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Abstract

The generalized Born (GB) model is one of the fastest implicit solvent models and it has become 
widely adopted for Molecular Dynamics (MD) simulations. This speed comes with tradeoffs, and 
many reports in the literature have pointed out weaknesses with GB models. Because the quality 
of a GB model is heavily affected by empirical parameters used in calculating solvation energy, in 
this work we have refit these parameters for GB-Neck, a recently developed GB model, in order to 
improve the accuracy of both the solvation energy and effective radii calculations. The data sets 
used for fitting are significantly larger than those used in the past. Comparing to other pairwise 
GB models like GB-OBC and the original GB-Neck, the new GB model (GB-Neck2) has better 
agreement to Poisson-Boltzmann (PB) in terms of reproducing solvation energies for a variety of 
systems ranging from peptides to proteins. Secondary structure preferences are also in much better 
agreement with those obtained from explicit solvent MD simulations. We also obtain near-
quantitative reproduction of experimental structure and thermal stability profiles for several model 
peptides with varying secondary structure motifs. Extension to non-protein systems will be 
explored in the future.
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Introduction

In order to accurately describe the properties of biomolecules in aqueous environment, 
solvent effects must be included in the Molecular Dynamics (MD) simulation. Solvation can 
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be explicitly represented as atomistic solvent molecules or it can be implicitly represented 
by a model that calculates solvation effects using a continuum representation. Although 
implicit solvent is less realistic than explicit solvent model, it is still widely used1 due to low 
computational cost, and many models directly provide solvation free energies as compared 
to the potential energies provided by explicit models. This has led to wide use in the drug 
discovery field of implicit solvent models in post-processing trajectories originally 
performed in explicit solvent.2 In addition, the low viscosity in implicit solvent simulations 
can accelerate the rate of conformational sampling (such as protein folding) compared to 
explicit solvent.3

Solvation free energy can be decomposed into two terms for the polar and non-polar 
contributions. The present work focuses solely on the polar contribution. The non-polar term 
is often approximated by the equation ΔGnp=γA where γ is the surface tension coefficient 
and A is the total solvent accessible area. The nonpolar term is frequently omitted in 
simulations due to the cost of calculating the surface area and its derivatives, and the fact 
that the magnitude of this term is typically much smaller than the polar contribution. 
Moreover, a simple solvent accessible surface area (SASA) based approximation that is 
commonly used to calculate the nonpolar term has several limitations.4 Chen et al.4a have 
shown that this non-polar model tended to overestimate nonpolar interactions that shifted 
ensembles to non-native states. Despite these limitations, SASA-based approaches are 
widely used and available in the Amber program5, thus we evaluate the impact of their 
inclusion during simulations using our improved GB model.

Among all implicit solvent models, the Poisson- Boltzmann (PB) method6 is considered the 
most accurate model for calculating polar solvation energy in MD. However, the 
computational cost of solving the PB equation and its derivatives, particularly on massively 
parallel computers, is high enough that it is not widely used in MD simulations.7 Instead, 
most MD simulations use the GB equation (eq. 1), as was first introduced by Still et al.8 and 
subsequently modified by other groups.

(1)

Here ; qi, qj are the partial charges of atom i and j; rij is the 
distance between atom i and j; εin and εout are interior and exterior dielectric constants 
respectively. Ri and Rj are the effective Born radii. It has been shown that accurate 
calculation of effective radii (or using ‘perfect’ radii calculated from PB method) is a key to 
close agreement between GB and PB solvation energies.9 The effective radius is normally 
calculated by eq. 2

(2)

where Ii is Coulomb integral derived from Coulomb Field Approximation (CFA)
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(3)

ρi is the intrinsic radius of the atom i and integral Ii is calculated over the volume Ω outside 
atom i but inside the molecule. Ii can be calculated numerically8 or analytically by using the 
pairwise descreening approximation (PDA) method introduced by Hawkins et al. (the GB-
HCT model).10 Although GB-HCT is less computationally expensive than numerical 
methods,7 it tends to underestimate the effective radii of buried atoms.11 A modification 
based on GB-HCT was proposed by Onufriev et al.12 (GB-OBC), in which effective radii 
for buried atoms are scaled up by an adjustable empirical parameter (α, β, γ) set (eq. 4a).

(4a)

(4b)

Importantly, these analytical models (GB-HCT and GB-OBC) use the van der Waals 
(VDW) surface to define the boundary between solvent and solute, instead of using more 
realistic but much more computationally demanding molecular surface (MS). Mongan et 
al.13 introduced a “neck” correction to make the space defined by the VDW boundary closer 
to that defined by MS boundary, particularly at small interatomic distances where finite size 
explicit water is typically excluded (GB-Neck).

(5)

where Ivdw is the integral Ii in eq. 3, using VDW volume for volume Ω. IMS is then applied 
as I in eq. 4b.

All 3 of these PDA-based GB models have some advantages such as low computational 
cost,7, 13 and in particular efficient parallel scaling compared to explicit solvent models.14 

These GB models have also been ported to GPU-based MD codes which accelerate MD up 
to 700 times faster than simulation on conventional CPUs.15 The advantage of speed, 
however, comes with less accuracy in these GB models. GB-HCT and GB-OBC have 
apparent limitations such as high alpha helical content16 and overly strong ion interactions 
compared to TIP3P explicit solvent simulations.16b, 17 Although GB-Neck introduced 
corrections to GB-OBC, this is not reflected in improved solvation energy accuracy.13 

Additionally, Dill et al.16e and Roe et al.16a have shown that GB-Neck tends to destabilize 
native peptide/protein structures, likely due to imbalance between intramolecular hydrogen 
bonds and interaction with implicit solvent.

Our goals for improving the GB model are to give more accurate solvation energy and 
effective radii calculation compared to PB method; to reduce secondary structure and salt 
bridge bias, and to better reproduce experimental structures and thermal stability for small 
proteins and peptides. We hypothesize that at least some of these weaknesses could be 
improved by more rigorous fitting of the many empirical parameters in these models. Since 
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GB-Neck is more physically realistic than GB-HCT and GB-OBC, we decided to use it as 
the base model for our parameter refitting. The relatively poor performance of GB-HCT in 
many studies led us to omit it from the present comparisons.

In the original GB-Neck work,13 8 parameters were optimized by fitting GB solvation 
energies to PB solvation energies for a set of proteins and peptides. The GB-Neck 
parameters include scaling factors Sx (x=H, C, N, O) that were initially introduced in GB-
HCT by Hawkins et al.10 for analytically calculating the I integral in eq. 3, the {α, β, γ} set 
used in eq. 4a that was initially introduced in GB-OBC by Onufriev et al,12 and the neck 
scale factor Sneck introduced by Mongan et al.13 These describe properties related to gaps 
between atom pairs, and are thus likely dependent on size of the atoms involved. We 
therefore expanded the number of parameters from 8 to 18 (see method section) by making 
{α, β, γ} atomic number dependent and making offset (eq. 4b) a free parameter as well. We 
recognized that the significant increase in the number of free parameters in the model 
necessitated use of much larger training and test sets than used previously, and thus much of 
the present work focuses on development of a large and broad data set for training and 
testing.

In our training objective function, not only absolute solvation energy but also effective radii 
and relative solvation energy of peptide (or protein) conformations were included. PB 
solvation energies and ‘perfect’ radii of structures in the training set were used as 
benchmarks for fitting. The new GB-Neck parameter set (GB-Neck2) shows significant 
improvement in accuracy of calculating solvation energy and effective radii compared to 
GB-OBC and original GB-Neck model for this training set. Importantly, the improvement is 
clearly transferable to test sets having thousands of structures for various proteins and 
peptides, including molecules not used in training.

The final goal of a GB model is to approximate the results (structure, stability, salt bridge 
profile etc.) obtained from more expensive explicit solvent simulations; thus we performed 
simulations of several peptides in GB-Neck2 as well as in explicit water to test if the 
improved agreement of GB-Neck2 to PB results (solvation energy and effective radii) led to 
improved agreement of structural ensembles compared to those obtained from explicit 
solvent simulation. Overall, the GB-Neck2 model does a much better job in reproducing 
ensemble data from explicit water (such as alpha-helical stability) as compared to GB-OBC 
and comparable to the original GB-Neck, with the exception of propensity to form ion pairs 
(salt bridges). We found that although salt bridges were specifically included in our training 
by fitting to PB solvation energies, they tended to remain too strong in GB-Neck2 when 
comparing to TIP3P simulation. A possible explanation is that PB also has too-strong ion 
interactions compared to TIP3P, perhaps arising from our use of the same set of intrinsic 
Born radii in our GB and PB calculations for consistency.18 Salt bridge strength was thus 
adjusted in the same strategy as Geney et al.17a and Shang et at.18 by empirically adjusting 
the Born radius of side-chain HN+ of Arg to reproduce salt bridge PMF of TIP3P simulation. 
Unlike those earlier studies, we also adjusted the Born radius of side-chain Oε of Glu (and 
Oδ of Asp) to match PMF profiles of salt bridges and hydrogen bonds in TIP3P simulations. 
This radius modification was sufficient to reproduce the PMF of Lys salt bridge formation 
and we found no need to modify the Born radius of HN+ in Lys.
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We also tested the ability of GB-Neck2 in combination with widely used ff99SB force 
field19 in reproducing experimental structure and thermal stability of different peptides from 
experiment by simulating a hairpin (HP5F)20 system and a mini-protein with α, 310 and 
polyproline helices and a small hydrophobic core (trp-cage variant tc5b).21 The effect of 
including a nonpolar solvation energy term in GB simulations was also tested. Although the 
agreement of melting temperature between simulation and experiment depends not only on 
the GB model but also on the protein force field, this testing is still valuable to confirm the 
robustness of the combination of specific GB model and force field. Dill et al.16e evaluated 
various combinations of force fields and GB models for peptide and protein simulations and 
found that GB-OBC12 with the ff96 force field was the best combination for this application. 
However, this GB model and this force field both have well-known flaws, and thus it is 
likely that the combination benefits from significant fortuitous error cancelation. In the 
present case, we use the ff99SB protein force field (FF),19 which has been shown by many 
studies to provide excellent results with explicit water.22 We find that this single combined 
protein FF + solvent model is able to quantitatively reproduce the experimental thermal 
stability behavior of two tested peptide models with different secondary structures. Taken 
together, our results lead us to recommend this combination for simulations of peptides and 
proteins.

Materials and Methods

Training set for parameter fitting

We first designed test sets of between ~3,500 - 103,000 structures of each protein or peptide, 
and then took a subset of the structures for the training set. The subset was selected in a way 
that gives both training and test set similar absolute solvation energy root-mean-square-
deviation (abs_e) between GB-OBC and PB solvation energies. For example, the Ala10 test 
set had 50000 structures with abs_e of 1.12 kcal/mol between GB-OBC and PB. The Ala10 
training set had only 413 structures with abs_e of 1.14 kcal/mol. This reassures us that a 
small number of structures could represent a desired quality metric (abs_e in this case) of a 
larger number of structures. The assumption is tested by evaluating the model using the full 
test set, which was impractical during training due to the large number of parameter 
variations that were tested.

An overall summary of the training sets and their contributions to the training objective 
function is given in Table 1. These sets are discussed in more detail below.

Roe et al.16a used REMD simulations of Ala10 peptide to quantify the helical bias in GB-
OBC and GB-HCT models. We used this system in our test and training sets; the training set 
Ala10_set_1 has 480 structures extracted from TI and REMD trajectories from Roe et al.16a 

We first introduced 50 alpha and 50 hairpin structures from TI trajectories and then added 
10 structures from each of the 20 most populated clusters sampled at 300K in 50 ns REMD 
using TIP3P23 explicit water, as well as single representative structures for the next 180 
clusters.

Okur et al.17b used the peptide sequence RAAE (Arg-Ala-Ala-Glu) to evaluate salt bridges 
in the GB-OBC model. Our RAAE set has 200 structures taken from the 300K trajectory of 
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TIP3P REMD simulation from Okur et al.17b We chose structures uniformly sampling the 
salt bridge distance (Cζ of Arg and Cδ of Glu) ranging from 3.6 Å to 14.5 Å with nearly 
equal interval of 0.05 Å.

We also added structures for two peptides having different secondary structures: β-hairpin 
(trpzip2, PDB ID: 1LE1)24 and α-helix (3Ai3)25; these also have more complicated side 
chains than Ala10 and RAAE. The trpzip2 set had 413 structures from Okur et al.26 Those 
structure ensembles were chosen from cluster analysis of MD (or REMD) simulation 
trajectories, giving various types of backbone structures from helix, hairpin, PPII, and coil. 
The backbone RMSD for those structures to native trpzip2 is presented in figure S1. The 
3Ai3 set had 200 structures of the peptide sequence Ac-YGG-(KAAAA)3-K-NH2, one of 
the helical peptides studied by simulation and NMR in Song et al.25 We chose structures 
first by clustering the first 50ns of 300K trajectory data from GB-HCT REMD simulation of 
3Ai325 and then picking 200 structures from the 20 most populated clusters (10 structures / 
cluster).

Because Ala10, RAAE, trpzip3, 3Ai3 were small peptides, we also added HP36 mini-
protein27 structures to train for structures having a hydrophobic core. These were extracted 
from the first 75 frames of 300K MD simulation in TIP3P from Wickstrom et al.28 (the 
backbone RMSD to X-ray structure (PBD ID: 1YRF29) is given in figure S2).

Structure sets described above were used for training solvation free energy as compared to 
PB data. We also included two structure sets, Ala10_set_2 and HP1113, to train for effective 
Born radii. Ala10_set_2 has 200 Ala10 structures (50 structures for each alpha helix, 
hairpin, left handed helix (“left”), PPII) which were extracted from trajectories of TI 
calculations from Roe et al.16a We added additional large protein structures to evaluate the 
effective radii underestimation of deeply buried atoms.11 The HP1113 set has 6 large 
proteins having various secondary structure types, with PDB ID codes 1TSU,30 1BDD,31 

1UBQ,32 1AEL,33 1FKG,34 3GB135 (details in table S2).

Test sets for evaluating the new model

We designed two test set types. Test set type I (Ala10, trpzip2, 3Ai3, RAAE, HP36 sets) had 
proteins or peptides for which a smaller set of structures were included in the training stage. 
This tests the extension of the model to a broader set of structures (thousands rather than 
hundreds). Test set type II had proteins or peptides for which structures were not included in 
solvation energy training (tc5b, DPDP, HIV1-PR, Lysozyme), testing the transferability to 
entirely different molecular systems. The large numbers of structures were chosen for testing 
to ensure local variation in structure as well as alternative folds. Summary for the test sets is 
given in table S3

Test set type I—Ala10 set has 50000 Ala10 structures taken from 50 ns of 300K 
trajectory of REMD simulation in TIP3P.16a Trpzip2 24 set has ~80000 structures having 
RMSD to native structure ranging from 0.2 to 7.6 Å (figure S3) which were taken from 
TIP3P and GB simulations.26 The 3Ai3 set had 49000 structures taken from 49ns of 300K 
trajectory of GB-HCT REMD simulation.25 The RAAE set had 50000 structures from 50ns 
of 300K trajectories of TIP3P REMD simulation of RAAE peptide.17b The HP3627 set had 
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3500 structures extracted from the first 35ns (skipping every 10 frames) of TIP3P MD 
simulation at 300K from Wickstrom et al.28 (figure S4).

Test set type II—Test set type II has 4 structure sets representing 4 different protein types, 
which are a helical mini-protein (trp-cage tc5b variant),21 a small peptide having 3-stranded 
β-sheet (DPDP),36 a larger, mainly helical protein (lysozyme)37 and a larger protein having 
mainly β-sheet (HIV-1 protease).30 The tc5b set had 103000 structures having backbone 
RMSD from 0.3 to 8.0 Å to native TC5b (figure S5), which were extracted from TIP3P and 
GB simulation ensembles.17a The DPDP set had 50000 structures from 150 ns GB-HCT 
REMD simulation trajectory at 300K.38 HIV-1 PR had 1427 structures having closed, semi-
open and wide open conformations of HIV-1 PR protein which were extracted from 600 ns 
trajectory at 300K of 1TSU 30 in TIP3P (Cα RMSD to closed X-ray structure is given in 
figure S6) 39. The lysozyme set had 1000 structures taken from first 30 ns of 300K trajectory 
of TIP3P MD simulation (backbone RMSD to experimental native structure (PBD ID: 
1IEE37) is given in figure S7).19

PB calculations and intrinsic radii—All PB calculations were performed using Delphi 
v2 and v440 with grid spacing of 0.25 Å and solvent probe of 1.4 Å (different Delphi 
versions were used due to the their availability in computer clusters). We selected Delphi 
based on comparison of performance of different PB solvers for systems of the type studied 
in the present work. 7 Interior and exterior dielectric constants of 1.0 and 78.5 respectively 
were used for solvation energy calculation. Calculation of ‘perfect’ radii was done as 
described by Onufriev et al.9, using the same PB parameters as for our PB solvation energy 
calculations, with the exception that an exterior dielectric constant of 1000 was used, as 
suggested by Sigalov et al.41 The original GB-Neck suggested use of the bondi radii set,42 

however it was shown by Dill et al.16e that this combination tended to destabilize protein 
native structure. Onufriev et al.12 showed that GB-OBC worked quite well with mbondi2 
radii, consistent with our previous observations with this combination.18, 43 We reasoned 
that GB-Neck was an improvement of GB-OBC model and thus, mbondi2, instead of bondi, 
should be a good starting radii set. For consistency, the same radii were used in GB and PB. 
We therefore used mbondi2 intrinsic Born radii set12 and charge set from ff99SB19 in all PB 
and GB solvation energy calculations. Radii adjustment will be discussed below.

Fitting parameters and procedure

In the original GB-Neck model,13 Mongan et al. fit only 8 parameters: Sx (x=H, C, N, O), 
{α, β, γ} and Sneck. We refit 18 parameters by allowing Sx, α, β, γ to vary for H, C, N, and 
O. We tried several parameter combinations for Sulfur (S) atom and found that S parameters 
have insignificant effect on correlation between GB and PB solvation energies due to a 
small number of S atoms in protein molecule. Thus, the S parameters were arbitrarily chosen 
to be the same as the ones for Oxygen (O). Sx is a scaling parameter originally introduced by 
Hawkins et al. in the pairwise GB-HCT model10 to avoid double counting of overlapping 
VDW volume. Sx was conventionally considered to range from 0 to 1, but the search space 
was extended greater than 1 in the original GB-Neck paper.13 In our optimization, we also 
extended the range of Sx to [0.0, 2.0]. {α, β, γ}x (x=H, C, N, O) are adjustable parameters 
used in eq. 4a. Onufriev et al.12 and Mongan et al.13 used one set of {α, β, γ} for all atoms, 
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but we allowed different elements to adopt their own parameter to allow for atomic-size 
dependence of the interstitial gaps for which these parameters empirically correct. We chose 
[0.0-10.0] as potential range for these parameters. We also attempted fitting with one 
parameter set for all elements like Onufriev et al.12 or Mongan et al.13 did, but found no 
significant improvement in solvation energy calculation compared to GB-OBC and GB-
Neck (data not shown). The offset parameter (eq. 4b) was originally used by Still et al.8 to 
decrease atomic radii to maximize the agreement between GB and experimental solvation 
energies for a set of small molecules, and it has been used in several GB models such as GB-
HCT,10 GB-OBC12 and GB-Neck13 as a conventional constant (offset=0.09). In our study, 
we treated offset as an adjustable parameter with possible range of [-0.2, 0.2]. Sneck is the 
scaling factor introduced by Mongan et al.13 to avoid the overlap of neck regions in nearby 
pairs, and thus reducing the over calculating of neck integral (eq. 5). We kept the original 
range of [0.0, 1.0] for Sneck. In summary, the search range of each parameter set is Sx ∈ [0.0, 
2.0], {αx, βx, γx} ∈ [0.0, 10.0] (x= H, C, N, O), offset ∈ [-0.2, 0.2] and Sneck ∈ [0.0, 1.0].

GB MD simulation biases have been shown to correlate with differences between GB and 
PB solvation energies.16a In this work, we define “absolute solvation energy root-mean-
square-deviation” (abs_e) as RMSD of solvation energies for a set of conformations, where 
the error is the difference between GB and PB energies. “Relative solvation energy root-
mean-square-deviation” (rel_e) was calculated as the RMSD for GB and PB energy 
differences for all pairs of structures. “Effective radii root-mean-square-deviation” 
(eff_rad_rmsd) is defined as RMSD of GB effective Born radii from those calculated using 
PB (‘perfect’ radii).9 Typically, only abs_e is considered when optimizing GB models.12-13 

However, we consider rel_e and eff_rad_rmsd as important additional targets. The rel_e is 
included since it is the relative energy of alternate conformations that determines 
thermodynamic populations, such as those sampled in MD simulations. The eff_rad_rmsd is 
included since Onufriev et al.9 showed that the best agreement between GB and PB 
solvation energy is obtained when using ‘perfect’ radii from PB calculation in GB, later 
confirmed by Honig et al.16d We set our objective function for training as the sum of 
weighted abs_e, rel_e and eff_rad_rmsd. The objective function is shown in eq. 6, where wi 

is weighting factor and xi is contribution of each component i (each set in Table 1).

(6)

We weighted abs_e, rel_e, and eff_rad_rmsd so that they contributed roughly equally to the 
objective function. We first minimized the objective function with wi = 1 for all 
contributions and calculated how far each contribution value could be decreased from those 
calculated by GB-OBC model. The abs_e values for trpzip2, 3Ai3, HP36 decreased a few 
kcal/mol but the abs_e of Ala10_set_1 and RAAE set decreased only ~0.5 kcal/mol. Thus, 
we used wi = 1 for abs_e of trpzip2, 3Ai3 and HP36 sets while used wi = 10 for abs_e of 
Ala10_set_1 and RAAE set. We set other weighting factors in a similar way. Weighting 
factors for different contributions are summarized in Table 1. Our choice of weighting 
factors is not unique and thus others could choose different wi.
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The search space for fitting 18 parameters is vast, thus we did not expect to locate the global 
minimum for our objective function. Our goal instead is to have a parameter set showing 
significant improvement in solvation energy and effective radii calculation relative to PB 
when comparing to GB-OBC and original GB-Neck models, and one that simultaneously 
accounts for many aspects of the training data. We used the local search method 
UOBYQA44, which is an unconstrained minimization method that does not require objective 
function derivatives, and allows optimization with large number of variables. It took about 1 
minute for the objective function calculation and we spent about 20 days (~30000 function 
evaluations) for each optimization. Because of the computational expense, we performed 
only 5 optimization runs, each run starting with an initial random guess and resulting in 
different final objective functions and parameter sets (Table S1). Due to the relative few 
number of runs, we attempted to determine if additional or independent optimization with a 
different approach would provide improved objective function values. We employed a 
parallel Genetic Algorithm (GA)45 (code implemented by Metcalfe et al.).46 The GA is one 
of the most popular global search methods47 and, in principle, well suited for this task 
because it is likely that some of the parameters are weakly coupled, and thus mating of 
genes with independent improvements located in different parameters could be productive. 
GA options such as mutation and crossover rate were set to default values 46. Each 
optimization run had population size of 120 and the objective function was allowed to be 
evaluated up to 2500 generations. We performed 31 runs in total. Initial populations of most 
runs were randomly created. Parameters of GB-OBC, GB-Neck and previous UOBYQA 
results were also included in some runs as initial guesses.

Structures used for testing the new parameters in MD simulations

All of the fitting described above was performed relative to PB solvation energy 
calculations. This is consistent since both lack description of the hydrophobic and van der 
Waals components of the aqueous solvation, and thus by design our fitting did not modify 
the electrostatic component of GB to empirically correct for these missing terms as it would 
if we fit directly to reproduce data from explicit solvent simulations, which would likely 
lead to reduced transferability. However, we hypothesized that improved agreement with PB 
would also result in improved agreement with explicit water.16a To test this hypothesis, we 
compared simulations generated with the re-optimized GB-Neck parameter set (named GB-
Neck2) with those from TIP3P explicit water for several systems.

Ser-Ala-Ala-Glu Model Peptide (SAAE)—SAAE was used to compare hydrogen bond 
(Hγ of Ser and Oε of Glu) PMFs between GB and TIP3P models. The potential of mean 
force for hydrogen bond formation was a useful independent measure of model quality, but 
was also performed because one of our intermediate models showed much too high 
propensity of forming such interactions as compared to MD in explicit water. Since the 
solvation energy profile matched that in PB using the same intrinsic Born radii (data not 
shown), we built on our previous work17a, 18 that showed adjusting intrinsic radii could 
improve fit to explicit solvent data. Additionally, the strong salt bridge interaction between 
side chains of Asp (or Glu) and Arg could be adjusted by modifying the radius of either the 
HN+(Arg) or the carboxyl oxygen17b. Thus, the SAAE model was built to compare the H-
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bond PMFs of GB models to TIP3P model and allow adjustment the radii of carboxyl 
oxygen atoms independent from subsequent adjustment of HN+ to refine salt bridge strength.

We performed 3 REMD simulations using TIP3P, GB-OBC, GB-Neck and 2 REMD 
simulations for GB-Neck2 with original and modified carboxyl oxygen intrinsic radius (1.5 
and 1.4 Å respectively). GB-OBC and GB-Neck runs were used as controls. SAAE was 
solvated in a truncated octahedron box with 8 Å buffer by using 459 TIP3P water molecules. 
TIP3P REMD simulation was performed for 60 ns while GB REMD simulations were 
extended to 50 ns. Because Glu had two symmetric Oε in the side chain, we used PMFs of 
distance between Hγ (Ser) and Cδ (Glu) to define PMFs of H-bond instead of distance 
between Hγ (Ser) and Oε (1 and 2) of Glu. The choice of Cδ (Glu) for PMF calculating was 
consistent with previous reports.17a, 17b, 18

Arg-Ala-Ala-Glu Model Peptide (RAAE)—RAAE was used as test system due to its 
small size and the availability of TIP3P data from Okur et al.17b Okur and coworkers17b 

demonstrated that Arg salt bridge strength in RAAE was 2.5-3 kcal/mol stronger in GB-
OBC than in TIP3P. Shang et al.18 later corrected this GB-OBC overestimation by reducing 
radii of HN+(Arg) from 1.3 Å to 1.1 Å. We had initially hypothesized that simply including 
RAAE structures in training would help reduce salt bridge strength, and performed GB-
Neck2 simulations using original mbondi2 radii. However, the stability was still 
significantly overestimated compared to TIP3P, and we thus performed several simulations 
with various combinations of modified radii to identify a value that better reproduced the 
PMF in TIP3P. Particularly, we performed REMD simulations of GB-Neck2 by using 
unmodified mbondi2 H radii and also using 4 modified radii for HN+: using a radius of 1.4 Å 
Oε (Glu) with 1.3 Å, 1.2 Å, 1.17 Å or 1.1 Å for HN+ (Arg). 300 K trajectories from TIP3P 
and GB-OBC mbondi2 REMD simulations from Okur et al.,17b GB-OBC 1.1 HN+(Arg) 
REMD simulation from Shang et al.18 and GB-Neck mbondi2 REMD simulation were used 
for comparison with GB-Neck2 modified mbondi2 simulations. RAAE protocols and initial 
structures were taken from Okur et al.17b We used one 40ns run for GB-Neck and GB-
Neck2 simulations.

Lys-Ala-Ala-Glu Model Peptide (KAAE)—In addition to Arg, Lys can also participate 
in salt bridge interactions. We compared the KAAE salt bridge PMF of GB-Neck2 
simulation to that from TIP3P simulation. As with RAAE, it was built in a helical backbone 
conformation to allow favorable salt bridge orientation.17b We performed REMD 
simulations for TIP3P, GB-OBC, GB-Neck as controls and two simulations for GB-Neck2 
(with mbondi2 and with mbondi3 (Table S4)) to see which simulation of GB-Neck2 could 
best reproduce TIP3P salt bridge PMF.

The RAAE protocol was adopted for KAAE. All simulations of GB models were run up to 
50 ns while TIP3P simulation was run for 30ns. The distance between Nζ of Lys and Cδ of 
Glu was defined as salt bridge distance. A large solvation buffer length was defined to 
minimize periodicity artifacts in the PMF17b, using a truncated octahedron box with 16 Å 
buffer and 2433 TIP3P water molecules.
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The SAAE, RAAE and KAAE peptides were built using the tleap program in Amber10 with 
acetylated and amidated N- and C-termini. The radii obtained from these optimizations is 
denoted mbondi3 (table S4).

Ala10 Model Peptide—Alanine decapeptide (Ace-Ala10-NH2) was used to compare 
secondary structure content (DSSP)48 and local structural propensities between GB and 
TIP3P simulations following Roe et al.16a To test if the improvement observed in our 
training would translate to better secondary structure balance in MD, we repeated Roe's 
protocol with GB-Neck2. DSSP and local structure propensities from GB-Neck simulation 
were compared with the ones from TIP3P, GB-OBC and GB-Neck models. Eight replicas 
were used for REMD simulations, starting from extended conformations. One 50ns REMD 
run was performed for GB-Neck2 and compared to GB-OBC, GB-Neck and TIP3P data 
from Roe et al.16a

HP-1 Model Peptide—Because Ala10 structures were used in fitting GB-Neck2 
parameters, we desired an independent test of the change in helical propensity. HP-1 is good 
candidate since it is nearly the same size as Ala10 and showed moderate α-helix content in 
TIP3P REMD simulation49. HP-1 (MLSDEDFKAVFGM) is adopted from the N-terminal 
helix of HP36, a 36-residue helical subdomain of the villin headpiece. As with Ala10, we 
compared DSSP and local conformational propensities between GB simulations (GB-OBC, 
GB-Neck and GB-Neck2) and TIP3P. 300K trajectories from TIP3P and GB-OBC REMD 
simulations were taken from Wickstrom et al.49 We performed 2 REMD simulations up to 
50ns for GB-Neck and GB-Neck2. Nonhelical structures extracted from TIP3P REMD 
simulation were used as initial structures for REMD. Because HP-1 peptide has Lys salt 
bridge potential, we the optimized mbondi3 radii set (table S4) for GB-Neck2 simulation.

We further tested the robustness of GB-Neck2 by evaluating the ability to reproduce the 
experimental thermal stability for 2 small peptides for which experiments indicate different 
secondary structure motifs different from the unstructured Ala10 and helical HP-1: a hairpin 
structure (HP5F),20 and the trp-cage tc5b mini-protein21 that has alpha and 3-10 helix as 
well as a PPII strand and a small hydrophobic core. The short length and the availability of 
experimental melting temperature (and melting curve for tc5b) made these two sequences 
ideal for testing. For each protein, we performed 2 REMD simulations starting from folded 
and linear structures. Simulated melting curves for those proteins were generated by 
calculating fraction folded (the fraction of the number of frames having native structure over 
the total number of frames from simulation) versus temperature. When comparing melting 
temperature between simulation and experiment, it is important to note that the agreement 
depends on not only on the solvation model but also the protein force field. As discussed 
above, we employed the widely used ff99SB force field, but disagreement with experiment 
can arise from many sources outside GB model accuracy so one must use caution when 
interpreting the results.

HP5F model peptide—HP5F20 is a short peptide with sequence 
KKYTWNPATGKFTVQE.20 We first simulated an extended structure in GB-Neck2 using 
REMD, and then extracted the representative structure for most populated cluster at 300K. 
This representative “folded” structure was used to initiate a second independent REMD run. 
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REMD simulations were run to 150 ns, 75 ns and 90 ns for GB-OBC, GB-Neck and GB-
Neck2 respectively. We also performed an additional 70 ns run for GB-Neck2 with a SASA 
(solvent accessible surface area) based nonpolar solvation term (gbsa = 1 in Amber) to test 
the effect. An experimental atomic structure of HP5F has not been reported, but as it is 
expected to adopt the same fold as the GB1p peptide,20, 50 we used the GB1p backbone for 
calculating RMSD during HP5F trajectories. The GB1p structure was derived from the C-
terminal hairpin of protein G (PDB ID: 3GB1,35 residue 41-56). Residues 2 to 15 were 
chosen for RMSD to avoid the flexible termini. Structures having backbone RMSD smaller 
than 2.0 Å were defined as folded. We chose this cutoff based on the position of the 
minimum separating folded and unfolded regions in the simulated RMSD histogram (figure 
S8). A full experimental melting curve for HP5F was not available, thus we compared our 
results to the experimental melting temperature and folded population at 298K.20

Trp-Cage tc5b model peptide—The tc5b21 variant of trp-cage is a 20 residue peptide 

having sequence of NLYIQWLKDGGPSSGRPPPS.21 The first model from the NMR 
structure ensemble, and a linear structure built by tleap, were used as starting structures for 2 
REMD simulations for each GB model (340 ns, 240 ns, 160 ns and 72 ns for GB-OBC, GB-
Neck, GB-Neck2 and GB-Neck2 with nonpolar solvation term, respectively). Different GB 
models have different simulation lengths since they have different time scale for 
convergence (having small error bars from two runs). As with HP5F, we defined folded 
structures by using a backbone RMSD cutoff of 2.0 Å based on the RMSD histogram (figure 
S9). RMSD to native tc5b was calculated for backbone atoms from residue 3 to 18 to avoid 
flexible termini.17a We compared melting curves from GB-OBC, GB-Neck, GB-Neck2 and 
GB-Neck2 SASA to the ones from NMR and CD experiments.21

Protocols for simulations and data analysis

REMD Simulation Protocols—All simulations used to compare GB simulations to 
TIP3P simulations and experiments presented in Results were carried out with AMBER 105 

and the ff99SB force field.19 The AMBER 10 code was modified to support GB-Neck2; it is 
now available in AMBER version 11 or later by specifying igb = 8. All simulations used 
REMD51 for enhancing sampling. The time step was 2 fs for all REMD simulations. 
SHAKE52 was used for constraining all bonds to hydrogen. For small protein/peptide 
simulations, we did not employ a surface-area based nonpolar solvation term. Temperature 
was controlled by using Berendsen thermostat53 in TIP3P23 simulations with a time constant 
of 1.0 ps-1, or by using a Langevin thermostat in GB simulations with a collision frequency 
of 1.0 ps-1. Unless noted, GB-Neck simulation used mbondi2 radii,12 GB-OBC simulations 
used mbondi2 with 1.1 HN+ (Arg)18 while GB-Neck2 simulation used mbondi3 (Table S4). 
Further details of each simulation are given in the context. In explicit solvent simulations, 
peptide models were solvated with TIP3P23 water in a truncated octahedron box. PME54 

was used for treating long range electrostatic interactions and nonbonded interaction cutoff 
was 8 Å. No cutoff was used in GB simulations.

Exchanges in REMD simulations were attempted every 1 ps. 32 replicas were used for 
TIP3P REMD while only 8 replicas were needed for Ala10, HP-1, tc5b, HP5F GB REMD 
and 6 replicas were used for GB REMD of RAAE, SAAE, KAAE. Temperature 
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distributions were chosen to give 15-25% exchange success, with actual temperatures 
reported in Table S5. The TIP3P REMD simulation protocol was adopted from Okur et 
al.17b For REMD simulations of RAAE, SAAE, KAAE model peptides, backbone atoms 
were restrained with weak positional restraints (1.0 kcal/mol*Å) to the starting helical 
conformation, as discussed in Okur et al.17b There were two runs for tc5b and HP5F REMD 
simulations, starting from extended and folded conformations. We discarded first 25 ns of 
tc5b trajectories and 40 ns of HP5F trajectories to avoid initial structure bias. The error bars 
in these 2 cases were calculated from two runs. For other REMD simulations (Ala10, HP-1, 
RAAE) only 1 run was performed since the convergence time under these conditions had 
already been reported.16a, 17b, 49 In the case of SAAE and KAAE, we assumed that 
converged simulation time for side chain sampling should be comparable to that reported for 
RAAE17b. For Ala10, HP-1, SAAE, RAAE and KAAE REMD simulations, the first 10 ns 
of each run was discarded and error bars were estimated from first and second half of data.

Data analysis—PMFs were calculated based on the assumption of Boltzmann-weighted 
populations. Data were extracted from histograms of RMSD or distance, using ∆G = -RT 

ln(Ni/N0) where N0 was the population of the most populated bin and Ni was the population 
of ith bin. Calculation of RMSD, DSSP48 and φ/ψ values were done using the ptraj program 
in Amber10. For proteins taken from the Protein Data Bank, all ligands, water molecules 
and ions were removed and missing hydrogen atoms were added by tleap program in 
Amber10. Local secondary structure assignment for Ala10 was previously defined by Roe et 
al.16a based on φ/ψ angle values (alpha (-70°/-25°), left (50°/30°), PP2 (-70°/150°), or 
extended (-150°/155°)). We retained this definition for HP-1 to be consistent with Ala10.

Cluster analysis—Cluster analysis was done by the Moil-View program55 following the 
protocol described by Okur et al.17b We used a similarity cutoff of 2.5 Å for all backbone 
atoms of Ala10, trpzip2, and 3Ai3 and HP5F trajectories.

Results and Discussion

Parameter fitting

The 18 parameters were refit to minimize the objective function. As stated in Methods, we 
performed 5 runs for UOBYQA in which each run started from initial random parameters 
and each UOBYQA run converged at different local minima (Table S1). We then performed 
31 runs for parallel GA in which most of runs started with random parameters while some 
runs started by including in initial population GB-OBC parameters, GB-Neck parameters or 
parameter sets from UOBYQA runs. Attempting to vary GA parameters such as population 
size and mutation rate were not successful in producing better objective function values than 
those from UOBYQA. Figure S10 shows the objective function evolution during 
optimization.

Objective function values for GB-OBC, GB-Neck and GB-Neck2 are provided in Table 1. 
The best objective function was achieved through UOBYQA optimized parameters; these 
are denoted hereafter as GB-Neck2 (Table 2). The objective function of GB-Neck2 is 274, 
which is much smaller than 381 and 445 for GB-OBC and GB-Neck models, respectively.
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It should be noted that although the scaling parameters SX were initially introduced to 
correct for overlap of van der Waals spheres and so might be expected to remain less than or 
equal to 1.0, there is no formal reason that they cannot be greater than 1.0, as pointed out by 
Hawkins et al.10 Indeed, it can be argued that since the purpose of the majority of the 
parameters introduced into the GB formalism is to allow a better fit to higher levels of 
theory, the overall agreement of the model is more important than assigning a physical 
meaning to the parameters. When the SX values are considered free parameters it allows 
them to correct for other errors in the model, such as those introduced by the CFA.

Comparison with PB solvation energies and effective radii

Results on training sets—Table 1 shows the contributions to the objective function of 
the absolute solvation energies, relative solvation energies, and effective Born radii. For 
small systems like Ala10 or RAAE where most atoms are solvent-exposed, these pairwise 
GB models perform reasonably well,16a and only modest improvement in these metrics is 
obtained with refitting. Particularly, abs_e and rel_e to PB calculation of GB-Neck2 for 
Ala10_set1 are 0.8 and 1.0 kcal/mol, compared to 1.1 and 1.6 kcal/mol of GB-OBC or 2.7 
and 2.3 kcal/mol of GB-Neck, respectively. In larger systems like trpzip2, 3Ai3 or HP36, 
more substantial improvement was seen in GB-Neck2. For example, abs_e for 3Ai3 was 
reduced from 10.1 (GB-Neck) or 7.6 (GB-OBC) to 3.7 kcal/mol (GB-Neck2). For a given 
molecule, obtaining more accurate GB absolute solvation energies was easier than relative 
solvation energy. HP36, for instance, has abs_e of 4.3 kcal/mol (GB-Neck2), which is 24.1 
kcal/mol lower than abs_e of GB-Neck (85.2 % reduction in error), while rel_e of GB-
Neck2 for this training set is only improved by 0.3 kcal/mol (5.9 % reduction). This result 
suggests that refitting leads to improvements in systematic error of GB-Neck across all 
conformations (see Figure 1). GB-Neck2 also has better agreement with PB in calculating 
effective Born radii. The GB-Neck2 eff_rad_rmsd to ‘perfect’ radii of Ala10 (0.10 Å) was 
smaller than GB-OBC and GB-Neck (0.16 Å and 0.19 Å respectively). Once again, the 
improvement is more significant for larger systems. The eff_rad_rmsd for the protein 
HP1113 set is 1.47 Å for GB-Neck2 as compared to 1.82 Å for GB-OBC or 2.27 Å for GB-
Neck.

Overall, there is improvement of absolute solvation energy, relative solvation energy and 
effective radii calculation for GB-Neck2 for all training sets as compared to GB-OBC and 
original GB-Neck model.

Results on test sets: In this section, we employ larger test sets to gauge the transferability of 
the new parameters. As stated in Methods, we designed two test categories: type I and II. 
Type I had a peptide / protein system that was used in training, but with many more 
conformations, while test set type II had entirely different molecules than those in the 
training sets.

Comparison with PB solvation energy: The abs_e and rel_e to PB data are presented in 
table 3. The trend observed for the type I test sets is consistent with results for the training 
data, indicating that the structure variation was sufficient in the training data to permit 
application to more structure variety while retaining the improvement compared to the older 
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GB models. For instance, abs_e for Ala10 test set from GB-OBC, GB-Neck and GB-Neck2 
are 1.1, 2.2 and 1.0 kcal/mol respectively while rel_e are 0.7, 0.7 and 0.5 kcal/mol for GB-
OBC, GB-Neck and GB-Neck2. For more complex molecules, the test set results closely 
match those from the training set: the abs_e, for example, of trpzip2 test set from GB-OBC, 
GB-Neck and GB-Neck2 are 9.2, 8.4 and 3.2 kcal/mol which are close to 9.5, 8.3, 2.8 
kcal/mol for trpzip2 training set, respectively.

Results for type II test sets (table 3) indicate that the improvements are transferable to 
independent systems, with lower abe_e and rel_e for GB-Neck2 as compared to GB-OBC 
and GB-Neck. There is little improvement for very small proteins like tc5b and DPDP. 
However, larger proteins show quite dramatic improvement. For example, abs_e of GB-
Neck2 for the AIDS drug target HIV1-PR was 17.2 kcal/mol, eliminating 85% - 87% of the 
error as compared to GB-OBC (115.0 kcal/mol ) or GB-Neck (133.1 kcal/mol). 
Additionally, rel_e of GB-Neck2 for HIV1-PR was 16.8 kcal/mol, significantly improved as 
compared to 20.1 kcal/mol error with GB-OBC and GB-Neck. Since relative energies 
control the equilibrium populations, this improvement would be expected to have a 
significant impact on the ensemble sampled in MD simulations.

Comparison with PB ‘perfect’ radii: In order to test the transferability in improvement of 
effective Born radii from training to testing stage, we randomly extracted 100 tc5b structures 
having backbone RMSD to native structure smaller than 2.5 Å to compare effective radii 
from GB to PB. Since calculating PB ‘perfect’ radii for large proteins is computationally 
expensive,9 we chose tc5b as a system large enough to have buried atoms and small enough 
to be computationally tractable. In addition, native-like structures were chosen to have a 
wide range of effective radii from atoms in molecule's surface to deeply buried atoms. The 
inverse of effective radii is used in calculating forces, thus it makes sense to compare 
inverse effective radii.13 The RMSD between GB and PB inverse effective radii for GB-
OBC, GB-Neck and GB-Neck2 are 0.068, 0.052 and 0.054 respectively. GB-Neck2 and GB-
Neck have nearly the same RMSD and the performance of these models is somewhat better 
than GB-OBC.

Figure 1 shows 2D histograms for the TC5b set of inverse effective radii from GB models 
compared to inverse of ‘perfect’ radii derived from PB. The effective radii of buried atoms 
(lower left region) were still underestimated in GB-OBC while GB-Neck and GB-Neck2 
had less degree of underestimation. However all three models seemed to overestimate 
effective radii of atoms near surface of the molecules (upper right region). GB-Neck2 is 
somewhat improved for effective radii calculation of atoms in the middle region of the plot 
in which the most populated bins lie close to the diagonal. For atoms in this region, GB-
OBC and GB-Neck tend to overestimate effective radii, perhaps leading to the dramatic 
improvement in systematic error with GB-Neck2 seen in Tables 1 and 3.

In summary, the results from the test sets confirm the improvement from the new parameters 
is transferable from a set of structures used for training to different set of structures not used 
in training as well as to entirely different proteins.
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Comparison with explicit water MD: hydrogen bonds, salt bridges and 

secondary structure—A particular goal of this work was to reduce the errors in 
secondary structure bias and salt bridge strength previously reported for GB models 
compared to results from explicit water models such as TIP3P. The results presented in 
previous sections showed significant improvement of GB-Neck2 model in calculating 
solvation energy and effective Born radii when using PB as a benchmark. It is of interest to 
determine if better match to PB also results in improved correspondence of GB with 
reference simulations in explicit water, which tend to be much more computationally 
demanding. We hypothesized that fitting to the more accurate PB continuum water model 
could help improve agreement between GB and explicit water.

We next tested GB-Neck2 to see if this improvement could translate to improvement in 
balancing secondary structure populations and improving salt bridge strength. The 
comparison between GB and TIP3P simulations, however, does not solely depend on the GB 
model. Firstly, performance of a GB model is heavily affected by the intrinsic Born radius 
set that defines the boundary between solute and solvent. Secondly, GB only calculates the 
polar part of solvation free energy and simulation results also depend on the accuracy of 
non-polar solvation contributions, such as cavity formation and van der Waals interactions 
with solvent. Since the simple SASA-based non-polar solvation approach currently available 
in Amber has known limitations,4a-c the main focus of this work is improved agreement in 
polar solvation free energy. However, in order to roughly estimate the affect that including 
this term has on results, simulations were performed with and without the commonly used 
surface area based non-polar term for the HP5F and tc5b systems

Strength of hydrogen bonds and salt bridges—The salt bridge is formed by 
oppositely charged side chains of Arg (or Lys) and Glu (or Asp). Conventionally, the ion 
pair interaction could be adjusted by changing the radii of HN+ of Arg. For example, Geney 
et al.17a and Shang et al.18 empirically decreased the radius of HN+ of Arg from 1.3 Å to 1.1 
Å to match the salt bridge PMF from GB to that from TIP3P simulation. However, we 
recognize that the radii (and hence desolvation penalty) of the carboxyl oxygen atoms can 
also be modified to change the balance of desolvation and Coulombic contributions. One 
approach to determine which group to adjust is to examine carboxyl interactions in the 
absence of a positively charged partner. We first chose a simple peptide system, SAAE, to 
investigate H-bond strength between the ionized side chain of Glu with the side chain of Ser. 
Original mbondi2 radii12 were used for all GB models. Figure 2 shows the distance PMFs of 
Hγ (SER) and Cδ (Glu) for TIP3P, GB-OBC, GB-Neck, and GB-Neck2 models. The H-
bond is thermodynamically unstable in all cases, meaning that the H-bonded distance is a 
local and not the global free energy minimum. All of these GB models fail to reproduce the 
solvent-separated local minimum near 5 Å; such behavior is expected for continuum models. 
The H-bond in GB-Neck2 is 0.7 kcal/mol stronger than in TIP3P, while GB-Neck and GB-
OBC H-bond strength are comparable to TIP3P. We empirically decreased the carboxyl 
oxygen radii from 1.5 Å to 1.4 Å to reproduce the profile obtained in TIP3P. The modified 
carboxyl oxygen radii should be applied to charged carboxyl groups in Asp and Glu 
sidechains as well as C-terminal residues.
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Having carboxyl oxygen radii of Glu sidechain adjusted, we next investigated the salt bridge 
formed by Arg and Glu. We originally included a set of RAAE structures in our training set 
(Table 1) for explicitly training the salt bridge. The fitting resulted in modest improvement 
in solvation energy calculation for these ion pairs as compared to GB-OBC and GB-Neck. 
We therefore expected improved agreement between salt bridge PMFs from GB-Neck2 and 
TIP3P REMD simulations for this RAAE system. Salt bridge PMFs from REMD runs for 
different GB models and TIP3P are shown in Figure 3A, with variation of the Arg HN+ Born 
radii in the mbondi2 set; PMFs for GB-OBC, GB-Neck, GB-OBC 1.1 Å HN+, GB-Neck2 
with 1.4 Å Oε and GB-Neck2 with 1.4 Å Oε + 1.17 Å HN+ are shown. All GB profiles have 
a global minimum slightly shifted from the one in TIP3P due to the difference in salt bridge 
geometry between GB and TIP3P, discussed in more detail by Okur et al.17b With standard 
mbondi2 radii (1.5 Å Oε of Glu and 1.3 Å HN+ of Arg) the PMF indicates salt bridges from 
GB-Neck2 simulation are ~3.5 kcal/mol stronger than in TIP3P, significantly worse than the 
1.0 kcal/mol and 2.0 kcal/mol stronger with GB-OBC and GB-Neck, respectively. This 
implies that fitting to PB solvation energies did not help improve salt bridge profile (RMSD 
between GB and PB absolute energies for RAAE test set (table 3) is 1.4 kcal/mol). We thus 
hypothesize that PB with mbondi2 radii may also have too strong salt bridge compared to 
TIP3P, as indicated by Shang et al.18 With new carboxyl oxygen radii (1.4 Å) fit to SAAE 
PMFs and standard HN+ radii (1.3 Å), the salt bridge with GB-Neck2 is still ~2.0 kcal/mol 
stronger than in TIP3P (Figure S11). Thus, radii of HN+ of Arg were empirically reduced 
from 1.3 Å to 1.17 Å to match the TIP3P PMF curve (Figure 3). The PMF from GB-Neck2 
with 1.17 HN+ (Arg) also matches well to that from GB-OBC with modified HN+ radii as 
reported in Shang et al.18, suggesting that modification of this radius is a general way to 
improve salt bridges in GB models. The physical justification for adjusting these radii is 
discussed in detail by Geney et al.17a

We next addressed whether primary amines (Lys and N-term) needed comparable 
corrections to Arg. Figure 3B shows the PMFs for KAAE from GB-OBC, GB-Neck and 
GB-Neck2 (all with mbondi2) and GB-Neck2 with mbondi3 radii. As discussed above, none 
of the GB models reproduce the solvent-separated minimum seen with explicit water. In 
GB-Neck2 with mbondi2 radii, the salt bridge was ~1.0 kcal/mol stronger than TIP3P while 
the GB-OBC salt bridge was ~0.5 kcal/mol stronger. In contrast, the salt bridge with GB-
Neck mbondi2 was ~0.5 kcal/mol weaker than in TIP3P. GB-Neck2 with mbondi2 and 
modified carboxyl oxygen showed near-quantitative match to TIP3P PMF, suggesting that 
our caboxyl changes were sufficient and no adjustment of radii is needed for HN+ of Lys 
side chain or N-terminal amines.

The new radii set with modified carboxyl oxygen and Arg HN+ is denoted mbondi3 (Table 
S4). Overall, mbondi3 appears to be the best radii set for use with GB-Neck2 in reproducing 
TIP3P PMFs of salt bridge interactions. In the remainder of this work manuscript, all 
simulations of GB-Neck2 used mbondi3 intrinsic Born radii unless noted otherwise.

Evaluating α-helical bias

Ala10 Model Peptide: Roe et al.16a showed that the ability of a GB model to reproduce PB 
solvation energies for Ala10 was well correlated with the extent of helical bias obtained in 
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simulations compared to TIP3P simulation. We therefore hypothesize that our new GB 
model, with better agreement to PB, should also better reproduce secondary structure 
preferences as compared to TIP3P. Roe et al.16a quantified the accuracy by comparing DSSP 
and local conformational propensity between GB and TIP3P simulations. We repeated these 
analyses for our GB-Neck2 model, using GB-OBC and GB-Neck results as controls (Figure 
4, with numerical data provided in Table S6).

GB-Neck2 has reduced alpha and turn content as compared to GB-OBC (4.4 % vs. 10.1 % 
in OBC for alpha content; 16.2 % vs. 25.5 % in OBC for turn content). However, the 
original GB-Neck still has somewhat better agreement to TIP3P data (1.4 % vs. 2.5 % in 
TIP3P for alpha content; 4.6 % vs. 2.9 % in TIP3P for turn content). Although 3-10 helix 
content was reduced for GB-Neck2, the population is still somewhat too large compared (9.3 
% in GB-Neck2 and 12.7 % in OBC vs. 2.9 % in TIP3P). GB-Neck2 also has higher 
preference for residue to sample the helical region of the Ramachandran map (30.3 % in 
GB-Neck2 and 22.6 % in GB-Neck vs. 6.2 % in TIP3P). Although GB-Neck2 better 
reproduced absolute and relative solvation energies for Ala10 training set and Ala10 test set 
than GB-Neck, this improvement seems not to transfer to better agreement with TIP3P 
simulation. There might be several reasons for this. First, the mbondi2 radii set (mbondi3 is 
the same as mbondi2 for systems that do not have Arg, Glu, Asp or charged C-termini) was 
not specifically optimized for use with GB-Neck, and the improved agreement to TIP3P for 
this combination may be fortuitous cancellation of error. This same cancellation of error 
may make the performance of GB-Neck better than PB in this particular case; however it is 
difficult to get converged REMD data when using PB solvation, and such calculations are 
out of the scope of the present work. In addition, the small improvement in energy compared 
to PB may not be enough to improve structure results compared to TIP3P simulation for this 
system. This seems reasonable since we have seen significant improvement for larger 
systems like HP5F or tc5b, which will be shown below.

HP-1 Model Peptide: Because Ala10 structures were used in training GB-Neck2, we 
repeated the same analyses as we did for Ala10 but for a different peptide system (HP-1) to 

confirm the results in balancing secondary structure (Figure 5). Furthermore, unlike Ala10, 
HP-1 is known to adopt modest helical content in solution.49 Similar trends to Ala10 were 
observed in DSSP data and local alpha content (Table S6). Particularly, the alpha content 
from GB-Neck was slightly smaller than TIP3P content while GB-Neck2 alpha content was 
somewhat larger (23.8 % in GB-Neck2 vs. 18.9 % in GB-Neck vs. 21.6 % in TIP3P). GB-
OBC had too much alpha content (43.9 %). Although all GB models had close average turn 
content compared to TIP3P, GB-Neck and GB-Neck2 had better agreement as indicated by 
DSSP. This shows that performance of GB-Neck and GB-Neck2 on alpha content is 
somewhat system dependent, likely due to the role of side chain interactions in helix 
formation of HP-1.49 However, the trend remains that GB-Neck tends to destabilize alpha 
conformations, as demonstrated above and as previously reported by Dill et al.16e and Roe et 
al.16a Overall, the good performance of GB-Neck2 in balancing secondary structure can be 
transferred from training system (Ala10) to testing system (HP-1).
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Folding of HP5F and tc5b: Comparison with experimental melting temperature: The 
above GB simulation results were compared to TIP3P simulations using the same protein 
force field. However, one of the main purposes of improving a GB model is to get closer 
agreement between computational and experimental data, particularly for simulations that 
are currently difficult or intractable in explicit water. However, such comparisons are more 
complex than the comparison between GB and TIP3P simulation because they also depend 
on the protein force field used. Deviations from experiment may not be a result of weakness 
in the GB part of the model, and accurate reproduction of experimental data could arise from 
fortuitous cancellation of error and may not provide proof of an accurate solvent model. 
Nonetheless, the comparison to experiment provides a useful measure of the quality one 
might expect from this particular combination. For the purpose of this testing, we used the 
combination of the GB-Neck2, mbondi3 radii and the ff99SB force field.19 This widely 
adopted force field was used since it has been shown to well balance secondary 
structure.19, 22c, 56

We compared equilibrium thermal stability between different GB models and experiment 
(NMR or CD) for HP5F20 and tc5b,21 which adopt different structure motifs (hairpin and 
helix-turn-PPII).17a, 57 Simulations with GB-Neck2 were also repeated including a SASA-
based nonpolar solvation term in order to ascertain its impact on results.

Figure 6A shows the simulated melting curves for HP5F for GB-OBC, GB-Neck, GB-
Neck2 and GB-Neck2 SASA models compared to experiment data. The melting temperature 
and fold population of GB-Neck2 at 298 K (317K and 74%, respectively) are in excellent 
agreement with experimentally determined values (326 K and 82%).20 For the tc5b mini-
protein, the melting curves for GB-Neck2 and NMR and CD experiments21 are shown in 

figure 6B. GB-Neck2 predicts a melting temperature of 302 K, which is again close to the 
experimental value of 315 K21 and to the reported value of 321 K from TIP3P REMD 
simulation58 with ff99SB force field. The excellent agreement between GB-Neck2 
simulation and experiment is promising since several groups reported significantly elevated 
simulated melting temperatures for tc5b.59 Pitera et al.59a reported a melting temperature of 
~400K from REMD simulation of GB-HCT model + ff94 force field. Zhou et al.59b also 
obtained a melting temperature above 400K when using TIP3P model + OPLS-AA force 
field. Compared to GB-Neck2 simulations, GB-OBC and GB-Neck significantly 
underestimate melting temperature for both testing systems (GB-OBC: ~307 K and ~264 K; 
GB-Neck: <275K and ~290K for HF5F and tc5b respectively). GB-Neck especially 
destabilizes the native hairpin even at very low temperature.

GB-Neck2 runs with and without the non-polar term both produce reasonable estimations of 
melting points for HP5F and tc5b (317 K and 335 K for HP5F; 302 K and 324 K for tc5b for 
simulations with and without nonpolar term respectively). Inclusion of the SASA-based 
non-polar term provides small increases in stability but does not dramatically impact the 
results for these systems. It is likely that use of a better non-polar model (such as that in 
AGBNP260) could improve results even further, however that is beyond the scope of the 
current work, which focuses on the polar component of solvation.
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Conclusion

Pairwise GB solvation models remain desirable due to their high computational efficiency, 
but many weaknesses have been reported. We propose a new parameter set for the GB-Neck 
model, obtained by making several key parameters that relate to interstitial cavities 
dependent on chemical element. Adding more parameters called for use of a much larger 
training set than employed in the past, therefore we developed conformation libraries 
containing thousands of structures for peptide and protein sequences of various lengths and 
structure propensities. Our objective function for training included absolute and relative 
solvation free energies compared to PB, as well as accuracy of effective Born radii of the 
atoms. While our fitting significantly improved the model compared to previous ones, it is 
possible that even more extensive fitting of the same training data could result in further 
improvement of the model. This can be re-visited when such studies become more feasible. 
Since we optimized the parameters to improve the overall performance rather than focus on 
physical meaning of individual parameters, it is possible that some cancellation of error 
exists in our model, potentially limiting transferability to systems unlike those studied in this 
work.

Final empirical adjustments were made to some of the intrinsic radii to improve agreement 
with explicit solvent simulations. These modifications help GB-Neck reproduce the H-bond 
and salt bridge PMFs of TIP3P simulations. The new GB-Neck2 model not only shows 
better results for the training systems, but for a variety of tests systems that measure 
solvation free energy, secondary structure propensity and even thermal stability profiles 
compared to experimental data. Thus the combination of GB-Neck2 model, radii set, force 
field used here is recommended for future study of peptide or protein simulations.

Our GB-Neck2 model shows significant improvement in solvation energy and effective radii 
calculation as compared to GB-OBC and GB-Neck. This model, however, is still based on 
the CFA integral calculation which has been shown to overestimate effective radii,61 

compared to much slower numerical models such as GBMV62 or GB-R661 using non-CFA 
integrals. Through parameter fitting, our approach thus has attempted to empirically 
compensate for the CFA as much as possible. Onufriev et al.63 recently developed an 
analytical form of GB-R6 (named AR6) but the resulting accuracy was substantially 
decreased from the numerical form (NR6), and performed worse than GB-Neck2 on our 
training and test sets.64 We believe that our strategy in fitting parameters, as well as use of 
the training and test sets we have developed, could help to improve the performance of AR6 
and future solvation models.

Our results also show that despite not including a nonpolar term, GBNeck2 is still able to 
improve agreement to TIP3P as well as experiment, and it is likely that further improvement 
will be seen with the addition of a more accurate term for nonpolar solvation free energy.

Future work will include optimization of additional parameters for nucleic acid 
simulations.65
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Figure 1. 

2D histograms of inverse effective Born radii of each GB model versus PB ‘perfect’ radii for 
tc5b. Perfect agreement is shown by the diagonal line. The color indicates the frequency 
(number of atoms) in each bin.
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Figure 2. 

PMFs for side chain H-bond formation in the SAAE model peptide for various solvent 
models. The 2 GB-Neck2 curves used different Born radii for the Glu side chain carboxyl 
oxygen atoms, indicated in Å in the legend.
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Figure 3. 

Salt bridge PMFs for various solvent models. Panel A shows the PMF profiles for RAAE 
(Arg salt bridge) while panel B shows PMFs for KAAE (Lys salt bridge). GB-OBC, GB-
Neck and GB-Neck2 used original mbondi2 radii set while GB-OBC 1.1 HN+ used mbondi2 
with modified HN+(Arg). GB-Neck2.mb3 used the optimized radii set denoted mbondi3 
(Table S4).
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Figure 4. 

Secondary structure (upper) and local conformational propensities (lower) for each residue 
of Ala10 at 300K from REMD simulations using different solvent models.
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Figure 5. 

Secondary structure (upper) and local conformational propensities (lower) at 300K for each 
residue of HP-1, obtained from REMD simulations using different solvent models.
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Figure 6. 

Panel A and B show the thermal stability profiles for the HP5F and tc5b respectively in GB-
OBC, GB-Neck and GB-Neck2 (with and without SASA) REMD simulations, compared to 
experimental data.20-21

Nguyen et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 31

T
a
b

le
 1

a
b
s_

e 
(k

ca
l/m

ol
),

 r
el

_
e 

(k
ca

l/m
ol

) 
an

d 
ef

f_
ra

d
_
rm

sd
 (

Å
) 

to
 P

B
 r

es
ul

ts
 f

or
 e

ac
h 

tr
ai

ni
ng

 s
et

 a
ft

er
 o

pt
im

iz
at

io
n,

 c
om

pa
re

d 
to

 G
B

-O
B

C
 a

nd
 G

B
-N

ec
k 

m
od

el
s.

 w
 is

 th
e 

w
ei

gh
tin

g 
fa

ct
or

 f
or

 e
ac

h 
co

m
po

ne
nt

. T
he

 o
bj

ec
tiv

e 
fu

nc
tio

n 
fo

r 
tr

ai
ni

ng
 is

 th
e 

su
m

 o
f 

th
e 

w
ei

gh
te

d 
co

nt
ri

bu
tio

ns
 f

ro
m

 e
ac

h 
co

lu
m

n.

A
la

1
0
_
se

t_
1

A
la

1
0
_
se

t_
1

tr
p

zi
p

2
tr

p
zi

p
2

3
A

i3
3
A

i3
R

A
A

E
R

A
A

E

ab
s_

e
re

l_
e

ab
s_

e
re

l_
e

ab
s_

e
re

l_
e

ab
s_

e
re

l_
e

w
=

10
w

=
10

w
=

1
w

=
10

w
=

1
w

=
10

w
=

10
w

=
10

G
B

-O
B

C
1.

1
1.

6
9.

5
4.

8
7.

1
4.

5
1.

5
1.

3

G
B

-N
ec

k
2.

7
2.

3
8.

3
7.

0
10

.6
4.

1
1.

1
1.

1

G
B

-N
ec

k2
0.

8
1.

0
2.

8
3.

9
3.

7
3.

7
0.

9
1.

2

H
P

3
6

H
P

3
6

H
P

1
1
1
3

A
la

1
0
_
se

t_
2

ob
j_

fu
nc

t

ab
s_

e
re

l_
e

ef
f_

ra
d_

rm
sd

ef
f_

ra
d_

rm
sd

w
=

1
w

=
10

w
=

50
w

=
25

0

G
B

-O
B

C
21

.6
6.

5
1.

8
0.

16
38

1.
2

G
B

-N
ec

k
28

.3
5.

1
2.

3
0.

19
44

4.
7

G
B

-N
ec

k2
4.

3
4.

8
1.

5
0.

10
27

3.
8

J Chem Theory Comput. Author manuscript; available in PMC 2015 March 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 32

T
a
b

le
 2

O
pt

im
iz

ed
 p

ar
am

et
er

s 
fo

r 
G

B
-N

ec
k2

 m
od

el
.

P
a
ra

m
et

er
V

a
lu

e
P

a
ra

m
et

er
V

a
lu

e
P

a
ra

m
et

er
V

a
lu

e

S
H

1.
42

6
α

 H
0.

78
8

α
 N

0.
50

3

S
C

1.
05

9
β 

H
0.

79
9

β 
N

0.
31

7

S
N

0.
73

4
γ 

H
0.

43
7

γ 
N

0.
19

3

S
O

1.
06

1
α

 C
0.

73
4

α
 O

0.
86

8

o
ff

se
t

0.
19

5
β 

C
0.

50
6

β 
O

0.
87

7

S
n
ec

k
0.

82
7

γ 
C

0.
20

6
γ 

O
0.

38
8

J Chem Theory Comput. Author manuscript; available in PMC 2015 March 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 33

T
a
b

le
 3

a
b
s_

e 
an

d 
re

l_
e 

(k
ca

l/m
ol

) 
be

tw
ee

n 
ea

ch
 G

B
 a

nd
 P

B
 c

al
cu

la
tio

n 
fo

r 
ty

pe
 I

 a
nd

 I
I 

te
st

 s
et

s,
 s

ho
w

n 
fo

r 
m

ul
tip

le
 G

B
 m

od
el

s.
 T

yp
e 

II
 te

st
 s

et
s 

ar
e 

in
di

ca
te

d 
in

 b
ol

d.

G
B

-O
B

C
G

B
-N

ec
k

G
B

-N
ec

k
2

G
B

-O
B

C
G

B
-N

ec
k

G
B

-N
ec

k
2

(A
) 

a
b
s_

e 
(k

ca
l/m

ol
)

(B
) 

re
l_

e 
(k

ca
l/m

ol
)

A
la

10
1.

1
2.

2
1.

0
A

la
10

0.
7

0.
7

0.
5

T
rp

zi
p2

9.
2

8.
4

3.
2

T
rp

zi
p2

1.
6

1.
9

1.
2

3A
i3

7.
2

10
.6

4.
0

3A
i3

2.
1

2.
0

1.
9

R
A

A
E

1.
3

1.
6

1.
4

R
A

A
E

0.
6

0.
7

0.
5

H
P3

6
21

.3
29

.7
6.

6
H

P3
6

6.
0

6.
0

5.
4

tc
5
b

7.
4

13
.4

5.
3

tc
5
b

1.
8

2.
6

1.
8

D
P

D
P

3.
4

12
.7

3.
6

D
P

D
P

2.
0

2.
2

1.
9

H
IV

1
-P

R
11

5.
0

13
3.

1
17

.2
H

IV
1
-P

R
20

.1
20

.1
16

.8

L
y
so

zy
m

e
72

.2
88

.4
13

.1
L

y
so

zy
m

e
13

.4
13

.5
11

.9

J Chem Theory Comput. Author manuscript; available in PMC 2015 March 16.


