw1, . . . , wT and the complexityN are chosen to minimize

1

m

m∑
i=1

CN(yi f (xi ))+ κ
√

N

m
, (2)

whereκ is a constant and{CN} is the family of cost functions plotted in figure 1(a). However,
there are two main difficulties with optimizing (2) directly. First, the cost-functionsCN are
rather flat near±1, which makes things difficult for local methods such as gradient descent.
Second, although Theorem 3 provides an expression for the constantκ, in practical problems
this will almost certainly be an overestimate and so our penalty for even moderately complex
models will be too great.
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To solve the first problem we boundedCN above by a monotone decreasing function and
used this upper bound as our margin cost function. We considered the use of a sigmoid as
a bounding cost function, but the existence of local minima at±∞ caused difficulties for
gradient descent approaches. Instead we adopted a piecewise linear family of cost functions
of the form

Cθ (α) =


(1.2− γ )− γα for −1≤ α ≤ 0

(1.2− γ )− (1.2− 2γ )α/θ for 0< α ≤ θ
γ /(1− θ)− γα/(1− θ) for θ < α ≤ 1

for θ ∈ (0, 1) (as shown in figure 1(b)). Note thatθ plays the role of a complexity parameter,
only in this case smaller values ofθ correspond to higher complexity classes. For all
experiments,γ was fixed at 0.1.

To solve the second problem, instead of optimizing the average cost of the margins plus
a penalty term over all values of the parameterθ , we estimated the optimal value ofθ
using a cross-validation set. That is, for fixed values ofθ in a discrete but fairly dense set
we selected weights optimizing the average cost1

m

∑m
i=1 Cθ (yi f (xi )) and then chose the

solution with smallest error on an independent cross-validation set.

3.2. Optimizing Cθ

Unfortunately, even with the restriction to piecewise linear cost functions, the problem of
optimizing 1

m

∑m
i=1 Cθ (yi f (xi )) is still NP-hard. Fortunately, the nature of this cost function

makes it possible to find successful heuristics, which is why we chose it.
The algorithm we have devised to optimize theCθ family of cost functions is called

Direct Optimization Of Margins (DOOM). DOOM is basically a form of gradient descent,
with two complications: we have to take account of the fact that our cost function is not
differentiable at 0 andθ , and we have to ensure that the weight vector lies on the unit ball
in l1. Both these problems are addressed in DOOM, the pseudo-code of which is shown in
figure 2.

In order to avoid problems with local minima we actually allow the weight vector to lie
within the l1-ball throughout optimization rather than on thel1-ball. Since an increase in
thel1-norm of the weight vector generally corresponds to a decrease in the value of the cost
function, the weight vector tends to approach the surface of thel1-ball as the optimization
proceeds. If the weight vector reaches the surface of thel1-ball and the update direction
points out of thel1-ball, it is simply projected back to the surface of thel1-ball.

To understand the algorithm’s operation, firstly observe that the gradient of1
m

∑m
i=1

Cθ (yi f (xi )) is a constant function of the weightsw = (w1, . . . , wT ) provided no example
(xi , yi ) “crosses” one of the discontinuities at 0 orθ (i.e., provided the marginyi f (xi ) does
not cross 0 orθ . Examples cannot cross the discontinuities at±1 because the weight vector
is constrained to lie within thel1 ball). Hence, the central operation of DOOM is to step
in the negative gradient direction until an example’s margin hits one of the discontinuities,
projecting where necessary to ensure the weight vector lies within thel1 ball. At this
point the gradient vector becomes multi-valued (generally two-valued but if more than
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Figure 2. Pseudocode for the DOOM (Direct Optimization Of Margins) algorithm.



EXPLICIT OPTIMIZATION OF MARGINS 251

one point hits a discontinuity simultaneously then 2N-valued whereN is the number of
points). Each of the possible gradient directions is then tested by taking a small step in
that direction. A random subset of the gradient directions is chosen if there are too many
gradient directions. If none of the directions lead to a decrease in the cost, the examples
whose margins lie on discontinuities of the cost function are added to a constraint setE. In
subsequent iterations the same stepping procedure above is followed except that the direction
step is modified to ensure that the examples inE do not move (i.e., they remain on the
discontinuity points ofCθ ). This is achieved for a constraint setE = {(x1, y1), . . . , (xk, yk)}
by projecting any update direction onto the orthogonal subspace of the space spanned by the
vectors{[h1(x1), . . . , hT (x1)] , . . . , [h1(xk), . . . , hT (xk)]} whereh1, . . . , hT are the base
hypotheses. If no progress is made in any iteration, the constraint setE is reset to zero. If
still no progress is made the procedure terminates.

For each of the experiments reported in the next section, to increase the chance of finding
the global minimum, the DOOM algorithm was called with 1000 random initial weight
vectors and the solution with minimum cost was selected.

4. Experiments

For the experiments presented in this paper we used a selection of two-class data sets
from the UC Irvine database (Blake, Keogh, & Merz, 1998). Each data set was randomly
separated into train, test and validation sets, with the test and validation sets being equal in
size. This process was repeated 10 times and the results averaged. The data sets are listed in
Table 1. Each experiment consisted of the following steps. First, AdaBoost was run on the
training data to produce a sequence of base classifiers and their corresponding weights. In
all of the experiments the base classifiers were axis-orthogonal hyperplanes (also known as
decision stumps). This choice ensured that the complexity of the class of base classifiers was
constant. Boosting was halted when adding a new classifier failed to decrease the error on
the validation set. DOOM was then run on the classifiers produced by AdaBoost for a large

Table 1. The UCI datasets used in the experiments.

Data Set Training Test Attributes

Cleveland Heart Disease 103 100 14

Credit Application 100 295 15

German 300 350 24

Glass 70 72 10

Ionosphere 101 125 34

King Rook vs. King Pawn 100 1000 36

Pima Indians Diabetes 200 284 8

Sonar 58 75 60

Tic-Tac-Toe 300 329 9

Wisconsin Breast Cancer 199 250 10
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range ofθ values and 1000 random initial weight vectors for each value ofθ . The weight
vector (andθ value) with minimum misclassification on the validation set was chosen as
the final solution.

In some cases the training sets were reduced in size to make overfitting more likely (so that
complexity regularization with DOOM could have an effect). In three of the datasets (Credit
Application, Wisconsin Breast Cancer and Pima Indians Diabetes), AdaBoost gained no
advantage from using more than a single classifier. In these datasets, the number of classifiers
was chosen so that the validation error was reasonably stable.

5. Results

Figure 3 shows cumulative training margin distribution graphs for four of the datasets for
both AdaBoost and DOOM (with optimalθ chosen by cross-validation). For a given margin
the value on the curve corresponds to the proportion of training examples with margin less
than or equal to this value. The test errors for both algorithms are also shown for comparison,
as short horizontal lines on the vertical axis.

There are several things worth noting about the margin distributions generated using
DOOM as compared to those generated using AdaBoost. First, they show that the value of
the minimum training margin has no real impact on generalization performance. The idea

Figure 3. Cumulative training margin distributions for four of the tested data sets. The dark curve corresponds
to weights chosen by AdaBoost, while the light curve corresponds to weights chosen by DOOM with optimalθ

selected by cross-validation. The test errors for AdaBoost and DOOM are marked on the vertical axis at margin 0.
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of maximizing the minimum margin has been examined by Breiman (1997) and Grove &
Schuurmans (1998). Breiman presented several voting methods which provably maximize
the minimum margin, while Grove and Schuurmans maximized the minimum margin explic-
itly by linear programming. In both cases a maximization of minimum margin at the expense
of all other margins generally gave worse generalization performance than AdaBoost. As
can be seen in figure 3, results for the Credit Application and Sonar data sets illustrates that
the generalization performance of the combined classifier produced by DOOM can be as
good or better than that of the classifier produced by AdaBoost, despite having dramati-
cally worse minimum training margin. Conversely, figure 3 (Ionosphere data set) shows that
an improved minimum margin can result in improved generalization performance. These
results clearly demonstrate that the minimum margin is not the important quantity.

Second, the margin distributions show that there is a balance to be found between training
error and complexity (as measured byθ ). DOOM is willing to sacrifice training error in
order to reduce complexity and thereby obtain a better margin distribution. For instance,
in figure 3 (Sonar data set), DOOM’s training error is over 20% while AdaBoost’s is 0%.
Despite sacrificing this training error, DOOM’s test error is 5% less than that of AdaBoost’s.
The reason for this success can be seen in figure 4, which illustrates the changes in the cost

Figure 4. Sonar data set. (a) Plot of cost (1
m

∑m
i=1 Cθ (yi f (xi ))) againstθ for both AdaBoost and DOOM.

(b) Plot of training and test error againstθ for both AdaBoost and DOOM.

Figure 5. King Rook vs. King Pawn data set. (a) Plot of cost (1
m

∑m
i=1 Cθ (yi f (xi ))) againstθ for both AdaBoost

and DOOM. (b) Plot of training and test error againstθ for both AdaBoost and DOOM.
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Figure 6. Relative improvement of DOOM over AdaBoost for all examined datasets. The vertical axis represents
the percentage improvement in test error which DOOM exhibited over AdaBoost.

function, training error, and test error as a function ofθ . The optimal complexity for this
data set is low (as indicated by a large optimalθ ). For this data set, a reduction in complexity
is more important to generalization error than a reduction in training error. The relationship
between the cost function, training error, and test error for the King Rook vs. King Pawn
data set is shown in figure 5.

A comparison between the test errors generated by AdaBoost and DOOM is shown in
figure 6. In only one data set did DOOM produce a classifier which performed worse than
AdaBoost in terms of test error; for most data sets DOOM’s test error was a significant
improvement over AdaBoost’s.

6. Conclusions

In this paper we have addressed the question: what are suitable cost functions for convex
combinations of base hypotheses? For general families of cost functions that are functions
of themarginof a sample, we proved (Theorem 3) that the error of a convex combination is
no more than the sample average of the cost function plus a regularization term involving
the complexity of the cost function and the size of the base hypothesis class.

We constructed a piecewise linear family of cost functions satisfying the conditions of
Theorem 3 and presented a heuristic algorithm (DOOM) for optimizing the sample average
of the cost.

We ran experiments on several of the datasets in the UC Irvine database, in which Ad-
aBoost was used to generate a set of base classifiers and then DOOM was used to find the
optimal convex combination of those classifiers. In all but one case the convex combination
generated by DOOM had lower test error than AdaBoost’s combination. Margin distribu-
tion plots show that in many cases DOOM achieves these lower test errors by sacrificing
training error, in the interests of reducing the new cost function. The margin plots also show
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that the size of the minimum margin is not a critical factor in determining generalization
performance.

It should be noted that all of the experiments presented used decision stumps as base
classifiers. Recent results (Breiman, 1997) have shown that using more complex base clas-
sifiers (such as decision trees) can significantly affect the relative performance of voting
methods. Understanding the possible interactions between a voting method and its class of
base classifiers is an important open problem.

One obvious direction for further work is the design of algorithms that choose the base
hypotheses as well as the convex coefficients (in general AdaBoost’s base hypotheses will be
suboptimal insofar as minimizing our cost function is concerned). The base hypotheses and
the convex coefficients could be optimized either sequentially, as in AdaBoost, or globally.
We are currently investigating algorithms that use a generalization of the cost function
formulation of AdaBoost described in (Breiman, 1997; Frean & Downs, 1998). For more
details see Mason et al. (to appear).
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