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Abstract

Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM)
because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver
disease (NAFLD) in patients with T2DM, we determined the impact of 6 months’ GLP-1 RA therapy on intrahepatic lipid (IHL)
in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in
glycosylated haemoglobin (HbA1c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT
and SAT). We prospectively studied 25 (12 male) patients, age 50610 years, BMI 38.465.6 kg/m2 (mean 6 SD) with baseline
IHL of 28.2% (16.5 to 43.1%) and HbA1c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with
metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n = 19; liraglutide, n = 6). IHL
was quantified by liver proton magnetic resonance spectroscopy (1H MRS) and VAT and SAT by whole body magnetic
resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA1c

reduction of 1?6% (17 mmol/mol) (0?8,2?4%) and a 42% relative reduction in IHL (259.3, 216.5%). The relative reduction in
IHL correlated with that in HbA1c (r= 0.49; p = 0.01) but was not significantly correlated with that in total body weight, VAT
or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed
to determine potential direct effects of GLP-1 RA on human liver lipid metabolism.
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Introduction

The glucagon-like peptide-1 (GLP-1) receptor agonists are used

as blood glucose-lowering treatments of obese patients with type 2

diabetes mellitus (T2DM). GLP-1 acts through several distinct

mechanisms including stimulation of glucose-dependent insulin

secretion, inhibition of glucagon secretion, delay of gastric

emptying and promotion of weight loss through central inhibition

of appetite [1]. In patients treated with GLP-1 receptor agonists

(GLP-1 RA), the weight loss is predominantly associated with a

reduction in adipose tissue [2] although the inter-relationships

between the relative amounts of visceral, subcutaneous and

hepatic fat loss remain unknown.

NAFLD describes a disease spectrum with excessive deposition

of fat within the liver (hepatic steatosis), which may be associated

with inflammation, cell death, and fibrosis (non-alcoholic steato-

hepatitis, NASH), ultimately progressing to cirrhosis [3]. NAFLD

has a high prevalence in patients with type 2 diabetes, diagnosed

variously on the basis of abnormal liver biochemistry, ultrasonog-

raphy [4], proton magnetic resonance spectroscopy (1H MRS) or

liver biopsy [5–7]. For example, the Edinburgh Diabetes Study,

which carefully excluded secondary causes of steatosis, demon-

strated hepatic steatosis in 57% of type 2 diabetes patients by

ultrasonography, with NAFLD-related steatosis in 43% [4]. This

high prevalence is not simply explained by the high incidence of

obesity in type 2 diabetes, as liver fat is increased in patients with

type 2 diabetes compared with age- and BMI-matched healthy

controls [5,8–11] but is important for several reasons. Epidemi-

ological studies highlight an increased prevalence of chronic liver

disease and hepatocellular carcinoma in patients with type 2
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diabetes [10,12]. Furthermore, NAFLD is associated with a higher

prevalence of cardiovascular disease and a greater burden of

diabetic complications in patients with type 2 diabetes [13–16].

The impact of reducing liver fat by lifestyle or pharmacological

intervention on the natural history or the frequency of these long-

term complications is unknown.

Current treatment of NAFLD is aimed at weight loss through

lifestyle interventions involving diet and exercise [17–20]. Petersen

et al. demonstrated that modest weight reduction (,8 kg) in

patients with type 2 diabetes substantially reduced hepatic steatosis

(by ,80%) and concomitantly improved hepatic insulin resistance

[19,21]. Treatment with metformin or glitazone (either rosiglita-

zone or pioglitazone) may also ameliorate NAFLD, with metabolic

and histological improvement, predominantly through reduced

steatosis and inflammation, with little effect on fibrosis [22–25]. As

for GLP-1 RAs, Buse et al demonstrated that 2 years exenatide

therapy was associated with significant improvement in abnormal

liver transaminases, biomarkers of hepatocyte injury most

commonly reflecting NAFLD [26]. Tushuizen directly examined

the effect of exenatide therapy on hepatic steatosis measured non-

invasively by 1H MRS, showing that 44 weeks of treatment was

associated with a reduction in liver fat from 16.0 to 5?4% [27].

This is supported by a recent case series of 8 patients with type 2

diabetes and biopsy-proven NAFLD who underwent liver biopsies

before and after 28 weeks of exenatide therapy, in 3 of whom liver

histology improved [28].

The present study was undertaken to define the inter-

relationship between the reduction in intrahepatic lipid (IHL)

and changes in glycaemic control and body composition (body

weight, VAT and SAT) in patients with type 2 diabetes and

hepatic steatosis receiving GLP-1 receptor agonists, to determine

what factors are associated with the reduction in liver fat observed

with these drugs.

Research Design and Methods

Inclusion and Exclusion Criteria
Patients were prospectively recruited from four specialist

diabetes outpatient clinics. The inclusion criteria were: i) known

type 2 diabetes with ii) obesity (BMI.35 kg/m2), and iii) at least 3

months treatment on a stable dose regime of maximal doses of

metformin, with either sulphonylureas or DPP-IV inhibitors.

Exclusion criteria were: i) treatment within the last 3 months with

pioglitazone, orlistat, insulin, any other drugs associated with

hepatic steatosis (including glucocorticoids, tamoxifen, amioda-

rone or methotrexate), ii) weekly alcohol intake .14 units for

women or .21 units for men, iii) any history of liver disease

including metabolic or auto-immune liver disease or viral hepatitis.

Patients who fulfilled these criteria were screened for hepatic

steatosis using 1H MRS and those with hepatic steatosis

(IHL.5.5%) continued in the study. A pre-existing clinical

diagnosis of NAFLD was not deemed necessary for inclusion

due to the high prevalence of undiagnosed NAFLD in T2DM.

The Liverpool Research Ethics Committee approved the study

protocol and all participants gave their written informed consent.

25 of the 31 eligible patients who were underwent baseline

scanning completed the study. The six dropouts initiated

treatment after baseline assessments but one declined follow-up,

two developed unrelated medical issues requiring withdrawal from

study and three discontinued GLP-1 treatment due to gastroin-

testinal side effects.

Drug history of patients
All patients were treated with the maximal tolerated dose of

metformin for a minimum of 3 months before recruitment and

they remained on the same mean metformin dose throughout (4

patients required a minor dosage adjustment). 16 patients were

treated with sulphonylurea (SU) therapy with gliclazide (n = 12;

continued in all patients with adjustment of dose in 4) or with the

DPP-IV inhibitor, sitagliptin (n = 4; discontinued in all). No

patients had received pioglitazone within the 3 months prior to

recruitment.

Initiation of GLP-1 RA Therapy
Participants were initiated on GLP-1 RA therapy in accordance

with UK National Institute for Clinical Excellence guidelines [29]

which mandate that only selected patients are eligible for GLP-1

RA therapy: those patients with a BMI.35 kg/m2, and those with

a BMI,35 kg/m2 in whom there is a co-morbid condition for

which weight loss would be desirable, e.g. obstructive sleep

apnoea, NAFLD or polycystic ovary syndrome. The choice of

GLP-1 RA was in accordance with NICE recommendations at the

time of drug initiation (exenatide was approved and available for

use in UK by NICE before liraglutide was approved). Of the

patients who completed the 6-month study period, 19 were treated

with exenatide and 6 with liraglutide. Exenatide was initiated at

5 mcg twice daily, titrated to 10 mcg twice daily after one month;

liraglutide was initiated at 0?6 mg once daily, titrated to 1?2 mg

once daily. All patients remained under the supervision of a

diabetes specialist team throughout the study.

Lifestyle Variables
Patients were not provided with specific guidance on modifi-

cation of diet or physical activity. 18 patients were abstinent from

alcohol throughout; mean weekly consumption in the remaining

patients was 365 units pre-treatment and 265 units post-

treatment. 24 patients were non-smokers throughout the study.

All measurements were made at baseline, prior to initiation of the

drug, and after 6 months of therapy.

Determination of Body Composition
A single observer (AI), who was not involved in the clinical care

of the patients, made all of the measurements. Body weight was

measured with a Tanita bioimpedance analyser, wearing light

clothing (Tanita BC420, Dolby Medical, Stirling, UK). Height was

measured using a stadiometer to the nearest 0.5 cm (Seca,

Birmingham, UK). Waist circumference was taken at the mid-

point between the anterior superior iliac spine and the lower edge

of the rib cage.

Serum Biochemistry and Total Adiponectin
Concentration

Serum glucose, lipid profiles and liver biochemistry were

determined by using the Olympus AU2700 analyser (Beckman

Coulter (UK) Ltd) with standard proprietary reagents. Total serum

adiponectin levels were determined using a quantitative sandwich

ELISA kit (R & D Systems Europe Ltd, Oxon, UK). Each sample

was run in triplicates and the mean value was obtained by

calculation using the standard curve method. Paired pre- and post-

treatment samples were run on the same ELISA plate to minimise

plate-related assay variation. The percentage inter-assay variation

was between 0.4–9.8%.

GLP-1 Receptor Agonists and Hepatic Steatosis
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Magnetic Resonance Methods
Participants underwent MR scanning in a 1.5T Siemens

Symphony scanner (Siemens Medical Solutions, Erlangen, Ger-

many) at a single site, the University of Liverpool Magnetic

Resonance and Image Analysis Research Centre, as previously

described [30] A single experienced radiographer (VLA) per-

formed all scans.

Volumetric Analysis of Subcutaneous and Visceral Fat
Abdominal subcutaneous adipose tissue (abdominal SAT) and

abdominal visceral adipose tissue (abdominal VAT) were calcu-

lated from whole body axial T1-weighted fast spin echo scans

(axial scans, 10 mm slice thickness followed by a 10 mm gap using

the integral body coil). All images were anonymised and blinded to

time-point, but not to subject (to facilitate matching anatomical

landmarks), and analysed by Vardis (Vardis Group Inc., London,

UK) using SliceOMatic (Tomovision, Montreal, Canada).

Proton Magnetic Resonance Spectroscopy
(1H MRS): In liver, NAFLD was defined as intrahepatocellular

lipid (IHL) .5?5% measured by 1H MRS [7] Three voxels of

interest were identified in the liver standard sites avoiding ducts

and vasculature. In skeletal muscle, 1H MRS was used to measure

intramyocellular lipid (IMCL), using a single voxel in each of the

tibialis anterior (TA) and soleus (Sol) muscles, avoiding bone, fascia

and the neurovascular bundle. Single voxel spectroscopy was

conducted at each of these five sites. Voxel size was

20620620 mm, TE 135 ms, TR 1500 ms, with 64 acquisitions.

Where the musculature was too small to allow placement of a

20 mm voxel, a 15615620 mm voxel was placed and the number

of acquisitions increased to 200 to maintain signal-to-noise ratio.

In both liver and muscle, voxel placement in post-treatment

studies was guided by reference to the pre-treatment images. 1H

MR spectra were quantified using the AMARES algorithm in the

software package jMRUI-3.0. As previously described, IHCL is

expressed as percentage of CH2 lipid signal amplitude relative to

water signal amplitude after correcting for T1 and T2, and IMCL

is expressed as CH2 lipid amplitude relative to total creatine

amplitude after correcting for T1 and T2 [31]). Fat quantification

by 1H MRS has been validated against gold standard biochemical

measurements [32].

Reproducibility of MRI and MRS Analysis
Volumetric analysis of adipose tissue content: the mean coefficient of

variations (CoV) were determined as total body fat, 1–2%; total

subcutaneous fat, 3–4%; abdominal subcutaneous fat, 1–3%;

visceral fat, 6–8%.

Quantification of Liver Fat (IHCL CH2/Water)
The mean inter-examination CoV for using this protocol is 7%

(range 4–12%) and the mean intra-examination CoV is 6% [31].

Statistical Analysis
Statistical analyses were performed using Stata/IC 12.0

software [StataCorp LP, College Station, TX, USA]. Demo-

graphic data are presented as mean 6 standard deviation except

where distributions were non-normal, in which case median and

interquartile range (IQR) are presented. Paired t-tests were used to

assess the absolute differences between individuals pre- and post-

treatment (pre – post) and are presented as mean differences with

95% confidence intervals. In some cases log transformation of the

data was necessary to achieve normality and where unsuccessful

the Wilcoxon matched-pairs test was used. Relative changes are

presented as median and interquartile range. Subgroups were

compared using unpaired t-tests. Correlation was assessed using

the Pearson correlation coefficient (r) where the relevant assump-

tions were met; otherwise the Spearman rank correlation

coefficient (r) was used. Linear regression was used to assess the

linear relationships between IHCL changes and changes in other

variables independently. No corrections have been made for

multiple comparisons.

Results

Baseline Characteristics (Table 1)
25 patients (12 male), age 50610 years, BMI 38.465.6 kg/m2

with a duration of T2DM of 664 years (means 6 SD)

participated. Baseline median liver fat was 28.2% (IQR 16.5,

43.1).

Correlation of Baseline Characteristics with Intrahepatic
Lipid

Biochemistry. Although many patients had liver biochemis-

try (ALT, AST and GGT) within the normal reference range,

there were highly significant correlations between IHCL and

serum levels of ALT (r= 0.47), AST (r= 0.49), and GGT

(r= 0.50) (all p,0.05). There was no significant correlation

between IHCL and total cholesterol (r= 0.16; p = 0.44), LDL-

cholesterol (r= 0.11; p = 0.64) and triglycerides (r= 0.12;

p = 0.58)), nor between IHL and total serum adiponectin

concentration (r= 20.04; p = 0.88).

Body composition. There was no significant correlation

between IHL and any of the following: body mass index (r= 0.16;

p = 0.44), total body weight (r= 20.24; p = 0.25), total abdominal

body fat (r= 20.04; p = 0.84), and abdominal visceral (r= 0.01;

p = 0.96) and abdominal subcutaneous adipose tissue volume

(r= 20.04; p = 0.86).

Changes in Metabolic Parameters, Weight and Body
Composition with GLP-1 RA (Table 1)

Body weight. Six months of treatment with GLP-1 RA

(either exenatide or liraglutide) was associated with a significant

median weight loss of 5 kg, a relative reduction of 4.3%.

Biochemistry. Treatment was associated with significant

median reductions in HbA1c of 1.6%, in ALT from 40 (31,44)

to 31 (27,43) U/L and GGT from 69 (34,100) to 43 (22, 69)

U/L. Serum total adiponectin concentration increased signifi-

cantly in all subjects (p,0.00005). However, a lack of significant

correlation between adiponectin increase and any measure of

body composition is consistent with previous reports [33].

Body composition. There were significant reductions in

abdominal VAT and SAT and in IHL. The median relative

reduction in IHL was 42%, 4% in total body weight and 7–

11% in abdominal SAT or VAT; IMCL did not change.

Variables Associated with Reduction in Hepatic Steatosis
Biochemical response. The reduction in IHL with treat-

ment was accompanied by a significant reduction in ALT

(p,0.05) and GGT (p,0.001) but not in AST (p = 0.1). There

was a significant correlation between relative IHL reduction and

relative reduction in HbA1c percentage (r= 0.49,p = 0.01); the

correlation between absolute changes fell just short of statistical

significance (r= 0.38,p = 0.06), not surprisingly given the wide

range of starting values of IHL, and the strong relationship

between the starting IHL and the absolute reduction in IHL (see

below). There was no significant correlation between the absolute

GLP-1 Receptor Agonists and Hepatic Steatosis
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changes in total adiponectin concentration and IHL (r= 20?19,

p = 0?43) (Figure 1).

Weight loss. There was no significant relationship overall

between the relative or absolute amount of weight loss and the

reduction in IHCL (Figure 2). Reinforcing this, when we sub-

divided patients into two groups according to amount of weight

loss (patients with #5% weight loss (n = 15) and patients with

$5% weight loss (n = 10), the change in IHCL was not

significantly different between the two groups (p = 0.35)

(Figure 3): there was an absolute reduction in IHL of 15.7%

(95% CI: 8.2, 23.2) for patients with #5% weight loss (mean

weight change, 2.6 (1.5,3.5) kg) versus an absolute reduction in

IHL of 10?7% (95% CI 2.7, 18.8) for patients with weight loss

of .5% (mean weight change, 8.6 (7,10.3) kg).

Abdominal adipose tissue and muscle lipid. (Figure 2)

There was no correlation between the reduction in IHCL and the

reduction in total abdominal fat (r= 20?02; p = 0?93), VAT

(r= 0?04; p = 0?85), SAT (r= 20.13; p = 0?55) or with IMCL in

either soleus or tibialis anterior (r= 20?17, p = 0?44; r= 0?17,

p = 0?45 respectively).

Baseline intrahepatic lipid. (Figure 3) The most striking

correlation was seen between the pre-treatment IHL and the size

of the reduction in IHL, such that those individuals with the

highest pre-treatment IHL had the greatest absolute reduction in

IHL with treatment (r = -0?70; p = 0?0001).

Discussion

This study demonstrates that 6 months of GLP-1 RA treatment

(with exenatide or liraglutide) in patients with T2DM dramatically

improves hepatic steatosis. The individual changes in IHL did not

correlate with changes in total body weight, and total abdominal

fat, VAT or SAT, but it did correlate with reduction in HbA1c. A

recent randomised parallel-group open-label trial (LEAD-6)

reported similar weight loss, but significantly greater reductions

in HbA1c, using once-daily liraglutide compared with twice daily

exenatide [34]. However, we did not observe any differences in

these variables between the two agents, albeit using small group

sizes.

An obvious question arises from our results: to what extent is

reduction in liver fat, mediated by GLP-1 RAs, explained by

weight loss? Lifestyle intervention studies have found that modest

(5–8%) weight loss has a significant effect on hepatic steatosis in

patients with T2DM [21]. Furthermore, Lim et al, demonstrate

that with a 15% reduction in body weight, with eight weeks of a

Table 1. Clinical, biochemical, metabolic and body composition characteristics before and after 6 months of treatment with GLP-1
analogues.

Variable Pre-treatment Post-treatment
Change (95%
confidence interval)

Median Relative change %
(Interquartile range) p value

Clinical characteristics

Body weight (kg) 116.7 (102.4 to 125.3) 111.3 (98.3 to 118.7) 25 (26.5, 23.5) 24.3 (26.4 to 21.8) ,0.00005

BMI (kg/m2) 38.4 (5.6) 36.7 (5) 21.7 (22.2, 21.2) 24.5 (26.4 to 21.9) ,0.00005

Waist circumference (cm) 125 (111 to 132) 120 (107 to 128) 25.2 (27.4, 22.9) 23.2 (27.9 to 21.1) 0.0001

Fat (L) 21 (5.1) 19.3 (4.8) 21.8 (22.5, 21.1) 27.5 (211.7 to 0.3) ,0.00005

Systolic BP (mmHg) 133 (120 to 145) 125 (120 to 138) – 26.1 (211.3 to 0) 0.0151

Diastolic BP (mmHg) 84 (78 to 89) 80 (75 to 84) – 25.9 (210.5 to 0) 0.0062

Biochemical and metabolic

FPG (mmol/l) 10.8 (8.9 to 14) 8.3 (6 to 10.1) – – 0.0007

HbA1c (%) 9.6 (7.9 to 10.7) 7.5 (6.5 to 8.5) 21.6 (22.4, 20.8) – 0.0003

AST (U/ml) 27 (20 to 38) 25 (21 to 33) – – 0.0998

ALT (U/ml) 40 (31 to 44) 31 (27 to 43) – – 0.0118

GGT (U/ml) 69 (34 to 100) 43 (22 to 69) – – 0.0004

Total cholesterol (mmol/l) 4.3 (3.6 to 4.9) 4 (3.5 to 5.1) – – 0.6183

HDL (mmol/l) 1 (0.9 to 1.3) 1 (1 to 1.2) 0 (0, 0.1) – 0.1749

LDL (mmol/l) 2 (1.6 to 2.4) 2.1 (1.6 to 2.7) – – 0.423

Trig (mmol/l) 2.1 (1.7 to 3.7) 2 (1.5 to 2.7) – – 0.0713

Total Adiponectin (mg/ml) 2.51 (1.92 to 5.65) 3.50 (2.00 to 7.79) 0.87 (0.53, 1.21) – ,0.00005

Adipose Tissue volumes

Abdominal VAT (L) 7.2 (2.6) 6.3 (2.1) – 211.2 (215.4 to 22.1) 0.0007

Abdominal SAT (L) 13.9 (4.2) 12.9 (4.1) 20.9 (21.3, 20.6) 26.8 (212 to 0.2) ,0.00005

VAT:SAT ratio 0.5 (0.4 to 0.8) 0.5 (0.4 to 0.7) – 0.0386

MR Spectroscopy (1H MRS)

Liver fat (% CH2/water) 28 (17 to 43) 21 (7 to 29) 218 (219, 29) 242 (259 to 217) ,0.00005

Soleus IMCL (CH2/creatine) 19 (10 to 25) 17 (10.1 to 22) – 25 (231 to 46) 0.4937

Tibialis Anterior IMCL (CH2/creatine) 15 (11 to 25) 13 (9 to 21) – 0 (238 to 38) 0.8671

*Used natural log of variable pre & post; change is the ratio (post to pre) of geometric means with 95% confidence interval. **Used Wilcoxon matched-pairs. Mean 6

standard deviation, median (lower quartile to upper quartile), mean difference (lower 95% confidence limit, upper 95% confidence limit).
doi:10.1371/journal.pone.0050117.t001

GLP-1 Receptor Agonists and Hepatic Steatosis

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e50117



dietary intervention consisting of a 600 kcal diet, liver fat reduced

by a total of 7065% [35]. However, there has been relatively little

work on the effects of GLP-1 RAs on liver fat to address this

question. In a single case report, in which 44 weeks of exenatide

was associated with a similar reduction in body weight as we

observed, a 4 kg absolute reduction or a 5% relative reduction, 1H

MRS-measured IHCL declined by 73% (from 16% to 4%) [27].

Furthermore, in an uncontrolled study of 8 patients with T2DM

and biopsy-proven NAFLD, which examined the effects of 28

weeks exenatide using biopsies pre- and post-treatment, with

similar weight loss to that observed in our study (mean weight loss

of 4.9 kg), steatosis reduced significantly in half of the patients

[28].

In contrast, several reports highlight the differential effects of

GLP-1 RAs, and other pharmacological treatments for T2DM, on

body composition and IHL. Belfort et al examined the effects of 6

months treatment with pioglitazone in 55 patients with either

impaired glucose tolerance or T2DM. Treatment was associated

with a 54% reduction in 1H MRS-measured IHL despite marginal

weight gain [25]. The results of other, uncontrolled, studies of

glitazone therapy in T2DM demonstrate consistent reductions of

,50% in liver fat, despite an absence of weight loss or even weight

gain, although none have taken paired biopsies to examined for

changes in other histological features [23,36]. In a recent study of

21 patients with T2DM a combination of exenatide with

pioglitazone was associated with a greater reduction in 1H

MRS-measured IHCL than pioglitazone alone (61% vs. 41%),

despite there being no overall change in body weight using this

pharmalogical combination and weight gain with pioglitazone

alone [37]. Likewise, Taikinnen et al. demonstrated reductions in

hepatic fat with rosiglitazone independent of changes in VAT or

SAT [23]. Indeed, in the present study we found no significant

relationship between changes in IHL and changes in body weight

or any component of fat mass.

There are other potential mechanisms by which GLP-1 RAs

may work, perhaps independently of weight loss. GLP-1 RAs may

act directly on the hepatocytes. Transgenic rats deficient in

dipeptidyl peptidase-4 (DPP4-), the enzyme that degrades endog-

enous GLP-1, have a threefold higher basal active GLP-1; they not

only have lower hepatic fat, but are also protected against hepatic

Figure 1. Upper: Relative changes in liver fat related to relative change in HbA1c (r = 0.49; p = 0.01) (left) and absolute change in liver
fat related to absolute change in HbA1c (r = 0.38; p = 0.06) (right). Lower: Relative changes in liver fat related to relative change in weight
(r= 0.21; p = 0.31) (left) and absolute change in liver fat related to absolute change in weight (r= 20.04; p = 0.86) (right).
doi:10.1371/journal.pone.0050117.g001
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steatosis when fed a high-fat diet [8]. This reduced hepatic fat is

mediated by down-regulation of transcription factors for enzymes

involved in hepatic lipogenesis and up-regulation of carnitine

palmitoyltransferase-1 (CPT1), a key regulator of fatty acid

oxidation. Furthermore, in vitro studies suggest that the direct

action of GLP-1 on hepatic steatosis is mediated by activation of

key metabolic signalling pathways, including the AMP-activated

protein kinase (AMPK) pathway and the insulin signalling

pathway [8,10,11], which would be associated with increased

hepatic fatty acid oxidation and hence improved insulin sensitivity.

The recent identification of GLP1 receptors (GLP1-R) in human

liver makes this mechanism a possibility [10]. There have been no

randomised controlled studies using GLP-1 RA with paired liver

biopsies, for an appropriate time frame, to determine the effects of

the GLP-1 RAs on hepatic signalling or metabolic pathways.

The significant increase in serum total adiponectin concentra-

tion with GLP-1 RA therapy, consistent with previous data

[17,19], maybe implicated in the mechanism by which liver fat is

reduced. However, we did not observe any significant relationship

between plasma adiponectin concentration and IHCL, in contrast

to a weak correlation (r = 20.219) previously observed in 114

subjects with NAFLD [19].

A further possibility, consistent with the correlation we observed

between effects on IHL and HBA1c, is that the effects on IHL are

secondary to improved glucose tolerance, with reduced hyperin-

sulinemia (and perhaps reduced hyperglycaemia), reducing the

increased rate of hepatocyte lipogenesis characteristic of these

patients [13]. The close correlation between changes in IHL and

glycaemic control, in absence of changes in other measures of

body composition, highlights the key regulatory role of the liver in

metabolic control in overweight/obese patients.

Whatever the cause of the change in IHL, the correlation

between the pre-treatment IHL and the size of the reduction in

IHL is striking (Fig 3): put differently, the fractional change is less

variable between patients than the absolute change. It is

impossible to exclude the possibility that part of this relationship

is due to the purely statistical phenomenon of regression to the

mean, but it arguably makes metabolic-control sense that

alterations in either downstream or upstream enzymes of fat

metabolism should have effects proportional to triglyceride pool

size.

It is not clear what effect the reduction in liver fat had on whole

body or hepatic insulin resistance in these subjects. Rates of fasting

hepatic glucose production (HGP) and insulin sensitivity of liver

(assessed by measuring rate of suppression of HGP by insulin) can

be determining using [6,6-2H2] glucose and a hyperinsulinemic,

euglycemic clamp [21]. More recently, Hattersley et al. validated a

simple index of hepatic insulin resistance using serum glucose and

insulin against the gold standard methods using stable isotopes and

clamps [38]. For technical reasons, serum insulin concentrations

could not be measured in the current study, thus we could not

make us of this potentially important physiological measure.

The methodology in this study does not allow us to scrutinize

the effects on hepatic inflammation or fibrosis. A longer duration

study is warranted with examination of changes in intracellular

signaling pathways to assess potential direct mechanisms of action

on hepatic lipogenesis and in histopathological changes pre-and

post-therapy to address progression through the NAFLD spec-

trum, including measures of inflammation and fibrosis. Similarly,

it is unclear whether these drugs can impact upon the liver-related

and cardiovascular burden of NAFLD in these high-risk T2DM

patients.

T2DM patients with NAFLD have been suggested as a

population worthy of further clinical study to examine the role

of insulin sensitizers and related drugs in ameliorating NAFLD

[22]. The present findings are thus of potential clinical relevance,

and although the present study involves a relatively small sample

size and an observational design without use of control subjects, it

suggests that these drugs may have a therapeutic benefit,

Figure 2. Correlation between changes in liver fat (%) and:
Upper: change in total abdominal fat (litres). Middle: change in
abdominal subcutaneous fat (litres). Lower: change in intra-abdominal
visceral fat (litres).
doi:10.1371/journal.pone.0050117.g002
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potentially even in lean patients. The literature lacks adequately

powered, randomised, placebo-controlled intervention studies

using GLP-1 analogues in patients with NAFLD, with or without

T2DM, to demonstrate the inter-relationship between the

biochemical, metabolic and histological responses. The results of

this study should be of use to power a larger, more definitive study

incorporating appropriate control groups. This might include a

patient group treated with an agent that improves only glycaemic

control but not weight (e.g. subcutaneous insulin) and a second

group in whom weight loss alone is achieved (e.g. through dietary

intervention) to determine the independent contributions of

improvements in weight and in glycaemic control. The findings

from the present study suggest that the results of such clinical trials

using GLP-1 RAs to treat NAFLD might be of considerable

therapeutic interest.
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