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Associating the regions of a geographic subdivision with the cells of a grid is a basic

operation that is used in various types of maps, like spatially ordered treemaps and

Origin-Destination maps (OD maps). In these cases the regular shapes of the grid cells
allow easy representation of extra information about the regions. The main challenge is

to find an association that allows a user to find a region in the grid quickly. We call the

representation of a set of regions as a grid a grid map.
We introduce a new approach to solve the association problem for grid maps by

formulating it as a point set matching problem: Given two sets A (the centroids of

the regions) and B (the grid centres) of n points in the plane, compute an optimal
one-to-one matching between A and B. We identify three optimisation criteria that are

important for grid map layout: maximise the number of adjacencies in the grid that
are also adjacencies of the regions, minimise the sum of the distances between matched

points, and maximise the number of pairs of points in A for which the matching preserves

the directional relation (SW, NW, etc.). We consider matchings that minimise the L1-
distance (Manhattan-distance), the ranked L1-distance, and the L2

2-distance, since one

can expect that minimising distances implicitly helps to fulfill the other criteria.
We present algorithms to compute such matchings and perform an experimental

comparison that also includes a previous method to compute a grid map. The experi-

ments show that our more global, matching-based algorithm outperforms previous, more

local approaches with respect to all three optimisation criteria.

Keywords: grid map; point-set matching; visualization.

∗A preliminary version of this paper appeared in Visualization Symposium (PacificVis), 2013 IEEE
Pacific, pp. 25–32.
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1. Introduction

Various types of maps associate the regions of a geographic subdivision to

the cells of a grid. Prominent examples of such grid maps are spatially ordered

treemaps [19] and OD-maps [20]. The regular shape of the grid cells allows easy

representation of various types of information about the regions, see for example

the London BikeGrid (gicentre.org/bikegrid) and Figure 1. A major challenge when

creating such grid maps is the layout of the regions, that is, the association of regions

in the input subdivision to cells in the grid.

Tasks. We identify the tasks that grid maps should support when they are used.

First, a user needs to be able to locate the cell of a region in the grid map in order to

retrieve the information it contains. Here we assume that the user is familiar with

the rough layout of the geographic regions, otherwise she cannot do anything else

than scanning all cells of the grid map. Second, a user may compare the information

of two regions, after locating both cells. A user may also want to compare the

information of a region with the surrounding regions. Third, the user may look

for spatial patterns, for example that the southern regions all have a relatively high

value for some attribute X. Other possible tasks on grid maps exist; for a discussion

on visual tasks we refer to [6].

For the location task, it is to be expected that a user will look for a region in

the grid map based on her knowledge: if the user is looking for Louisiana on a grid

map of the USA, she will look first in the bottom middle. If the cell there is for

Alabama or Mississippi, then she may expect to find Louisiana more to the left.

Optimisation criteria. The tasks and discussion above suggest that the following

criteria are important to decide which regions of the map correspond to which cells

of the grid map:

• Location (Louisiana should be in the bottom middle).

• Adjacency (Maine and New Hampshire should be adjacent).

• Relative orientation (Utah should be northwest of New Mexico).
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Figure 1: Election results from the Netherlands in a grid map.

http://gicentre.org/bikegrid
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While the spatial pattern task is not explicitly represented by these criteria, it is

likely that the location criterion will help to fulfill it. With these criteria in mind

we formalize the problem of assigning the regions to the grid cells.

Formal problem definition. We model the association problem for grid maps as

a weighted point set matching problem between the centroids of the input regions

and the centres of the grid cells. Let M be a map with n regions and let G be

a grid with n grid cells. To define the distance between regions and grid cells we

will use the centroids of the regions and the centroids (middle) of the grid cells.

Note that we need to bring the geographic map and the grid map into the same

coordinate system before distance has any meaning. First of all, we need to choose

a map projection to obtain two planar point sets. Note that the choice of the map

projection influences the result of the matching. Second, we translate one point set

with respect to the other and scale the x- and y-coordinates. We do not consider

other transformations such as rotation as they may make locating a region more

difficult.

Let A be the set of centroids of the regions in M and let B be the set of grid

cell centres of G. We want to compute a one-to-one matching φ between the regions

in the map (or points in A) and the cells in the grid (or points in B), such that the

resulting grid map is as similar toM as possible. The three criteria we listed before

for the quality of the matching φ are now: (i) minimising the sum of the distances

between matched points—one from A and one from B—under translation, scaling,

and both translation and scaling of point set A, (ii) maximising the number of

adjacencies inM that the matching preserves in G, and (iii) maximising the number

of pairs of points in A for which the matching preserves the directional relation. That

is, if a point a2 lies northwest of point a1, then we would like φ(a2) to lie northwest

of φ(a1) as well. We consider four different directional relations, namely northeast,

southeast, southwest, or northwest.

Related work. We distinguish research that presents related visualisations and

research that discusses related algorithmic ideas, in particular point set matching

problems.

There is a longstanding cartographic tradition of associating statistical infor-

mation with the regions of a map. Such information can be captured in various

forms of visualizations, such as graphs or charts. Often these visualizations are di-

rectly overlayed onto the associated base map, for example in proportional symbol

maps [13]. Such an overlay necessarily has to deal with occlusions, both of the

symbols themselves and of the base map. The work of Cabello et al. [5] tries to

alleviate some of the issues arising. Also van Kreveld et al. study problems related

to placing diagrams on maps [16]. In particular, they try to minimize the amount

of overlap between diagrams of different regions, and between the diagrams and

other regions and features of the map. Another approach are the necklace maps [14]

introduced by Speckmann and Verbeek which move visualization to a necklace sur-

rounding the map. Still, none of these methods can fully avoid visual clutter when
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detailed statistical visualizations are combined with small geographic regions. If the

exact geographic location of the regions and their associated visualizations is not

paramount, grid maps are an attractive alternative which provides equal space for

the visualizations of every region.

Grid maps are a simple type of spatially ordered treemap [19]. A spatially or-

dered treemap, or spatial treemap for short, need not have the rigorous grid struc-

ture of a grid map. A (spatial) treemap can fill a rectangular region with any number

of rectangles, each of which may have a different size. Thus, a grid map can be seen

as a single-level spatial treemap in which all rectangles have the same size and ori-

entation, and are nicely aligned in a regular grid. We focus on grids because they

are the simplest partition of a space, where all cells get the same space to show ex-

tra information. These properties may improve the readability of the visualization.

Note, though, that our algorithms do not require a (rectangular) grid structure to

function properly; see for example Figure 3. In general, any set of cells works.

Wood et al. [21] use a grid map, or a spatial matrix as they call it, to visualize

information from the London BikeGrid: London’s bicycle hiring scheme. They use an

adapted spatial treemap [19] to map the docking-stations to the grid cells. Each cell

itself displays the number of available bikes (in the corresponding docking-station)

using a graph and different colours.

Grid maps are also related to OD maps [20, 21, 12]. OD maps are used to

display the flow in Origin-Destination data. An OD map is a grid in which each

cell corresponds to an origin region. Each cell again contains a grid in which each

destination region is represented by a cell (see Figure 2). When the grids preserve

the spatial layout of the underlying map they can show spatial patterns in the data,

an improvement over OD matrices introduced by Voorhees [18]. Hence these OD

maps can be seen as two-level grid maps. A grid map is therefore not a new type

of map, but the name for a grid whose cells are associated with geographic regions

or locations in an optimised manner.

We listed three optimisation criteria for grid map layout. They all concern a sum

of counts or distances, and therefore the global approach of matching is natural.

The first optimisation criterion relates to minimising the distance when matching

two point sets. Many papers on this topic exist in computational geometry and

shape matching. For surveys, see Alt and Guibas [2] and Veltkamp and Hagedoorn

[17]. Existing results differ in the matching distance used, whether the matching

is bipartite or not, whether the point sets have the same cardinality or not, and

which transformations can be applied to the one point set to match it best with

the other. Distances of matchings can be based on sums of matched points with

respect to the L1 (Manhattan), L2 (Euclidean), or L2
2 distance, but they can also

be based on minimising the maximum distance of the matched points. The latter

type of matchings are called bottleneck matchings. Another well-known metric is

the Earth mover’s distance, which is useful when the points have different weights.

Transformations that may be applied before matching can be translation, scaling,

rotation, and reflection. Given our objectives, rotation and reflection are less suit-
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Figure 2: A map with the 32 Counties in Ireland (top left), a grid map (approxi-

mately) preserving directional relations between the counties (bottom left), and an

OD map constructed from this grid map (right). The matching used here minimises

the ranked L1-distance as described in Section 2.2. Figure based on Slingsby et al.

[12].

able transformations. Translation and scaling on x- and y-coordinates, however,

are suitable to place a geographic map into the same coordinate system as a grid

map. Cohen and Guibas [7] show how to compute a matching and a locally optimal

transformation. Furthermore, they prove that if we consider the L2
2 distance and

all points have the same weight then there is a unique optimal translation (i.e. a

translation that allows for a minimum distance matching). Namely, the translation

that aligns the centroids of the point sets. This allows them to compute a minimum

L2
2 distance matching under translation efficiently.

Efrat et al. [9] present an O(n5 log2 n) algorithm to compute a minimum bot-

tleneck matching of two sets of n points under translation. A bottleneck matching

minimizes the maximum distance between a pair of matched points, However, such

a matching has the unfortunate effect that all point pairs with smaller distances

can be matched arbitrarily without influencing the resulting distance. Therefore,

we study matchings that minimize the sum of the distances between matched pairs

of points.

The second optimisation criterion is preserving the maximum number of adja-

cencies. Unfortunately, even a simple version of the problem is NP-hard [3]. Fur-

thermore, it is clear that concentrating purely on adjacencies will not give good grid

map layouts because the other two criteria will be grossly violated in many cases.
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Hence we will not optimise this criterion explicitly.

The third optimisation criterion is preserving directional relations. Our notion

of directional relations is similar to that of orthogonal-order as described by Misue

et al. [11]. They argue that it is important to preserve the mental map of a dia-

gram under transformations. For some classes of graphs (diagrams) this is shown to

be NP-hard [4]. However, to our knowledge, the directional relations criterion has

not been studied before in the context of point set matching. The computational

complexity of the problem is unknown.

Selecting a distance measure. It seems likely that using a matching that min-

imises sums of distances will also be reasonably good for preserving adjacencies

and directional relations. Hence we concentrate on this idea, and later analyse the

performance of all methods on these criteria experimentally. The metrics we con-

sider are the L1-distance, the L2
2-distance, and a ranked L1-distance. The ranked

L1-distance can compensate for situations where the regions on a map are unevenly

spaced in x- or y-direction, like the USA: horizontal spacing for the western States is

considerably larger than for the eastern States. The ranked L1-distance will ignore

this aspect in its value. Furthermore, this distance allows us to prove a theoretical

approximation bound for optimising the number of correct direction relations.

We do not consider bottleneck matchings for the reasons we mentioned earlier.

We also do not consider the Earth mover’s distance because we do not have weighted

points. Finally, we do not consider the sum of L2-distances because even for a given

matching, we cannot compute the optimal translation analytically, implying that

computing the optimal matching using the sum of L2-distances is not possible.

Results and organisation. We present algorithms to solve the association prob-

lem for grid maps based on optimal matchings between two point sets. In Section 2

we present our algorithms. We first study minimum distance matchings using the

L1-distance under translation, scaling, and the combination of translation and scal-

ing, and show that these can be solved in polynomial time. Whereas a matching

itself can be computed efficiently, optimising matchings over translations and scal-

ings will not be feasible for large-size instances, however. We then study a ranked

L1-distance that gives theoretical approximation guarantees for optimising the num-

ber of relative orientations. We also discuss our implementation using an LP solver

and show that it can easily incorporate cases where not all grid cells should be used.

Section 3 presents an experimental analysis of matchings using the L1-distance,

L1-distance by ranks, and L2
2-distance. The latter algorithm is by Cohen and

Guibas [7], who solve minimum L2
2-distance matching under translations only. We

compare matching by these distance measures with the approach used by Wood and

Dykes [19] and report the summed distances, the percentage of adjacencies kept,

and the percentage of correct relative orientations. Our data consists of the maps

of France, the United States, Romania, and the London boroughs. Our matching

approach outperforms previous approaches to solve the association problem on the

three criteria.
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Figure 3: The states mapped onto the stars of the US Flag using the minimum L1-

distance matching under translation. The two white stars are reserved for Alaska

and Hawaii.

The matching approach does not depend on the grid pattern, we can apply it

to other patterns as well. For example, we can associate the States in the US to the

stars of the flag, as shown in Figure 3.

2. Computing a Grid Map

2.1. Minimising Distance

We first introduce some notation. For a point a = (ax, ay) and a translation t =

(tx, ty) we write a + t = (ax + tx, ay + ty). We also use this notation for a set of

points: A + t = {a + t | a ∈ A}. Similarly, for a scaling λ = (λx, λy) we write

λa = (λx · ax, λy · ay). A transformation (either translation or scaling) in which

both components have the same value c we denote by c = (c, c).

Let φ : A → B be a one-to-one matching for the point sets A and B, let t be a

translation and let λ be a scaling. Then we define the total distance of matching φ

with translation t and scaling λ as

D(φ, t, λ) =
∑
a∈A

d(λa+ t, φ(a))

where d(a, b) denotes the L1-distance (Manhattan-distance) between a and b. Ad-

ditionally, we define DT (φ, t) = D(φ, t, 1), DΛ(φ, λ) = D(φ, 0, λ) and DI(φ) =

D(φ, 0, 1).

We now want to find a matching together with a translation and/or scaling that

minimises the total distance. More formally, let Φ be the collection of all one-to-one
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matchings between A and B, let T be the collection of all translations, and let Λ be

the collection of all scalings, then we try to find a matching φ∗ ∈ Φ, a translation

t∗ ∈ T , and a scaling λ∗ ∈ Λ such that

D(φ∗, t∗, λ∗) = min
φ∈Φ,t∈T ,λ∈Λ

D(φ, t, λ).

Since we are using the L1-distance we can decompose d into a horizontal and a

vertical component: d(a, b) = x(a, b) + y(a, b) with x(a, b) = |ax − bx| and y(a, b) =

|ay − by|. We generalise this notion to D, which gives us D(φ, t, λ) = X(φ, t, λ) +

Y (φ, t, λ). The functions XT , YT , XΛ, etc. are defined accordingly.

Minimising L1. The easiest case one can consider is to compute a matching that

minimises DI : a minimum L1-distance matching without translation or scaling. This

problem can be solved using Vaidya’s method [15] in O(n2 log3 n) time.

Minimising L1 under translation. To find a minimum distance matching under

translation, i.e. a matching that minimises DT , we identify a (finite) set of trans-

lations T ⊂ T that contains an optimal translation. We then use Vaidya’s method

for each translation in T to compute an optimal matching.

We say a translation t is horizontal if and only if t = (c, 0) for some c ∈ R. Point

sets A and B are x-aligned if (and only if) there is a point a ∈ A and a point b ∈ B
with ax = bx. We define vertical translation and y-aligned symmetrically.

We now observe that for any matching φ between point sets A and B that are

not x-aligned there is a horizontal translation that does not increase XT (φ) (in

most cases x-aligning the point sets will even decrease the distance XT (φ)). See

Figure 4 for an illustration. Hence:

Lemma 1. Let A and B be two non x-aligned sets of n points in the plane, and let φ

be any one-to-one matching between A and B. Then there is a horizontal translation

t∗ 6= 0 such that A∗ = A+ t∗ and B are x-aligned and DT (φ, t∗) ≤ DI(φ).

Proof. We consider only horizontal translations t∗ so it follows that YT (φ, t∗) =

YI(φ). The function X ′(t) = XT (φ, t) is piecewise-linear in t and has its minimum

at a breakpoint, say t′. Since X ′ is the sum of a set F = {fa | fa(t) = |ax +

tx − φ(a)x| ∧ a ∈ A} of piecewise-linear functions it follows that there is a function

fa ∈ F which also has its minimum at t′. The minimum value of fa is zero and

occurs at its breakpoint. Hence fa(t′) = 0. This means that a + t′ x-aligns with

φ(a). We conclude that there is a translation t∗ = t′ 6= 0, that x-aligns A∗ and B,

and minimises X ′. The lemma follows.

Corollary 1. Let A and B be two sets of n points in the plane, let t be any hor-

izontal translation, and let φ be any one-to-one matching between A and B. Then

there is a horizontal translation t∗ such that A∗ = A+ t∗ and B are x-aligned and

DT (φ, t∗) ≤ DT (φ, t).
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Figure 4: We can improve a matching between A (grey) and B (white) indicated

by the dashed lines by x-aligning the point sets (the dotted lines).

Analogously there is an optimal vertical translation that y-aligns the two sets

of points.

Consider the set T of translations that both x-align and y-align A and B. A

translation t ∈ T x-aligns a pair of points (a, b), and independently y-aligns a pair

of points (a′, b′). This means T contains at most n4 translations.

Now if φ and t are a matching and a translation that minimise DT it follows

from Corollary 1 (and its counterpart for y-aligning the point sets) that we can

x- and y-align the point sets without increasing the total distance of matching φ.

Hence, T contains an optimal translation t∗. This means we can find an optimal

matching φ∗ by computing a minimum distance matching for all translations in T .

By using the algorithm of Vaidya [15] to compute the point set matchings we get:

Theorem 1. Given two sets A and B of n points in the plane, a one-to-one match-

ing φ∗ and a translation t∗ that minimise DT can be computed in O(n6 log3 n) time.

The main difficulty in improving this result is that X∗(t) = X(φ∗t , t), where φ∗t
denotes an optimal matching for horizontal translation t, is not unimodal. Therefore

X∗ may have several local minima, which means we cannot use something like a

binary search to find an optimal translation t∗. Instead, we have to compute a

matching for all translations in T .

Minimising L1 under scaling. For scaling we can use the same procedure as for

translation: we can prove that there is an optimal scaling that x-aligns and y-aligns

A and B and does not increase the total distance. We again have a set of at most

n4 scalings that is guaranteed to contain an optimal scaling. Hence:

Theorem 2. Given two sets A and B of n points in the plane, a one-to-one match-

ing φ∗, and a scaling λ∗ that minimise DΛ can be computed in O(n6 log3 n) time.

Minimising L1 under both translation and scaling. We can use same the

approach, but now we x-align (y-align) two distinct pairs of points. We obtain:

Theorem 3. Given two sets A and B of n points in the plane, a one-to-one match-

ing φ∗, a translation t∗, and a scaling λ∗ that minimise D can be computed in

O(n10 log3 n) time.
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Proof. Analogous to the proof of Lemma 1 we can show that X ′(t, λ) = X(φ, t, λ)

has its minimum at a breakpoint (t̂, λ̂). This again corresponds to x-aligning a point

â with φ(â). What remains to show is that there is a second point a′ that we can x-

align with φ(a′). It is easy to see that if there is only one pair of points x-aligned, say

â and φ(â), there are a translation t′ and scaling λ′ that will keep â x-aligned with

φ(â) and minimise the total distance between {λ̂a+ t̂ | a ∈ A\{â}} and B \{φ(â)}.
Using the same argument as before it follows that this distance is smallest when we

x-align a point a′ with φ(a′). We conclude that there is a translation t∗, namely the

combination of t̂ and t′, and a scaling, namely the combination of λ̂ and λ′, that

minimises X ′ and x-aligns two pairs of points. This completes the proof.

Using that B is a grid. The above results all hold for arbitrary sets of points A

and B in the plane. However, for our grid maps we can use that the points in B

are grid points of a regular grid. Any two points b1, b2 in the same column of the

grid have the same x-coordinate. So x-aligning a point a ∈ A with b1 has the same

effect as x-aligning a with b2. The same holds for any two points in the same row.

Hence, we can improve the running time of our algorithms slightly:

Corollary 2. Given a set A of n points in the plane and a set B of n grid points

on an R×C grid of size O(n), a minimum L1-distance matching under translation

or scaling can be computed in O(nCnR ·n2 log3 n) = O(n5 log3 n) time. A minimum

L1-distance matching under translation and scaling can be computed in O(n8 log3 n)

time.

2.2. Preserving Directional Relations

The third criterion that we consider is preserving directional relations. Let A and

B be two sets of n points in which no two points have the same x- or y-coordinate

(note that this is not the case when B is a grid), and let dir(p, q) denote the

directional relation of q with respect to p (see Figure 5 (a)). The goal is now to

find a matching φ∗ : A → B that maximises the number of pairs (a1, a2) ∈ A × A
for which dir(a1, a2) = dir(φ∗(a1), φ∗(a2)). Stated differently, we are looking for a

matching φ∗ that minimises the number of out-of-order pairs W defined as

W (φ) = |{(a1, a2) | (a1, a2) ∈ A×A ∧ dir(a1, a2) 6= dir(φ(a1), φ(a2))}|.

To avoid many nested brackets we will write a′ = φ(a) from now on. Furthermore,

we observe that translations and scalings do not influence W .

A 4-approximation algorithm for minimising W . We now describe an algo-

rithm to compute a matching that approximately minimises W . Let x -rankP (p)

denote the x-rank of point p ∈ P , that is, the number of points in P to the left of

p. For points p, q ∈ P we write p ≺x q for x -rankP (p) < x -rankP (q). The y-rank

and ≺y are defined analogously.
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a′2
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northeast
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northwest
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(a) (b)

p

Figure 5: (a) The areas in the plane corresponding to each direction. (b) The direc-

tional relation between a1 and a2 is not preserved, (a1, a2) is an x-inversion.

For a given matching, (a1, a2) ∈ A×A is an x-inversion if (and only if) a1 ≺x a2

and a′1 �x a′2, or a2 ≺x a1 and a′2 �x a′1. See Figure 5 (b). Similarly we define

a y-inversion. An inversion is an x-inversion, a y-inversion or both. We denote

the number of x-inversions, the number of y-inversions, and the total number of

inversions of matching φ by Ix(φ), Iy(φ), and I(φ) respectively. It is easy to see

that there is a one-to-one correspondence between the number of out-of-order pairs

W (φ) of matching φ and the number of inversions I(φ), i.e. W (φ) = I(φ).

We now define a distance measure

w(a, b) = |x -rankA(a)− x -rankB (b)|+ |y-rankA(a)− y-rankB (b)|

between points a ∈ A and b ∈ B, and compute a minimum distance matching φ

using this w as the distance measure. The distance w(a, b) is simply the L1-distance

on the ranks of the points, which means we can use Vaidya’s algorithm [15] to

compute φ.

As before, let DW (φ) be the total distance of matching φ, and XW (φ) and YW (φ)

the decomposition of DW (φ) into a separate x-component and a y-component, re-

spectively. We now show that the matching that minimises DW is a 4-approximation

algorithm for minimizing W . The intuition behind this is as follows. Suppose that we

match a point a with x -rankA(a) = j to a point b with x -rankB (b) = i < j. Then con-

sider the points to the left of a, that is, with x-rank less than j. Of those j−1 points,

at most i − 1 points can be matched to a point left of b. Hence, there are at least

j−1−(i−1) = j− i points left of a, that need to be matched to a point to the right

of b. Thus, matching a to b will result in at least j − i = |x -rankA(a)− x -rankB (b)|
x-inversions.

Next, we prove that our algorithm indeed achieves an approximation ratio of

four. To this end, we use that there is a natural relation between one-to-one match-

ings and permutations, and the following result by Diaconis and Graham [8]:

Lemma 2 (Diaconis and Graham [8]). Let S = {s1, .., sn} be an ordered set

of n elements, and let π : S → [1..n] be a permutation of S. We have that I(π) ≤
D(π) ≤ 2I(π), where I(π) denotes the number of inversions in π (with respect to

their order in S) and D(π) =
∑n
i=1 |π(si)− i|.
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Theorem 4. Given two sets A and B of n points in the plane, we can compute a

one-to-one matching φ where W (φ) ≤ 4 ·minφ∗∈ΦW (φ∗) in O(n2 log3 n) time.

Proof. Let φ be a matching that minimises DW , and let φ∗ be a matching that

minimises W . Since every out-of-order pair (a1, a2) is also an inversion we have

that W (φ∗) = I(φ∗) and W (φ) = I(φ). Furthermore, it is easy to see that for any

matching ψ, we have I(ψ) ≤ Ix(ψ) + Iy(ψ), and max(Ix(ψ), Iy(ψ)) ≤ I(ψ).

Let π be the permutation of the elements of A ordered according to the x-rank

of the points they are matched to in φ (so π(a) = i if and only if x -rankB (φ(a)) = i).

From Lemma 2 we then obtain Ix(φ) = I(π) ≤ D(π) = XW (φ). Symmetrically, we

obtain Iy(φ) ≤ YW (φ). Hence:

I(φ) ≤ Ix(φ) + Iy(φ) ≤ XW (φ) + YW (φ) ≤ XW (φ∗) + YW (φ∗).

Let π∗ be the permutation of the elements of A ordered according to the x-rank

of the points they are matched to in φ∗. From Lemma 2 it follows that XW (φ∗) =

D(π∗) ≤ 2I(π∗) = 2Ix(φ∗). Symmetrically, we obtain YW (φ∗) ≤ 2Iy(φ∗). Hence we

get

XW (φ∗) + YW (φ∗) ≤ 2Ix(φ∗) + 2Iy(φ∗) ≤ 4 max(Ix(φ∗), Iy(φ∗)) ≤ 4I(φ∗).

Combining these results yields W (φ) = I(φ) ≤ 4I(φ∗) = 4W (φ∗) as desired.

2.3. Implementation

We implemented a tool that computes an R×C grid map G of a given input mapM
for a specified number R of rows and C of columns. The tool itself is implemented

in Scala, and uses CPLEX [1] to solve the underlying point set matching problems.

The global approach is as follows.

We start by constructing an (empty) R × C grid, in which the grid cells have

heights and widths such that G andM have the same (size) bounding box. For each

of the regions and each of the grid cells we compute its centroid, thus obtaining the

sets of points A and B. We then generate all x-aligning horizontal transformations

(translations or scalings): one for each pair consisting of a point in A and a column

in the grid. Analogously, we generate all vertical transformations. By combining the

horizontal and vertical transformations we obtain a set T of O(n3) transformations.

For each of these transformations in turn, we apply the transformation on A, and

compute a minimum distance matching between the resulting set and B. We pick

the matching that minimizes the distance over all transformations in T , and use it

to map each region in M onto a cell in G.

The point set matchings can be solved using linear programming, in particular by

using Vaidya’s algorithm [15]. However, for our implementation we use the following

simpler but slower, LP-formulation, which we solve using CPLEX [1].

Let A and B be two sets of n points in the plane. Each point a ∈ A has a supply

of one, and each point b ∈ B has a demand of one. A point a ∈ A can supply exactly
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one point b ∈ B for a cost of d(a, b). We model this by variable fab denoting the

supply, or flow, from a to b. The objective is to find an assignment of the flow that

minimises the weighted total cost. This yields the following linear program:

minimize
∑
a∈A

∑
b∈B

fabd(a, b)

subject to: ∑
b∈B

fab = 1 ∀a ∈ A∑
a∈A

fab = 1 ∀b ∈ B

0 ≤ fab ≤ 1 ∀a ∈ A, b ∈ B

Since all supplies and demands have integer values it can be shown that all

variables in the optimal flow fab also have integer values [10]. This means that fab
represents a one-to-one matching φ ∈ Φ that matches a to b if and only if fab = 1.

Thus, the objective function expresses the total distance DI(φ). It follows that the

matching computed by this linear program minimises DI .

In case matching the points a1 to b1 and a2 to b2 yields the same L1-distance as

matching a1 to b2 and a2 to b1 (note that this is not a degenerate case), we make

sure our tool chooses the matching that minimises the maximum distance.

If we wish to match A to a set B with m > n points, that is, we allow empty

grid cells, we can relax the second constraint to
∑
a∈A fab ≤ 1.

3. Evaluation

In this section we give an experimental evaluation of our methods. We compare the

results from the different distance based methods to each other, and to a method

based on spatial treemaps by Wood and Dykes [19]. To determine the quality of the

resulting grid maps we measure the distance between the point sets after translation

and scalinga, the number and percentage of preserved adjacencies, and the number

and percentage of preserved directional relations. When we count the number of

directional relations we consider points mapped to the same row (column) to have

the correct north-south (east-west) relationship. Two regions or grid cells are ad-

jacent if the intersection of their closed boundaries is nonempty. In particular this

means each grid cell has at most eight neighbors.

Additionally, we use a qualitative analysis based on the colouring of the regions.

Similar to Wood and Dykes [19], we map a CIE L∗a∗b∗ colour space with L∗ = 50

onto the input map. Each region is assigned the colour of its centroid. The same

colour is used for the grid cell corresponding to this region. The idea is that in

aAs mentioned in Section 2.3, we identify the bounding box of the map with the bounding box

of the grid before computing a matching. So, in case the methods do not rescale or translate the
points, the distances are with respect to that initial configuration.
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a good grid map the colour changes gradually, as it does in the input map. This

indicates the relative positions in the grid are similar to those in the input map.

The matchings that we consider in our evaluation are: (i) a matching that

minimises the L1-distance without translation or scaling (i.e. DI), (ii) a matching

that minimises the L1-distance under translation, (i.e. DT ), (iii) a matching that

minimises the L1-distance under scaling (i.e. DΛ), (iv) a matching that minimizes

the ranked L1-distance, and thus approximates the minimum number of out of order

pairs W , and (v) a matching that minimises the total L2
2-distance under translation.

This last matching is due to Cohen and Guibas [7], and can be computed using the

same LP-formulation from Section 2.3. Computing a minimum distance matching

under both translation and scaling was computationally unfeasible, due to the large

number of matchings that have to be considered. In the remainder of this section

we refer to these methods by I, L1 trans, L1 scale, W , and L2
2, respectively.

We compare results of the distance based methods with a modified version of

Wood and Dykes’s spatial treemaps [19]. The modifications make sure the result

is a grid map, rather than an arbitrary spatial treemap. The algorithm recursively

processes the cells incident to a shortest side of the grid. That is, it processes a

single row or column of the grid. For each of these cells in turn it finds the point

a ∈ A that is closest to its centroid b ∈ B. This pair is added to the matching.

The remaining grid cells again form a grid, one that is exactly one row or column

smaller than before. We process this grid recursively. We refer to this method as

SpatialGrid.

We focus our evaluation on the quality of the resulting grid maps, rather than

on the running time of the algorithms. For the maps presented here the entire tool

takes only a few seconds when using the SpatialGrid, I, W , or L2
2 method. So

computing a single minimum distance matching takes roughly the same amount of

time as the greedy algorithm used in the SpatialGrid method. The L1 trans and L1

scale methods however require the computation of very many minimum distance

matchings. Therefore they are significantly slower than the other methods. For the

larger maps these methods already take several hours.

United States. We use our algorithms to construct a grid map of the United

States. To prevent artificially inflating the bounding box of the map we consider

only the 48 contiguous states. Figure 6 shows the resulting grid map for each of the

methods, and Table 1 contains the measurements. We can see that the L1 trans

and L2
2 methods minimise their respective distances. The distances for the L1 scale

results are larger, yet still much smaller than the total distances in the SpatialGrid,

I, and W methods. What is perhaps somewhat surprising is that the I method

has a smaller L1-distance than the SpatialGrid method, but SpatialGrid has a

smaller L2
2-distance. Most likely, this is since the L2

2-distance is more sensitive to

large differences in a single component of the distance. Consider for example Florida

(FL). In the I method the x-component of the distance between Florida and its grid

cell is quite large (i.e. larger than in the grid map corresponding to SpatialGrid).
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Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

SpatialGrid

[19]

4545 3592 300482 2008 89.01% 77 73.33%

I 4035 3342 311327 2024 89.72% 79 75.24%

L1 trans 2838 2355 166060 2046 90.69% 78 74.29%

L1 scale 3229 2585 187644 2056 91.13% 80 76.19%

W 4221 3352 273273 2098 93.00% 79 75.24%

L2
2 [7] 2929 2260 139110 2096 92.91% 83 79.05%

Table 1: The quantitative results for the grid maps of the United States.

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

SpatialGrid

[19]

10666 8094 1066752 8040 88.16% 166 69.46%

I 9161 7462 698697 8620 94.52% 165 69.04%

L1 trans 8622 7085 653700 8718 95.59% 183 76.57%

L1 scale 8878 7261 693197 8600 94.30% 176 73.64%

W 9359 7167 647438 8874 97.30% 197 82.43%

L2
2 [7] 8875 6889 595280 8894 97.52% 193 80.75%

Table 2: The quantitative results for the grid maps of France.

This has a much larger influence on the L2
2-distance than on the L1-distance.

The 4-approximation algorithm for minimising W preserves most directional

relations: 93% of the pairs of points in A have the correct directional relation.

The W method is closely followed by the L2
2 method. The method that preserves

the least directional relations is SpatialGrid. This is still 89%. Almost all methods

preserve around 74% of the adjacencies. The L2
2 method performs a bit better here,

preserving 79% of the adjacencies.

The grid maps in Figure 6 confirm the quantitative results. The grid map corre-

sponding to the SpatialGrid method has a few places where cells seem out of place.

In particular, the group of cells IL, OH, WI, MI (in the middle of the two topmost

rows). The grid maps for the I and L1 (trans and scale) methods also show some

out of order cells. For the I method most notably the cells corresponding to CO,

and CA. In the L1 trans and L1 scale grid maps those corresponding to NJ and

DE. The grid maps for the W and L2
2 methods show the most natural changes of

colours, indicating the least distortions.
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Figure 6: The results of the methods on the contiguous states of the United States.

France. We also use our methods on 96 departments of France. The resulting grid

maps are shown in Figure 7. The quantitative results can be found in Table 2. For

the total distance of the matchings we see similar results to those of the US. The

L1 trans and L2
2 methods have the smallest distances, the L1 scale method yields a

slightly larger total distance, and the distance of the W method is somewhat similar

to that of I. The SpatialGrid method has the largest distances. We again see that

the W and L2
2 methods preserve most directional relations. In this case almost all
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Figure 7: The results of the methods on the 96 departments in France.
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pairs of points have their correct directional relation: around 97%. The other point

set matching methods (L1 trans, L1 scale, and I) also perform very well, preserving

roughly 95% of the correct directional relations. SpatialGrid performs significantly

worse: preserving only 88% of the directional relations. If we look at the grid map

corresponding to SpatialGrid in Figure 7 we can see three cells in the top right

corner which should have been much further to the southwest. This problem is due

to the greedy matching scheme. The point (region) a ∈ A matched to such a cell

was never the point closest to any other cell, and hence when we are processing

these last cells these points a are the only points left that we can match to.

In terms of the number of preserved adjacencies we can also see that SpatialGrid

does not perform well. The same applies for the I method. Both preserve only 69%

of the adjacencies. The L1 trans and scale methods perform better, preserving 73%

and 76% of the adjacencies, respectively. The L2
2 and W methods once again perform

best. The W method manages to preserve most adjacencies: 83% of the adjacencies

in the input map can be preserved.

The grid map with the smoothest color changes is again the one corresponding

to the L2
2 method. The methods minimizing the L1 distance (I, L1 trans, and L1

scale) show a natural change in color as well. The grid map corresponding to W

shows an out of place green cell in the bottom-left, and places the two most purple

cells corresponding to Corsica a bit further to the west than we would expect them.

Grid maps with empty cells. Finally, we consider two maps in which we want to

use a grid in which some cells are left blank; a map of the 41 counties in Romania,

and a map with the 33 boroughs in London. In both cases we manually indicate

which cells (not) to use. Recall that the SpatialGrid method is an adaptation of

a method of Wood and Dykes to produce a spatial treemap, and that a spatial

tree map contains no empty spaces. There are many possible ways to incorporate

empty cells in our adaptation of the algorithm. However, none of these ways is

obviously the right one, and each option to deal with empty cells gives different

results, making the choice rather arbitrary. Therefore, we only compare the results

of the four matching-based methods.

Romania. We match the 41 counties of Romania to a 6×7 grid from which we

removed the rightmost cell in the top row. The results are shown in Table 3. For

this map the differences between the methods are fairly small. We still see that the

L1 trans, and L2
2 methods minimize their respective distances. However, The L1

distance of the I and L1 scale methods is only slightly larger. In terms of the L2
2

distance, the L1 scale method even achieves a smaller total distance than the L1

trans method. Somewhat surprisingly, the W method –which performed very well

on the other maps considered– seems to perform worst on this input map. It has the

largest distances, and also manages to preserve slightly less directional relations and

adjacencies compared to the other methods. When we consider the colour gradients

in Figure 8 all methods seem to perform well. None of the grids show sudden changes

of colour. The placement of the cells in the grid differs slightly for all the methods,

however there is no method that is clearly better than the others.
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I

L1 trans L1 scale

W L2
2

Figure 8: The results of our methods on the 41 counties of Romania.

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

I 6068 4627 660844 1614 98.41% 90 86.54%

L1 trans 5866 4579 649269 1614 98.41% 90 86.54%

L1 scale 5873 4521 628284 1612 98.29% 90 86.54%

W 6311 4778 678077 1610 98.17% 84 80.77%

L2
2 [7] 5956 4560 626555 1614 98.41% 90 86.54%

Table 3: The quantitative results for the grid maps of Romania.
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London boroughs. For the London boroughs we use a 6×6 grid, in which we discard

the leftmost cell on the bottom row, and the rightmost cell in the two bottom most

rows. The results can be found in Table 4 and Figure 9. The results are somewhat

similar to those of the United States and France. In terms of preserved directional

relations and adjacencies the L1 trans method performs a bit worse than before.

However, if we look at the colours of the grid maps in Figure 9 the grid map for

the L1 trans method still shows a very natural gradient. The W method seems to

perform best on this input map. Both the W method and the L2
2 method preserve

the most directional relations and adjacencies, but the grid map for W has a slight

edge over those of the other methods. This is mainly because of the positioning of

the orange and dark-red cells in the upper right corner of the grid maps.

W L2
2

L1 transI L1 scale

Figure 9: The results of the methods on the London boroughs.

Method Distance Directional Rel. Adjacencies

L1 L2 L2
2 # % # %

I 2897 2296 182257 1040 98.48% 59 72.84%

L1 trans 2803 2286 200593 1008 95.45% 54 66.67%

L1 scale 2627 2078 170355 1030 97.54% 58 71.60%

W 2936 2277 177927 1042 98.67% 61 75.31%

L2
2 [7] 2890 2228 172089 1042 98.67% 61 75.31%

Table 4: The quantitative results for the grid maps of the London boroughs.
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4. Concluding Remarks

We studied grid maps: a schematic representation of the regions of a normal map

where every region corresponds one-to-one to a grid cell. To compute the corre-

spondence between the regions and grid cells we investigated point set matching

problems between two sets A and B of n points in the plane. To obtain a good grid

map we considered three optimisation criteria. One of these criteria, maximising the

number of adjacencies that the matching preserves, is NP-hard. For one of the other

criteria, minimising the sum of L1-distances between matched points under trans-

lation and/or scaling, we gave polynomial-time algorithms. For the last criterion,

maximising the number of pairs of points in A for which the matching preserves

the directional relation, we considered the dual problem of minimising the num-

ber of incorrect directional relations. For this problem we gave a 4-approximation

algorithm.

We implemented our methods and evaluated them on several maps. In all con-

sidered maps our distance-based methods produce better grid maps than previous

methods. In particular, our experiments show that the distance-based methods pre-

serve many directional relations and adjacencies as well. Among our methods, the

method I, which chooses only a single translation and scaling and then optimises

the L1-distance, produces results of slightly lower quality than the method W or the

methods that optimise over translations, scalings, or the L2
2-distance. Optimising

the L1-distance over translations, scalings, or both, is computationally too costly

to be effective in practice. The methods I, W , and L2
2 are practical and roughly

equally fast. The L2
2-method usually performs the best overall, although on individ-

ual criteria the other distance-based methods are competitive. Therefore, we expect

that in most practical applications one would use the L2
2 method or the W method.

In our setting the grid with the correct number of cells is given as part of the

input. An interesting problem that remains is to determine which grid cells of a

slightly too large grid to use. If the matching algorithm makes the decision, we

may have unused grid cells in the middle. For most of our maps the minimum L2
2-

distance matching under translation gives (one of) the best results. Hence it would

be interesting to try to minimise the L2
2-distance under scaling as well. Another

open problem is related to preserving the directional relations. The complexity of

optimising this criterion is not known, and it may be possible to obtain a better

approximation factor or a polynomial-time approximation scheme.
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