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Improved GWO algorithm for the determination of the
critical wrinkle length of graphene
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Abstract. Graphene, one of the most important discoveries in the field of materials, is an

interesting two-dimensional flexible membrane which has been highly studied by physicians in
the last decade as it has shown tremendous utility in fundamental studies, industrial and elec-
tronic applications, ranging from nanoelectronics to biology, thanks to its notable electronic,
mechanical and chemical properties. Graphene in its natural state is non-flat and tends to
crumple. The wrinkles are usually considered to be a result of stretching and bending forces,
and are viewed as local minimizers of a suitable elastic energy.
In this paper we focus on the study of the wrinkling shape of graphene. A detailed geometric

model provided by Yamamoto et al. [15] describing the shape of the wrinkles in terms of a
deflection profile, is numerically analysed. The Euler Lagrange equation associated to this

problem is formulated in the context of a constrained optimization problem and numerical
simulations are carried out to compute the optimal profile using the Grey Wolf Optimizer
(GWO), leading to good results in comparison with the ones found in the litterature.
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1. Introduction

Graphene is a two-dimensional material consisting of a one-atom thick, closely
packed hexagonal carbon layer as seen in figure (1) [11]. In spite of its theorization

Figure 1. The ideal crystalline structure of graphene is a hexagonal
grid (right) and a Scanning probe microscopy image of graphene
(left).

which took place as early as 1947 by Philip R. Wallace, it was not until 2004 that
Andre Geim, of the physics department of Manchester University, who received for
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this, with Konstantin Novoselov, the Nobel prize of physics in 2010, could synthesize
it. This extremely thin and flexible membrane has shown tremendous utility in fun-
damental studies, industrial and electronic applications, ranging from nanoelectronics
to biology, thanks to its notable electronic, mechanical and chemical properties, [17].
Furthermore, graphene has opened new possibilities for the storage of more lithium
ions which leads to the increase of the battery’s capacity [4].

It is undeniable that thin membranes strongly react to external forces and com-
plex geometrical constraints. This phenomenon is quite natural and is exactly what
happens with human skin, plant leaves and even tissues. As graphene is among the
thinnest and most rigid known membranes, and because of its extremely low bending
rigidity, it often tends to wrinkle [4]. During chemical vapor deposition, the graphene
layers are deposited in large areas. It has been observed experimentally that these
layers undergo wrinkling which causes wrinkles of several nanoparticles in amplitude,
this being due to the thermal expansion between the substrate and the graphene layer.
The origin of these instabilities is not yet fully understood, however, the wrinkles are
usually considered to be a result of compressive stresses or stretching and bending
forces. We refer the reader to [16] for detailed physical study.

In particular, the wrinkling formation in graphene has been highly studied by
physicians in the last decade, as it modifies the two-dimensional structure from total
planarity to wavy sheet, which can have a remarkable effect on the physical properties
of graphene, such as carrier mobility, thermal conductivity, optical transmittance and
wettability [11]. This deformation also affects the electronic properties of graphene,
this can easily be noticed when it is bent to a certain curvature, a band gap is
generated and that locally curved portion is semiconducting while the flat graphene
is highly conductive [17].

Since the morphology of graphene strongly influences its physical properties, ran-
dom wrinkling formation leads to unpredictable graphene properties [16]. This ran-
dom change must be avoided in nanoelectronic devices in which precise control is key.
For this purpose, theoretical models need to be built in order to predict graphene’s
response to different kinds of deformations mainly stretching and bending forces. Ya-
mamoto et al. provided a report on experimental observations of the formation of
wrinkles in a graphene layer supported on Si02 substrates with randomly placed to-
pographic perturbations produced by Si02 nanoparticles with a dispersion density
ρnp, [16]. This study showed that ρnp has a direct effect on the wrinkling of graphene
([15]). More precisely, at first, graphene adheres conformally to the substrate ([6],
[2] and [5]) and as the nanoparticle’s density increases, the wrinkles connecting the
protrusions proliferate, and finally a wrinkle network spans the sample. These obser-
vations indicate the presence of a critical distance χc between nanoparticles, at which
a transition between wrinkling and delamination occurs.

Yamamoto et al. have provided a continuum elastic model seen below in figure (2)
for a graphene mono-layer deposited on a silica substrate decorated with silica nano-
particles. They presumed that each formed wrinkle between two nano-particles with
diameter d separated by a distance χ, follows a Caternary-like profile. The wrinkle
profile is then parametrised by a deflection ζ(x) and a maximum deflection ζ0 = ζ(0),
0 < ζ0 ≤ d. Based on these hypothesis, a one dimensional energy model has been
derived stating that the actual wrinkle profile is the minimum of an energy obtained
by summing both bending and stretching energies. Yamamoto and co-authors claim
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that this minimum has an exact expression given by:

ζ(x) =

(

27ε2
4ε1

)
1

6 (χ

2
− |x|

)
2

3

, (1)

where εi for i = 1, 2 are physical constants.

Figure 2. Deformation of graphene membrane between two
nanoparticles with diameters d.

From this solution, many characteristics were deduced, such as the critical length
χc of the wrinkle below which wrinkling is induced, and the pseudo-magnetic field
created in the middle of the wrinkle which is of order 10 T for χ = 100nm [15].
However the given solution suffers from slope discontinuity at x = 0, as mentioned
by Yamamoto et al., which means it may not follow a Catenary-like profile, and the
expression of this proposed minimizer could be incorrect and may imply incorrect
approximations of the characteristics of the wrinkling.
Furthermore, it is not verified if this singular solution is the minimizer of the energy,
nor that the associated ridge length is the critical distance between the two nanopar-
ticles, knowing that this latter is in rough agreement with the observed maximum
wrinkle length of approximately 200nm.

In order to improve this result, Guedda et al. presented a mathematical study
of the same problem based on the phase-plane analysis, and identified a C1-smooth
minimizer deflection of the elastic energy, in terms of the inverse of an incomplete nor-
malized beta function which kind of corrects the singularity from which Yamamoto’s
solution suffers. Using this smooth deflection, the critical wrinkle length improved
however still underestimates the observed maximum wrinkle ([4]).

Zhu and Li presented a systematic molecular dynamics study of the wrinkling of
graphene put on a silica substrate, and the critical wrinkle length is determined as a
second degree polynomial which depends only on the nanoparticle’s size d:

χc = 2.64d2 + 0.96d+ 9.2. (2)

However, this solution might overestimate the critical distance as one can see later
[17].

Our initial aim in this paper is not to introduce another physical study of the
wrinkling of graphene. Rather, an effort is made to provide a numerical algorithm
that determines the critical ridge length below which wrinkling is induced, and which
can be used in a more general context. The algorithm we’ll be using is the Grey
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Wolf Optimizer (GWO) which is a swarm-based meta-heuristic based on the social
leadership and hunting behavior of grey wolves in nature (Canis Lupus), mathemati-
cally modeled by Mirjalili et al. in [9]. The obtained results show that the proposed
approach provides us with a good wrinkle length in comparison with what’s found in
previous works.

Our paper is organised as follows: in the next section, we present in details the
physical model on which we’ll be basing our numerical analysis. The associated
Euler-Lagrange equation is presented. The third section is dedicated to the numerical
simulation using the classical method that turns out to be very hard to tackle, which
will be our motivation behind using the GWO algorithm that will be described in the
first subsection of the fourth section and implemented in the second one. Finally, we
draw a conclusion from the showcased results.

2. Formulation of the physical problem of the wrinkled graphene in terms

of optimization

The model on which we will base our numerical analysis on is the one derived by
Yamamoto et al., depicted in figure (3).

Figure 3. The wrinkle profile along the transverse direction.

In the deformed region, or the x projection of the wrinkling region (i.e. |x| < χ
2 ),

the elastic energy is expressed as a summation of the stretching energy given by:

Es =
E2D

2

∫

|x|<χ

2

ω(x)ε2xdx

and the bending energy given by:

Eb =
k

2

∫

|x|<χ

2

ω(x)C2
0 (x)dx,

where E2D ≈ 2.12 × 103 ev/nm2 is the tensile rigidity [7], k ≈ 1 ev is the bending

rigidity [3], ω is the width of the deformed region, εx ≈
(∂xζ)

2

2 is the stretching strain
which is supposed to be irrelevant in the y-direction, C0 is the curvature that describes
the profile of the ridge along the transverse direction, and θ is the dihedral angle which
is assumed to be independant of x as validated in [8].

We can prove from the model that :

ω(x) = (π − θ)C−1
0 (x)
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and

C0 = ζ(x)

[

1

sin( θ2 )
− 1

]−1

As a consequence, the elastic energy is expressed as follows:

F(ζ) = ε1(θ)

∫

|x|<χ

2

ζ (∂xζ)
4
dx+ ε2(θ)

∫

|x|<χ

2

ζ−1dx,

where

ε1(θ) =
E2D

8
(π − θ)

[

1

sin( θ2 )
− 1

]−1

,

ε2(θ) =
k

2
(π − θ)

[

1

sin( θ2 )
− 1

]

.

The adhesion energy to the substrate is given by:

Ea = 2Γχ d tan

(

θ

2

)

,

where Γ is the graphene-SiO2 adhesion energy per area.
The adhesion and the bending energies at the foot of the wrinkle denoted by Ea′

and Eb′ respectively turn out to be negligible [15]. Finally, the expression of the total
energy is given by the sum of all these energies :

E(ζ) = F(ζ) + Ea + Ea′ + Eb′ .

The goal is to obtain the pair (ζc, χc) corresponding to a local minimizer of the total
energy under the boundary conditions ζ(±χ

2 ) = 0, and the maximal length of the
wrinkle. Indeed, at first, they assume that θ varies arbitrarily. This is physically
not correct since the graphene profile must have a critical angle that minimizes the
total energy. Hence, to determine this angle, the authors derive a scaling law for the
critical nanoparticle separation. We refer the reader to the appendixes of [4] and [15]
for detailed analysis.

As mentioned in the introduction, the authors in [15] claim that there exists an
exact expression minimizing the total energy given by (1), which leads to a critical
wrinkle length given by:

χc = d
3

2

(

64E2D

27k

)
1

4

[

1

sin( θ2 )
− 1

]− 1

2

. (3)

However the given solution suffers from slope discontinuity at x = 0, which means it
doesn’t necessarily follow a Catenary-like profile and then the expression (3) may be
not correct.
On the other hand, in [4], the authors gave an estimation of the critical wrinkle length
that gave closer results to the observed length:

χc = d
3

2

(

3E2D

4k

)
1

4

[

1

sin( θ2 )
− 1

]− 1

2

χ̄, (4)

χ̄ is the inverse of an incomplete normalized beta function that corrects the singular-
ity from which Yamamoto’s solution suffers. Using this result led to better results,
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however still not sufficiently close to the observed length. Furthermore, injecting
this critical wrinkle length in the expression of the total energy as a function of θ,
they obtained an expression that makes the minimization problem impossible to solve
analytically. Hence, they only evaluated the critical angle in two regimes (bending-
dominated regime and stretching-dominated regime). For intermediate regimes, θc
can only be determined numerically.

In this paper we hope to provide a numerical investigation that allows us to identify
the critical wrinkle length associated to the critical dihedral angle θc that minimizes
the energy. First of all, we set a well posed mathematical formulation by adding a set
of constraints. The problem is to minimize the energy J defined by :















J (ζ) = ε1(θ)

∫
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2

ζ (ζx)
4
+ ε2(θ)

∫

|x|<χ
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(5)

The functional defined above can be rewritten using a change of variable v = ζ
5

4 :














J (v) =
(

4
5

)4
ε1(θ)

∫

|x|<χ

2

(vx)
4
+ ε2(θ)

∫

|x|<χ

2
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4

5 + 2Γχd tan

(

θ

2
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2 ) = 0.

(6)

Theorem 2.1. The functional J admits a local minimum v in K that satisfies the

associated Euler-lagrange equation:
{

−ε1(θ)(v
3
x)x = 53

44 ε2(θ)v
−9

5 D′(]− χ
2
, χ
2
[)

v(±χ
2 ) = 0,

(7)
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{
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Proof. see [12]. �

3. Classical optimization approaches and algorithms

As mentioned in [15], a wrinkle is geometrically suppressed if v(0) >= d5/4 , hence
the maximum length of a wrinkle will be determined under the condition v(0) = d5/4.
Note that v(0) is in fact vχ,θ(0) denoted like that for simplification. We express the
optimization problem as follows:

{

Minimize F(χ, θ) =| v(0)− d5/4 |
2
,

where v is the unique solution to (7).
(8)

The Lagrangian is then given by:

L(v, φ, θ, χ) = F(χ, θ) + ε1(θ)

∫

|x|<χ

2

v3xφx dx−
53

44
ε2(θ)

∫

|x|<χ

2

v
−9

5 φ dx.

Using the rapid derivation [1], we obtain:

(i)- −ε1(θ)((vx)
3)x = 53

44 ε2(θ) v
−9

5 ;
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(ii)- − 44

53 3ε1(θ)(v
2
xφx)x +

9
5ε2(θ)v

−14

5 φ = −2(v(0)− d5/4) δ0, where δ0 is a dirac mass
at the origin;

(iii)- F ′(θ) = −
∂

∂θ
ε1(θ)

∫

|x|<χ

2

v3xφx +
53

44
∂

∂θ
ε2(θ)

∫

|x|<χ

2

v
−9

5 φ;

(iiii)- F ′(χ) = − 1
2
44

53 ε1(θ)[(vx(
χ
2 ))

3φx(
χ
2 ) + (vx(

−χ
2 ))3φx(

−χ
2 )].

The first equation can be solved using the regularized problem as one can see later
on, but the second one is very hard to tackle if not impossible due to the degeneracy
of its first term, which is our motivation behind using meta-heuristics. The main
steps of this classical method using the finite elements are described in Algorithm 1 ,
where Vh is the P 1 finite element space, χ the distance between the two nanoparticles
of diameters d, ǫ the tolerance, α, β and η are the steps of the gradient descent.

Algorithm 1 Steps of the classical method

while |vn − vn−1| ≥ ε do

• Solve for wn the equation below ∀ψ ∈ Vh
∫

|x|<χ

2

wn
xψx =

∫

|x|<χ

2

ε1(θ)((v
n
x )

3)ψx −
53

44
ε2(θ)(v

n)
−9

5 ψ

• Update vn ← vn − α wn

end while

• Solve the equation below ∀h ∈ Vh

44

53
3ε1(θ)

∫

|x|<χ

2

((vnx )
2)φnxhx +

9

5
ε2(θ)

∫

|x|<χ

2

(vn)
−14

5 φnh = −2(vn(0)− d5/4)h(0)

• Solve the equation below:

Y n = −
∂

∂θ
ε1(θ)

∫

|x|<χ

2

v3xφx +
53

44
∂

∂θ
ε2(θ)

∫

|x|<χ

2

v
−9

5 φ

• Update θn ← θn − ηY n

• Solve the equation below:

Zn = −
1

2

44

53
ε1(θ)[((v

n
x )

3(
χ

2
))φnx(

χ

2
) + ((vnx )

3(
−χ

2
))φnx(

−χ

2
)]

• Update χn ← χn − βZn

Indeed, unlike the classial methods, meta-heuristics have derivation-free mecha-
nisms: the selected solution(s) to start the optimization process with are randomly
chosen, which is key in meta-heuristics. Furthermore, it is not necessary to calculate
the derivatives of the search spaces to find the optimum, which makes these methods
very suitable for our problem although much slower than the classical methods. Due
to the stochastic nature of meta-heuristics, these algorithms are excellent in avoiding
local optima compared to classical optimization techniques. This makes them capable
of looking for the optimum in the entire search space.

It is worth mentioning that the No Free Lunch (NFL) theorem [13], has logically
proved that there is no such thing as a perfect meta-heuristic, which means it might
seem that one meta-heuristic is best-suited for one problem but may show very poor
efficiency on another problem, which makes this field of study highly active, as there
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are always new proposed algorithms. Some of the most well-known meta-heuristics,
mainly inspired by optimization processes that occur in nature, and which are used
in many works where the classical methods of Newton or fixed point type are not
efficient as in [6], are: Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
Ant Colony Optimization (ACO), Evolution Strategy, Marriage in Honey Bees op-
timization (MBO), Monkey search, Bee collecting Pollen Algorithm, Bird Mating
optimizer, and finally the relatively recent algorithm Grey Wolf Optimizer (GWO)
based on the social hierarchy of grey wolves. This latter has shown very high per-
formance compared to the other known meta-heuristics, we refer the reader to ([9],
[10]) for detailed comparisons. In the next sections, the GWO algorithm is employed
to minimize our cost function F , and its effectiveness for our problem is evaluated by
comparing the results we obtain with those obtained in literature.

4. An enhanced GWO algorithm for the determination of the critical wrin-

kle length of graphene

4.1. Review of the GWO search algorithm. The GWO is a swarm-based meta-
heuristic based on the social leadership and hunting behavior of grey wolves in nature
(Canis Lupus), mathematically modeled by [9]. The population of this algorithm is
divided into four populations: alpha (α), beta (β), delta (δ) and omega (ω) (see figure
4).

Figure 4. Hierarchy levels of grey wolves.

Alpha is the first category, its members are not chosen by their strength or violence
but by their intelligence and decision making capacity. Beta is the second category,
they help the alphas make decisions and they take their places in case one of them
is absent or sick. The third category is Delta, its members are scouts, sentinels and
hunters. Scouts are responsible for warning the pack in case of danger. Sentinels are
responsible for the safety of the pack and hunters are the ones who help the alphas
and betas during the hunt. The last category of the pack is omega. Omega wolves
have to execute all the orders of the dominant wolves. The members of this class are
usually the elders and the caretakers.
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Alpha, beta and delta are stored as the three best solutions and the other wolves
(omega) are forced to update their positions around them as follows:

{ −→
D =|

−→
C .
−→
Xp(t)−

−→
X (t) |,

−→
X (t+ 1) =

−→
Xp(t)−

−→
A.
−→
D
, (9)

where t indicates the current iteration,
−→
A = 2a.−→r1 − a,

−→
C = 2.−→r2 ,

−→
Xp is the position

vector of the prey,
−→
X indicates the position vector of a grey wolf, a is linearly decreased

from 2 to 0 for better exploration of candidate solutions which tend to diverge when

|
−→
A |> 1 and to converge when |

−→
A |< 1 as shown in figure (5) and −→r1 ,

−→r2 are random
vectors in [0, 1].

Figure 5. Attacking prey (|
−→
A |< 1) versus searching for prey

(|
−→
A |> 1).

Over the course of iterations, the first three fittest solutions we obtain so far are
considered as α, β and δ respectively, which guide the optimization processus (the
hunting) and are assumed to take the position of the optimum (the prey). The rest of
the wolves are considered as ω and are required to encircle α, β and δ in order to find
better results at each iteration, by following these three equations which calculate
the approximate distance between the current solution and alpha, beta, and delta
respectively:











−→
Dα = |

−→
C1.
−→
Xα −

−→
X |,

−→
Dβ = |

−→
C1.
−→
Xβ −

−→
X |,

−→
Dδ = |

−→
C1.
−→
Xδ −

−→
X |.

(10)

−→
C1,
−→
C2 and

−→
C3 are random vectors.

−→
Xα,

−→
Xβ and

−→
Xδ are the positions of alpha, beta

and delta respectively and
−→
X is the position of the current solution.

After calculating the three distances, the final position of the solution is given by:

−→
X (t+ 1) =

−→
X1 +

−→
X2 +

−→
X3

3
,
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where:










−→
X1 =

−→
Xα −

−→
A1.(
−→
Dα),

−→
X2 =

−→
Xβ −

−→
A2.(
−→
Dβ),

−→
X3 =

−→
Xδ −

−→
A3.(
−→
Dδ),

(11)

−→
A1,
−→
A2 and

−→
A3 are random vectors.

4.2. Application and implementation. Our implementation generates a popu-
lation of potential solutions (wolves), they take the form of the couple (χ, θ). The
fittest solution is considered as the alpha, and the second and third best solutions
are considered as beta and delta respectively. The initial population is created in a
random way based on the upper and lower bounds chosen for the variables χ and θ.
Then we initialize the position and the score of each search agent, and we return back
the search agents that go beyond the lower and upper bounds of the search space.
Next, we compute the solution v that corresponds to every wolf in the population,
and we deduce the minimizer of the cost function (8).

The GWO implemented in the context of this problem follows the guidelines:
• Fitness computation: The objective function is what is called the fitness in

the algorithm. It is computed to estimate the quality of the obtained solution. In our
case, in order to compute it, for each (χ, θ), we need the value of v(0), where v is the
solution of (7). For this purpose, we transform (7) into:

{

−(| vx |
2 vx)x = −ρ′ε(| v |) D′(]− χ

2 ,
χ
2 [)

v(±χ
2 ) = 0,

(12)

where:

ρε(r) =

{

−ε−
9

5 r + 9
4ε

− 4

5 0 ≤ r < ε
5
4r

− 4

5 r ≥ ε

To determine the solution v, we use the finite elements as in Algorithm 1, and we
solve the equation below , for every direction ψ in the P 1 finite elements space:

∫

|x|<χ

2

wn
xψx =

∫

|x|<χ

2

ε1(θ)((v
n
x )

3)ψx −
53

44
ε2(θ)(v

n)
−9

5 ψ

and then we update the solution at each iteration :vn+1 ← vn − α wn.
Finally, we determine v(0) and calculate the cost function.
• Selection: We select the first three best wolves to guide the optimization (hunt-

ing) and save them as α, β and δ.
• Update: We update the positions of the search agents according to the positions

of each category, and the parameters a, A and C. Finally, the algorithm is terminated
when the end criterion is satisfied. The final generated result is the position of the
alpha which is assumed to be the optimum (χc, θc), and the score of the alpha that
is the value of the cost function at this optimum.

4.3. An enhanced GWO search algorithm and results. Following the previous
explanation of the implementation used in our program, the main steps of the GWO
applied to the optimization problem (8) are given in Algorithm 2 which we implement
for 40 search agents and 80 iterations.

We investigate the critical angle θc in two different search spaces: the first one
is the neighboring of 14o and the second one is the neighboring of 35o. Finally, for
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Algorithm 2 Steps of the used algorithm.

1: Initialize the input parameters for GWO, i.e the number of search agents, the di-
mension of the problem, maximum number of iterations, lower and upper bounds
of the search spaces of the variables χ and θ, and the diameter d of the silica
nanoparticle.

2: Initialize Alpha, Beta and Delta Position and Score.
3: Initialize the random positions of search agents.
4: Set iteration counter = 0.
5: While (t < MaxIter) or (stop criterion);
6: Return back the search agents that go beyond the lower and upper bounds of the

search space.
7: Calculate the corresponding objective value for each wolf.
8: Select the first three best wolves and save them as α, β and δ.
9: Update the position of the rest of the population (the ω wolves) using (10) and

(11).
10: Update the parameters a, A and C.
11: Go back to step (b) if the end criterion is not satisfied.
12: Return the position of α as the fittest optimum χc.

different diameters and each critical angle, we present the maximal wrinkle length χc

obtained by the given expressions (2, 3 and 4) from the previous works on one hand,
and by our algorithm on the other hand, in the tables below. Note that the mean
diameter of a silica nanoparticle is 7.4± 2.2 nm.

Table 1. The critical wrinkle lengths for d = 4.6nm.

χc (nm)
Algorithm θc = 15o θc = 35.4432o

Yamamoto et al. 32.1844 54.9489
Zhu and Li 69.4784 69.4784
Guedda et al. 46.2731 79.0028
GWO 48.8693 83.4092

Table 2. The critical wrinkle lengths for d = 5.2nm.

χc (nm)
Algorithm θc = 12o θc = 35.9015o

Yamamoto et al. 34.1066 66.6375
Zhu and Li 85.5776 85.5776
Guedda et al. 49.0367 95.8080
GWO 52 101.40
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Table 3. The critical wrinkle lengths for d = 7.4nm.

χc (nm)
Algorithm θc = 15o θc = 34.6869o

Yamamoto et al. 65.6684 110.4531
Zhu and Li 160.8704 160.8704
Guedda et al. 94.4147 158.8039
GWO 100 168.0948

Figure 6. The 3d plot of the cost function vs χ and θ for d = 4.6
and θ in the neighborhood of 35o.

Figure 7. The 3d plot of the cost function vs χ and θ for d = 5.2
and θ in the neighborhood of 35o.

The figures (6, 7, 8) are the 3d plots of the cost function F in function of the
critical angle θc and the critical length χc, associated to a diameter d. These plots
agree well with the results prensented in the tables since the function is convex at
the exact optimums (θc, χc) obtained by the GWO. Indeed, using the Grey Wolf
Optimizer allowed us to numerically obtain good results in comparison with the other
analytical methods, however, the observed maximum wrinkle length of 200nm is still
underestimated. This is actually kind of expected since our study does not include the
possibilty of the two nanoparticles that might have different diameters, as mentioned
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Figure 8. The 3d plot of the cost function vs χ and θ for d = 7.4
and θ in the neighborhood of 35o.

by [15], and hence the wrinkle won’t have to sag in the middle, nor that the random
distribution of the nanoparticles might cause that the interaction between ridges could
influence the maximum wrinkle length and introduce some complicated boundary
conditions, [4]. Last but not least, another possible cause behind the discrepancy
between the obtained and the observed results is the other physical mechanisms such
as the thermal fluctuations and the impurites that might exist on the substrate surface.
This motivates our future works on the analytical and numerical aspects.

5. Conclusion

In this work, we used the Grey Wolf Optimizer algorithm to determine the critical
length below which wrinkling is induced, i.e if the distance between the two nanoparti-
cles exceeds this critical length, the caternary-like profile of the wrinkle is suppressed.
Using this algorithm, we were also able to determine the critical dihedral angle θc that
minimizes our energy for different nanoparticle’s diameters. However, we haven’t yet
include the case of nanoparticles having different diameters in the model we based our
numerical analysis on, nor the case of the random distribution of the nanoparticles
by adding noise to the model, which motivate more coming works.
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