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Abstract: An improvement to the grid-based algorithm of Henkelman et al. for the calculation of Bader volumes
is suggested, which more accurately calculates atomic properties as predicted by the theory of Atoms in Molecules.
The CPU time required by the improved algorithm to perform the Bader analysis scales linearly with the number of
interatomic surfaces in the system. The new algorithm corrects systematic deviations from the true Bader surface,
calculated by the original method and also does not require explicit representation of the interatomic surfaces, result-
ing in a more robust method of partitioning charge density among atoms in the system. Applications of the method
to some small systems are given and it is further demonstrated how the method can be used to define an energy per
atom in ab initio calculations.
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Introduction

According to Richard Bader’s theory of Atoms in Molecules
(AIM),1 a molecule can be partitioned into atomic volumes,
such that the flux of the gradient of the electron density through
the interatomic surfaces vanishes at every point on the surfaces.
Within such volumes, it can be shown that the atomic subsys-
tems obey a local virial relation. Also, certain properties, such
as an atomic charge, atomic dipole moment, and atomic kinetic
and potential energies, are shown by the AIM theory to take on
quantities that are well-defined by quantum mechanics, if they
are integrated over these atomic subvolumes.2 This leads to the
useful ability to partition charge, energy, and other properties
unambiguously over the atoms composing a chemical system.
Unlike other charge partitioning schemes, such as the Mulliken
population analysis, the AIM results are not highly sensitive to
the basis set used in the calculation.3,4 In particular, the AIM
method does not require the assignment of each basis function
to a specific atom. This makes AIM particularly advantageous in
situations where this assignment would be difficult or impossi-
ble, such as with plane-wave basis sets. Additionally, the AIM
analysis can be performed, using either theoretical or experimen-
tally determined charge densities.

The principle obstacle to the integration of AIM properties
has been the fast and accurate calculation of the atomic vol-
umes, or equivalently their bounding interatomic surfaces. The

first reported calculations involved a coordinate transformation
to an atom-centered, distorted coordinate system, in which the
integration becomes unbounded.5 Despite the relative simplicity
of this scheme, in practice it tends to be very computationally ex-
pensive. More common have been attempts to represent the
interatomic surface by a function r(!, "), where ! and " are polar
coordinates centered on each atomic nucleus and r represents the
radial coordinate from the nucleus to the interatomic surface in
question. An early method to approximate this function, used by
the program PROAIM,6 determines the interatomic surface with a
set of points, which are obtained by following the electron density
gradient downhill from bond critical points. Interpolations are per-
formed between the point mesh. The point density within the
mesh tends to be quite uneven, leading to interpolations of r that
are also uneven in quality, with respect to ! and ". In practice
this can lead to ‘‘density leakage,’’ which becomes more severe in
molecules containing sharply curving interatomic surfaces. A later
approach involves approximating the interatomic surfaces, by rep-
resenting them as analytical functions of the angular coordinates
of a spherical or curvilinear coordinate system in real space. In
particular, an early algorithm used a Fourier–Chebyshev fit to a
numerically obtained interatomic surface to obtain an analytical
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approximation to the surface.7 Another algorithm uses a varia-
tional procedure to calculate an analytical solution, by varying a
vector of parameters to eliminate the electronic density flux resid-
ual over a quadrature of points.8 These and other algorithms have
been critically examined by Popelier.9

Although much work has been published with respect to these
methods of Bader volume calculation, they remain complicated to
implement. In practice, they also tend to lack robustness across a
wide range of electron density topologies. Attempts to represent
the interatomic surfaces as functions of nucleus-centered angular
coordinates are complicated by multiple ray-surface intersections.
This essentially makes the interatomic surface a multivalued func-
tion. Complex algorithms have been developed to deal with this
commonly encountered situation.10 More recently, the ‘‘octal tree
search algorithm’’ of computer graphics was used to analyze the
topologically complicated Laplacian of the electron density.11

Recently, an entirely different approach was suggested by Henkel-
man et al.12 Instead of explicitly representing the interatomic sur-
faces, each volume element of the system was assigned to an
atomic volume by tracing an approximate electron density gradi-
ent vector trajectory from the center of the volume element back
to an atomic nucleus, and assigning the volume element to that
atom. During the gradient vector trace, the position vector was

constrained to an integral multiple of the grid spacing in all three-

dimensions. Large speed increases could be achieved by this

method, because volume elements could be assigned to atomic

volumes early in the gradient tracing process, if the position vec-

tor corresponded to a volume element that had already been

assigned. The original algorithm reported by Henkelman et al.,12

demonstrated some conceptual and practical advantages over pre-

viously reported algorithms. Although the original algorithm was

described in terms of a regular cubic mesh, it is generally applica-

ble to any type of nonorthogonal regular mesh. The conceptual

simplicity of the algorithm and its ease of implementation lead to

very robust behavior, independent of the actual topology of the

electronic charge density field. The algorithm can easily handle

Bader volumes, which do not contain a nucleus. Additionally,

multiple ray-surface intersections are not an issue. The original

algorithm is summarized below.
The input data for the algorithm is a three-dimensional regu-

lar Cartesian mesh of values of the electron density # defined
over a rectangular volume of space V. This volume should be
large enough so that the value of # is negligible outside this

region. The volume V is subdivided into M smaller volumes $Vi,
i ¼ 1. . .M centered around each mesh point. Each point at the
center of $Vi is given by ri ¼ l!xîþm!ŷjþ n!zk̂; where l,
m, and n, are integers that indicate the discrete numbering of the
mesh points and Dx, Dy, Dz are the mesh spacings along each
Cartesian direction. The idea is to assign each volume element

$Vi to a Bader volume associated with a particular atomic nu-
cleus or in rare cases to a Bader volume associated with a local
maximum in #, which is not a nucleus. The following algorithm

is performed to assign the mesh points to a Bader volume:

1. Start to scan through the set of volume elements $Vi.
2. Initialize a list of volume elements A to be empty. Let ri be

the mesh point at the center of the next volume element to

be assigned. If there are no more volume elements to be
assigned, end program.

3. If the value of # at ri is a local maximum then terminate the
current search and assign the volume element $Vi to the Bader
volume associated with that maximum. If $Vi has already been
assigned to a Bader volume associated with a local maximum,
then assign all the volume elements stored in the list A to that
Bader volume and go to step 2 at the next mesh point to be
chosen. This can be done by increasing l, m, and n sequen-
tially ignoring points that have already been assigned.
There are 26 grid points immediately adjacent to each grid
point. This is because there are 26 nonzero values of
!r ¼ l!xîþm!ŷjþ n!zk̂ such that l, m, n [ {#1,0,1}.
For all 26 adjacent grid points ri + Dr, define an approxima-
tion to the component of the electron density gradient in the
direction of Dr by

#!r $
#ðri þ!rÞ # #ðriÞ

!rj j
: (1)

4. The location of the current mesh point is stored in memory
in the list A. Let ri ¼ ri + Dr for the Dr with the highest
computed value of #Dr. Go to step 3.

The earlier algorithm, however, does not always converge to
the correct Bader volumes in the limit of an infinitely fine mesh.
In particular, it does not approximate the true Bader surface in
areas where the electron density gradient is constant or slowly
changing. In these areas, which tend to lie farther from the
nuclei, the algorithm tends to ‘‘snap’’ the electron density gradi-
ent trajectories to one of the 26 directions of Dr, irrespective of
the mesh density. The cause of this snapping is illustrated in
Figure 1a. The results of a Bader volume calculation using this
grid-based algorithm, performed on a two-dimensional scalar
field is shown in Figure 1a. The scalar field was composed of
the sum of four different two-dimensional Gaussians centered at
the four vertices of a square.

This dependence of the calculated Bader volume on the ori-
entation of the mesh axes can be demonstrated by calculating
the Bader charge of an atom in a molecule at various orienta-
tions of the mesh axes and at various mesh densities. The results
of these calculations for the water molecule are shown in Figure
2a. In these calculations, the water molecule is rotated by
between 08 and 908 with respect to the grid axes, and the Bader
charge of the oxygen atom in the water molecule is calculated at
mesh spacings of 0.16, 0.18, and 0.20a0. From this graph, it can
be seen that the original grid-based algorithm gives results,
which vary by up to 0.12e, depending upon the orientation of
the water molecule with respect to the axes.

Improved Algorithm

The intention of the improved algorithm is to correct the depend-
ence of the original method upon the orientation of the system
with respect to the mesh axes, and to converge to the correct
Bader volumes in the limit of an infinitely fine mesh. To eliminate
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dependence of the computed charges on the orientation of the sys-
tem, the gradient trajectory is followed freely in space, with a step
size equal to the mesh interval, without restricting its direction to
one of the 26 discrete values of Dr. This allows a perfect trace of
the gradient trajectory in the limit of an infinitely fine mesh, and
therefore an accurate assignment of every mesh point to the proper
Bader volume. The new (and the original) algorithm can be
applied to non-Cartesian grid with different spacing along three
nonplanar directions but for the sake of simplicity we restrict the
description again to Cartesian meshes with a regular spacing.

As the vector r moves through space, tracing the gradient vec-
tor trajectory, it enters and leaves cubes of volume that correspond
to the closest mesh point. When the gradient vector trajectory is

followed to a point where it is located in a mesh cube that is com-
pletely surrounded by mesh cubes that have already been assigned
to a particular Bader volume, it is assumed that the currently fol-
lowed gradient trajectory eventually leads to the same maximum
in the charge density. At this point, each mesh cube that has been
passed through on the current gradient trajectory is also assumed
to be a part of the same Bader volume, and assigned accordingly.

A second improvement to the original algorithm is made, in
which the calculation is performed on a coarse mesh initially,
with the mesh becoming finer at each subsequent step of the cal-
culation. This allows larger volumes of space to be assigned to a
particular Bader volume in early steps, with finer details being
worked out at later steps in the calculation.

Figure 1. (a) A schematic illustrating deviation in the original grid-based algorithm near an intera-
tomic surface. The mesh points are illustrated as circles, with fill colors representing the Bader volume
assignment. The solid lines represent the gradient vector trajectories, and the dotted line illustrates the
true Bader interatomic surface. The arrows represent the Dr vectors. Bader volume assignments are
shown in (b) and (c), for the original grid-based algorithm, and the algorithm reported in this article,
respectively. These calculations were performed in two-dimensions, using a density field composed of
the sum of four Gaussian functions arranged in a square.
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The third improvement is performed during the final integra-
tion, where a random sampling technique is used within all vol-

ume elements that are still not completely surrounded by ele-

ments assigned to the same Bader volume. The dividing surface

between atoms passes through these cubes. To obtain a more

accurate charge assignment, points in the volume element are

sampled randomly. Each randomly selected point is then gradi-

ent-traced until the point is unambiguously assigned to an

atomic volume as described earlier. The contribution of the vol-

ume element to the atomic properties is then divided up propor-

tionally among the atoms to which the random samples have

been assigned.
In the following pseudocode, the same variables are used as

in the previous section. However, for simplicity we define

$w $ !x ¼ !y ¼ !z (2)

as a scalar equal to the mesh spacing in the Cartesian directions
(x,y,z). A small constant $g is chosen as the gradient trajectory step
size for the duration of the procedure, typically one half of the
mesh spacing of the original data. A second constant $Q is defined
as a precision parameter used during the random sampling integra-
tion procedure. It corresponds to the amount of subcharge in a vol-
ume element that we want to be assigned by the charge allocation
method. Assuming a typical desired Bader charge precision of
around +/# 0.001 electrons, the optimal value of $Q determined
heuristically for this precision turns out to be about 1% of this
value. However, as $Q is used in a random sampling process, it
would be expected that the error would decrease with the inverse

of the square root of the number of sampled points. Since the num-
ber of sampled points is inversely proportional to $Q, the error
should increase as the square root of $Q. In addition to these preci-
sion parameters a set B is defined, which has the same number of
elements as there are distinct maxima in #. When all volume ele-
ments are allocated, each element of B is the set of volume ele-
ments associated with each distinct maxima of # and is thus the
Bader volume associated with that maximum point. The full
improved algorithm is given below:

1. From the supplied data points on the grid, set up a coarse
mesh using a large value of $w. Initialize B to be empty.
Define a mesh length value $w0, which defines the allowable
accuracy of the spatial variation in the Bader volumes. This
should be greater than or equal to the mesh spacing given in
the input data set.

2. Initialize a set of volume elements A to be empty. Let ri be the
mesh point at the centre of the next element $Vi to be assigned.
This is chosen as in the case of the original algorithm. If there
are no volume elements to be assigned, go to step 3.

3. If all 26 cubes surrounding $Vi are already assigned to the
same Bader volume (i.e., element of B), then assign $Vi to
that Bader volume. If ri is located within a distance $w of an
atomic nucleus, then assign $Vi to the Bader volume associ-
ated with that atomic nucleus. If # has local maximum at ri
but ri is not located within a distance $w of any atomic nu-
cleus, assign the $Vi to a Bader volume associated with a
non-nuclear attractor. Assign all the volume elements stored
in the list A to the same Bader volume as $Vi and go to step
2. Otherwise, add $Vi to the list A.

Figure 2. Bader charge on the oxygen atom in a water molecule, calculated by integration over the
Bader volume (a) using the original grid-based algorithm, and (b) the new algorithm with various
methods of gradient calculation. All calculations use an electron density obtained from calculations,
using the LDA functional with PLATO.13 The calculated oxygen Bader charges are plotted with
respect to the rotation of the water molecule around the z-axis of the coordinate system. The series in
(a) correspond to regular meshes with spacings of 0.20, 0.18, and 0.16 Bohr radii. The series in (b)
correspond to direct gradient evaluation, and cubic and linear interpolation of the gradient, as well as
the nearest gradient scheme. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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4. Let

!r $ $gr#ðrÞ
r#ðrÞj j

: (3)

Let r ¼ ri + Dr. Determine the new volume element $Vi,
which contains r. Go to step 3.

5. If $w ' $w0, go to 5.
6. Let $w ¼ $w/2. From each old volume element, eight new

cubes are produced initially allocated to one of the maxima
in #. Those new cubes which are completely surrounded by
cubes allocated to the same maximum are kept in the appro-
priate element of B. Those that are not so surrounded are
erased from association with a maximum (i.e., removed from
that element of B) and considered as unallocated for further
investigation. Go to 2.

7. Integrate the electron density over all mesh volumes in the
mesh. Let $qi be the total charge contained within the ith
volume element. For each volume element that is completely
surrounded by volume elements with the same Bader volume
assignment, assign $qi to that Bader volume. Otherwise,
define an integer N by

N ¼ int
$qi
$Q

! "
: (4)

Choose N random points in $Vi and trace the gradient trajectory
for each point as in step 3, until reaching a volume element that
is completely surrounded by volume elements with the same
Bader volume assignment. Once this occurs, assign $qi/N to that
Bader volume. End the program.

It is important to carry out the charge allocation given in
step 5 for elements with trajectories that can be traced back to
different Bader volumes. If this is not done, significant system-
atic errors can occur in the Bader charge integration in certain
circumstances. For example, if the true Bader surface is planar
or nearly planar, and runs parallel to the xy-plane of the mesh
coordinate system, significant errors would result unless # was
defined on a very fine grid. This is because all of the mesh
cubes bisected by this plane would be assigned to either one or
the other of the adjacent Bader volumes, depending upon which
Bader volume contained the mesh points in this plane.

To obtain the gradient vectors, several methods can be used.
The ‘‘Direct’’ method, calculates the gradient vector, using the
electronic orbital coefficients. The second method involves interpo-
lation between points in a regular mesh, to obtain each of the three
gradient vector components. In this article, interpolations between
a mesh of gradient vector components were performed, using a
three-dimensional cubic polynomial interpolation algorithm.13 This
cubic interpolation algorithm is referred to as ‘‘Cubic interpola-
tion.’’ For comparison, calculations are also reported by using two
simpler algorithms to calculate the gradient vector components. In
the first method, the gradient vector is simply taken as the gradient
vector of the closest grid point. This algorithm is referred to as
‘‘Nearest gradient.’’ In the final method, a simple trilinear algo-
rithm was used to calculate the gradient vector components. This
algorithm is referred to as ‘‘Linear interpolation.’’

In rare cases where Bader charge has been allocated to a
maximum # value, which is not an atom, there are two different

courses of action. The choice of this method to use is dependent
upon the specific application. In the first method, each of the
volume elements making up the corresponding element of B are
assigned individually to another element of B, which corre-
sponds to the nearest atom to that volume element.

Results

The results of a Bader volume calculation performed, using the
algorithm reported in this article is shown graphically in Figure
1b, using the same scalar field as shown in Figure 1a. A com-
parison of Figures 1b and 1c demonstrates that the new algo-
rithm succeeds in assigning all points to their respective Bader
volumes, even those which lie close to an interatomic surface.

A series of Bader charge calculations was performed on the
oxygen atom in a water molecule at a mesh spacing of 0.2
Bohr. As shown in Figure 2b, the calculated oxygen Bader
charges vary by approximately 0.001e with respect to rotation of
the integral mesh axes, when the new algorithm is used with the
Direct method of gradient vector calculation. The algorithm
varies by less than 0.005e, when the cubic interpolation scheme
is used. The Nearest Gradient and Linear Interpolation schemes
varied by approximately 0.08e with respect to rotation of the
grid axes. The mean Bader analysis times for calculations per-
formed on a water molecule with a mesh spacing of 0.2 Bohr
radii, using all four gradient interpolation schemes are summar-
ized in Table1. The cubic interpolation scheme requires appro-
ximately 20% of the CPU time that the direct gradient scheme
requires.

Several molecules were analyzed, using the current integration
algorithm. In each case, the molecule was fully geometry-opti-
mized, using the density-functional theory Package for Linear
Combination of Atomic Orbitals (PLATO),14 before the Bader
analysis was performed. For a subset of smaller molecules, the
calculations were performed, using the cubic interpolation
scheme, as well as with a slower direct evaluation of the gradient
vector, for comparison. The results of these calculations are sum-
marized in Table2. Further atomic charge calculations involving
only the cubic interpolation scheme are reported in Table3.

The electron densities were calculated, using the full LCAO
treatment and the LDA density functional. The core electrons
were represented by the relativistic electronic core potentials of
Hartwigsen et al.15 for the elements H, C, O, and Si. For the
remaining elements, the nonrelativistic pseudopotentials of Goe-
decker et al16 were used. For all of the elements except hydro-

Table 1. Mean Bader Analysis Calculation Time for a Water Molecule,

Using the Four Different Gradient Calculation Methods.

Gradient scheme Bader analysis time (s)

Direct 354.2

Cubic interpolation 61.0

Trilinear interpolation 25.0
Nearest gradient 23.8

All calculations were performed on a 2.5 Ghz PowerPC G5 processor.
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Table 2. Bader Charges on Various Atoms in Small Molecules, Analyzed with the Current Charge

Integration Algorithm.

Atom

Net Bader charge

(cubic interpolation)

Atomic energy

(cubic interpolation)

Net Bader charge

(direct gradient)

Atomic energy

(direct gradient)

Ammonia

N #1.111 #20.829615 #1.112 #20.829704
H 0.370 #0.84956 0.370 #0.849559

H 0.370 #0.849073 0.371 #0.848998

H 0.370 #0.849067 0.370 #0.849053
Total 0.000 #23.377315 0.000 #23.377314

Carbon dioxide

C 1.967 #10.310103 1.967 #10.310097

O #0.984 #32.56825 #0.984 #32.568174
O #0.983 #32.56829 #0.983 #32.568372

Total 0.000 #75.446643 0.000 #75.446643

Carbon disulfide

C #0.945 #11.463289 #0.941 #11.463491
S 0.472 #20.354888 0.471 #20.354857

S 0.473 #20.354921 0.470 #20.35475

Total 0.000 #52.173098 0.000 #52.173098

Epoxyethane
O #0.845 #32.487569 #0.844 #32.487565

C 0.296 #11.377862 0.296 #11.377894

C 0.297 #11.377806 0.297 #11.377798
H 0.063 #1.026462 0.063 #1.026466

H 0.063 #1.026431 0.063 #1.0264

H 0.063 #1.026472 0.063 #1.026438

H 0.063 #1.026479 0.062 #1.02652
Total 0.000 #59.349081 0.000 #59.349081

Formaldehyde

O #0.990 #32.382007 #0.987 #32.382071

C 0.869 #11.407462 0.866 #11.407419
H 0.061 #0.926921 0.061 #0.926863

H 0.061 #0.926868 0.061 #0.926905

Total 0.000 #45.643258 0.000 #45.643258
Hydrazine

N #0.709 #20.397229 #0.708 #20.397173

N #0.710 #20.397202 #0.710 #20.397171

H 0.343 #0.913877 0.342 #0.913894
H 0.343 #0.913889 0.343 #0.91392

H 0.367 #0.866139 0.366 #0.86619

H 0.367 #0.866168 0.367 #0.866156

Total 0.000 #44.354504 0.000 #44.354504
Hydrogen peroxide

O #0.573 #32.303759 #0.575 #32.303605

O #0.576 #32.303448 #0.576 #32.303428

H 0.574 #0.780503 0.575 #0.780635
H 0.575 #0.780638 0.575 #0.780681

Total 0.000 #66.168348 0.000 #66.168349

Methane
C #0.200 #12.24834 #0.202 #12.248537

H 0.050 #0.949933 0.050 #0.949881

H 0.050 #0.949776 0.051 #0.949718

H 0.050 #0.949792 0.051 #0.949753
H 0.050 #0.949829 0.051 #0.94978

Total 0.000 #16.04767 0.000 #16.047669

Methanol

O #1.048 #32.540578 #1.049 #32.540597
C 0.370 #11.754068 0.372 #11.753924

(continued)
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gen, a triple-numeric basis set was used with added polarization
functions. For hydrogen, a double numeric polarized basis set
was taken. Because the SCF included only valence electrons, the
core electrons were assumed to remain completely localized for
the purposes of the Bader charge calculations. A fixed, spheri-
cally symmetric core electron density function was used at each
nucleus for the purposes of the gradient vector calculations. This
core electron density was calculated as the difference between
an all-electron density atomic calculation, and the corresponding
atomic calculation, using the appropriate pseudopotential.

When the cubic interpolation scheme was used, the cubic
interpolation was performed on a grid containing valence elec-
tron gradient components only. In these cases, the core electron

Table 2. (Continued)

Atom

Net Bader charge

(cubic interpolation)

Atomic energy

(cubic interpolation)

Net Bader charge

(direct gradient)

Atomic energy

(direct gradient)

Alcohol H 0.559 #0.841434 0.559 #0.841445
Methyl H 0.060 #0.972826 0.060 #0.972893

Methyl H 0.029 #0.967279 0.029 #0.967348

Methyl H 0.029 #0.967332 0.029 #0.96731

Total 0.000 #48.043517 0.000 #48.043517
Methylamine

N #1.011 #20.539741 #1.011 #20.539699

C 0.230 #11.77167 0.230 #11.771758
Amine H 0.351 #0.909831 0.351 #0.90982

Amine H 0.351 #0.909834 0.351 #0.909851

Methyl H 0.006 #0.985429 0.005 #0.985525

Methyl H 0.036 #0.985956 0.037 #0.985842
Methyl H 0.037 #0.985824 0.037 #0.985791

Total 0.000 #37.088285 0.000 #37.088286

Nitrogen dioxide

O #0.314 #32.114714 #0.313 #32.11493
O #0.312 #32.115132 #0.313 #32.115007

N 0.626 #19.398378 0.625 #19.398287

Total 0.000 #83.628224 0.000 #83.628224
Silane

Si 2.330 #7.849469 2.330 #7.849485

H #0.582 #1.153241 #0.582 #1.153225

H #0.583 #1.15324 #0.583 #1.153257
H #0.582 #1.153244 #0.582 #1.153248

H #0.583 #1.153248 #0.583 #1.153228

Total 0.000 #12.462442 0.000 #12.462442

Sulfur dioxide
S 2.182 #19.60388 2.181 #19.603563

O #1.091 #32.405994 #1.090 #32.406387

O #1.090 #32.406382 #1.090 #32.406307

Total 0.000 #84.416256 0.000 #84.416257
Water

O #1.152 #32.772041 #1.152 #32.77202

H 0.576 #0.787338 0.576 #0.78735
H 0.576 #0.787326 0.576 #0.787334

Total 0.000 #34.346705 0.000 #34.346704

The electron densities were calculated at the optimized geometries, using full SCF and the LDA functional.
Gradient vectors were calculated by a cubic interpolation scheme, and directly for comparison. The atomic

energies are also reported (in Rydbergs).

density gradients were added on after the cubic interpolation
was completed.

Bader charge analysis is important for a number of reasons.
One application is that it allows the total energy of an atomic sys-
tem to be apportioned uniquely to each atom in the system, defin-
ing a so-called ‘‘energy per atom.’’ This is a concept that is quite
useful when fitting empirical potentials to quantum mechanical
calculations. This apportioning can be accomplished as follows.

Within the local density approximation, the total energy of a
system is given by the equation

Etot ¼
X

n

fn"n þ EIon#Ion þ Ed:c: (5)
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The electron densities were calculated at the optimized geometries, using full SCF and the LDA functional. Gradient
vectors were calculated by a cubic interpolation scheme. The atomic energies are also reported (in Rydbergs).

Table 3. Bader Charges on Various Atoms in Molecules, Analyzed with

Atom Net Bader charge Plato Bader atomic energy

Acetone

O #1.038 #32.69231

Carbonyl C 0.920 #10.42030

Methyl C #0.131 #11.95030

Methyl C #0.130 #11.95030

H 0.074 #1.03217

H 0.074 #1.03222

H 0.058 #1.02723

H 0.058 #1.02719

H 0.058 #1.02722

H 0.058 #1.02718

Total 0.000 #73.18642

Cyclobutane

C #0.033 #11.57325

C #0.032 #11.57317

C #0.032 #11.57305

C #0.033 #11.57325

H 0.018 #1.03349

H 0.014 #1.10579

H 0.018 #1.03358

H 0.014 #1.10571

H 0.019 #1.03347

H 0.014 #1.10578

H 0.019 #1.03339

H 0.014 #1.10568

Total 0.000 #54.84960

Cyclopropane

C #0.085 #11.56238

C #0.083 #11.56192

C #0.086 #11.56225

H 0.043 #1.06900

H 0.042 #1.06947

H 0.042 #1.06935

H 0.043 #1.06908

H 0.042 #1.06950

H 0.043 #1.06928

Total 0.000 #41.10224

Benzene

C #0.049 #11.44412

C #0.048 #11.44256

C #0.048 #11.44256

C #0.049 #11.44419

C #0.048 #11.44246

C #0.049 #11.44271

H 0.049 #1.10652

H 0.048 #1.11600

H 0.048 #1.11599

H 0.049 #1.10644

H 0.048 #1.11606

H 0.048 #1.11609
Total 0.000 #75.33570

Ethane

C #0.071 #11.89605

C #0.071 #11.89599
H 0.024 #0.99729

H 0.024 #0.99923

H 0.024 #0.99926

Table 3. Continued
Atom Net Bader charge Plato Bader atomic energy

H 0.024 #0.99739

H 0.024 #0.99914

H 0.023 #0.99931
Total 0.000 #29.78367

Dimethyl ether

O #0.993 #32.21170

C 0.386 #11.73560
C 0.386 #11.73553

H 0.058 #1.01175

H 0.058 #1.01176
H 0.026 #1.01232

H 0.026 #1.01236

H 0.025 #1.01238

H 0.026 #1.01235
Total 0.000 #61.75576

Ethanol

O #1.050 #32.69142

Alcohol C 0.421 #11.13652
Methyl C #0.075 #11.99770

Alcohol H 0.554 #0.96628

Methylene H 0.017 #0.92801
Methylene H 0.017 #0.92793

Methyl H 0.032 #1.05746

Methyl H 0.041 #1.04450

Methyl H 0.041 #1.04451
Total 0.000 #61.79433

Formamide

O #1.063 #32.62141

C 1.278 #10.85011
N #1.099 #20.44242

Aldehyde H 0.053 #0.90935

Amine H 0.423 #0.92662
Amine H 0.410 #1.05355

Total 0.000 #66.80346

Formic acid

Carbonyl O #1.059 #32.55783
Alcohol O #1.047 #32.56055

Carbonyl C 1.408 #10.96165

Aldehyde H 0.109 #0.85759

Alcohol H 0.589 #0.82373
Total 0.000 #77.76134

Nitric Oxide

O #0.329 #32.07318

N 0.329 #19.56455
Total 0.000 #51.63773

Propane

Methylene C 0.004 #11.26301
Methyl C #0.076 #12.01459

Methyl C #0.076 #12.01458

Methylene H 0.012 #0.94514

Methylene H 0.013 #0.94508
Methyl H 0.024 #1.05797

Methyl H 0.023 #1.05804

Methyl H 0.019 #1.05643

Methyl H 0.019 #1.05642
Methyl H 0.020 #1.05639

Methyl H 0.019 #1.05645

Total 0.000 #43.52409

the Current Charge Integration Algorithm.
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where fn is the occupancy of the n-th Kohn–Sham orbital,
and en is its eigenvalue. EIon–Ion is a sum of the ion–ion
interactions and the final term is the double-counting energy,
defined as

Ed:c: $
Z

#
# 1

2
VHað#Þ # VXCð#Þ þ EXCð#Þ

# $
dr: (6)

The first term in eq. (5) is the band energy, and can be
expressed in terms of the density and Hamiltonian matrix,

X

n

fn"n ¼
X

i%;j&

#i%j&Hi%j&: (7)

The terms on the right side can then be partitioned among the
atoms in the system, by assigning on-site and bonding contri-
butions to each atom,

Eband;i ¼
X

%;&

#i%i&Hi%i& þ
X

%;j&
i6¼j

#i%j&Hi%j&: (8)

The ion–ion interactions can be partitioned among the atoms
of the system by assigning half of each ion–ion term to each
of the two ions involved. The double counting energy can then
be partitioned among the atoms in the system by integrating
the right side of eq. (6) over each atomic basin.

The energies reported in Tables 2 and 3 were calculated,
using this energy partitioning scheme.

Scaling

The total amount of CPU time required by the new algorithm to
perform the Bader analysis is plotted against the total number of
interatomic surfaces present in all of the molecules studied
(Fig. 3). The calculations were performed on a 2.5 GHz
PowerPC G5 processor, using a mesh resolution of 0.2 Bohr
radii. The CPU time required to calculate the density and gradi-
ent arrays were not included in this data. These timing values
were fit to a power curve, using a least-squares fitting procedure.
The best-fit equation is

t ¼ 38 x0:98: (9)

Hence, the algorithm scales linearly with respect to the total
number of interatomic surfaces in the system, and requires
approximately 38 s of CPU time per interatomic surface on
the computer system used. Due to the fact that the algorithm
scales linearly with respect to the number of interatomic sur-
faces, for larger systems it can also be expected to scale lin-
early with respect to the total number of atoms in the sys-
tem. This does not include the time required to perform DFT
simulations.

Summary

An improved version of the grid-based algorithm for Bader
atomic property integration has been written. This algorithm is
relatively simple to implement, and robust, as well as insensitive
to the topology of the electronic charge density. This algorithm
can also be applied to a mesh of precalculated gradient vectors,
using a suitable interpolation scheme. A series of molecular cal-
culations was presented, comparing the performance of the algo-
rithm, using both direct gradient vector evaluation, and a cubic
interpolation scheme. These calculations indicated excellent
agreement between the interpolated and directly-evaluated gradi-
ent vector methods, validating the interpolation scheme. Com-
pared with the original grid-based algorithm, the reported algo-
rithm was also shown to be relatively insensitive to the rotation
of the coordinate system of the mesh.

It was shown that a cubic gradient interpolation scheme
yields nearly the same results as a direct gradient evaluation
scheme, but requires only approximately 20% of the CPU time.
It was also demonstrated that the algorithm scales linearly with
respect to the total number of interatomic surfaces in the system.
This implies that, for larger systems, the algorithm scales line-
arly with respect to the total number of atoms.
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