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This paper considers simple modifications of the limited memory BFGS (L-BFGS)
method for large scale optimization. It describes algorithms in which alternating ways
of re-using a given set of stored difference vectors are outlined. The proposed algorithms
resemble the L-BFGS method, except that the initial Hessian approximation is defined im-
plicitly like the L-BFGS Hessian in terms of some stored vectors rather than the usual choice
of a multiple of the unit matrix. Numerical experiments show that the new algorithms yield
desirable improvement over the L-BFGS method.
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1. Introduction

This paper considers minimizing the objective function f (x), where x ∈ Rn.
It is assumed that n is large and the gradient vector g(x) = ∆f (x) is available, but
the Hessian matrix and its approximation cannot be computed or stored. A useful
method for solving this type of large scale optimization problems is the limited memory
BFGS (L-BFGS) method of Nocedal [14], because of its simplicity and low storage
requirement (see also Liu and Nocedal [11]). Although a Hessian approximation of
the objective function is required at each iteration, L-BFGS does not store it explicitly.
Instead, a certain user’s number (say, 2m) of vectors are used to store the information
of the Hessian approximation. However, for a sufficiently small value of m, L-BFGS
suffers on some (particularly, ill-conditioned) problems (e.g., Byrd et al. [6]). To avoid
this difficulty, this paper proposes modifications of the L-BFGS method with the aim
of getting improved performance from a given set of the stored vectors.

∗ An early version of this work was presented at the 16th biennial conference on Numerical Analysis,
Dundee, UK, 1995.

 J.C. Baltzer AG, Science Publishers



100 M. Al-Baali / L-BFGS method

The L-BFGS method falls into the class of line search quasi-Newton methods of
the form

x(k+1) = x(k) + α(k)s(k), (1)

where x(1) is given, α(k) is a steplength parameter and

s(k) = −H (k)g(k) (2)

is the search direction. Here g(k) denotes the gradient g(x(k)) and H (k) approximates
the inverse Hessian matrix at x(k). For a given H (1), H (k) is updated for which the
quasi-Newton condition

H (k+1)γ(k) = δ(k), (3)

where

δ(k) = x(k+1) − x(k) and γ(k) = g(k+1) − g(k), (4)

is satisfied.
In the standard BFGS method, H (k) is updated to

H (k+1) = bfgs
(
H (k), δ(k), γ(k)), (5)

where the function

bfgs(H , δ, γ) =

(
I − δγT

δTγ

)
H

(
I − γδT

δTγ

)
+
δδT

δTγ
(6)

is the BFGS updating formula. The BFGS method is robust and attractive for solving
optimization problems (e.g., Fletcher [7]). Because it is assumed that storage for the
BFGS Hessian (5) is not available when the number of variables is sufficiently large,
limited memory methods have been proposed to define other Hessian approximations
(e.g., Liu and Nocedal [11]). In this paper we consider the following type of methods.

The L-BFGS method resembles the BFGS method, except that the Hessian ap-
proximation H (k+1) is defined implicitly as the outcome of updating a suitable matrix
D(k)

m̂ = min(m, k) (7)

times in terms of the difference vector pairs{
δ(i), γ(i)}, k − m̂+ 1 6 i 6 k, (8)

which are stored during the previous m̂ iterations. Note that at each iteration, once
k > m, the oldest is deleted from this sequence and is replaced by the newest pair.
The order of the updates is chosen so that the Hessian approximation satisfies the
quasi-Newton condition (3). In particular,

H (k+1) = lbfgs
(
m̂,D(k), δ(k), . . . , δ(k−m̂+1), γ(k), . . . , γ(k−m̂+1)), (9)
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where for any i > j,

lbfgs
(
j,D, δ(i), . . . , δ(i−j+1), γ(i), . . . , γ(i−j+1))

= bfgs
(
lbfgs

(
j − 1,D, δ(i−1), . . . , δ(i−j+1), γ(i−1), . . . , γ(i−j+1)), δ(i), γ(i)) (10)

is the L-BFGS updating formula which employs j BFGS updates initiated by

lbfgs(1,D, δ, γ) = bfgs(D, δ, γ). (11)

If D(k) (referred to as the basic matrix) is chosen diagonal, Nocedal [14] shows that
the next search direction (defined by the product in (2) with k replaced by k + 1) can
be computed in terms of the basic matrix and the stored pairs (8) without calculating
H (k+1) explicitly. See also, for example, Averick and Moré [5] where the product has
been calculated using a pseudocode.

Since the user specifies a small amount of storage to be used by giving a small
number m (usually 3 6 m 6 7) which is significantly smaller than n, the choice
of a basic matrix plays an important role in the algorithm performance. For the
recommended choice of a multiple of the unit matrix of Liu and Nocedal [11] the
L-BFGS method can be very slow on certain type of problems, though it works well
on general large scale optimization problems (e.g., [1,5,6,8,10,11,13,20]).

The main aim of this paper is to propose a technique for calculating a basic
matrix which has some properties more desirable than that of Liu and Nocedal [11].
Since the stored pairs contain information about the curvature of the function, it seems
useful to use them further to calculate not only the L-BFGS Hessian (9) but also a
basic matrix. This can be done in various ways.

Indeed Liu and Nocedal [11] define their recommended basic matrix in terms of
the most recent pair of the sequence (8). In section 2 we modify this choice so that
it still remains in the form of a multiple of the unit matrix, but depends on both the
most recent and oldest pairs of the sequence (8).

As the memory is limited and since the basic matrix plays the role of initial
Hessian approximation which is not necessarily diagonal, we prefer to define D(k)

implicitly in a way similar to the L-BFGS Hessian (9), but by employing a number
(say, p) of updates in terms of p difference vectors. In this way the Hessian approxi-
mation is maintained in the L-BFGS Hessian form which has the desirable feature that
the search direction is still computed using a pseudocode.

This modified technique is similar to that of Byrd et al. [6] who generated p pairs
by the inner conjugate gradient iterations of one step of the discrete-truncated Newton
method applied at certain iterations. However, for simplicity, this paper considers
some p pairs from the sequence (8). We assume that the order of the p updates is
made so that the resulting matrix (say, H+) satisfies the quasi-Newton condition (3)
with H (k+1) replaced by H+. Thus, this matrix (referred to as basic Hessian) defines
an initial Hessian approximation preferable to a diagonal matrix.

In section 3, we precisely define some basic Hessian H+. We also consider a
similar technique of modification which defines the Hessian approximation by updating
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the L-BFGS Hessian (9) in terms of the p pairs (i.e., the m and p updates are reversed
in the previous technique so that (9) becomes a basic Hessian). This approach follows
from the modified BFGS method of Al-Baali [3], but with the BFGS Hessian replaced
by the L-BFGS Hessian. Because the author reported encouraging results, we expect
that the new technique would work well in practice.

Indeed the above two techniques improve over the L-BFGS method as shown in
section 4, which discusses some numerical results required to solve a set of standard test
(including ill-conditioned) problems. Section 4 also shows that further improvement
can be obtained when the number of updates exceeds m+ p in a way to be defined.
It is concluded that several new algorithms are desirable in practice.

Finally, section 5 gives some concluding remarks.

2. Improved basic matrix approximations

Three possible choices of the basic matrix of the simple form D(k) = νI, where
I is the identity matrix and ν is a parameter, are described in this section.

For the choice ν = 1, the L-BFGS formula (9) starts updating D(k) = I in terms
of the oldest pair of the sequence of the stored vectors (8). Thus it is possible to
scale the identity matrix before updating, using the scaling technique of Shanno and
Phua [16], in which the basic matrix becomes

D(k) = ν(k)
0 I , ν(k)

0 =
δ(k−m̂+1)Tγ(k−m̂+1)

γ(k−m̂+1)T γ(k−m̂+1)
. (12)

To incorporate the up-to-date information, Liu and Nocedal [11] replaced this
basic matrix by

D(k) = ν(k)
1 I , ν(k)

1 =
δ(k) Tγ(k)

γ(k) Tγ(k) , (13)

which depends only on the most recent stored pair. These authors reported that gen-
erally the latter choice is preferable to the former.

Since the scalar ν(k)
1 is not related to the information required to perform the

first update of the L-BFGS formula, it does not scale the identity matrix in the sense
of the self-scaling methods (e.g., Oren and Luenberger [15]). Instead, we may state
that the basic matrix (13) provides an initial Hessian approximation preferable to that
given in (12). Therefore, we can scale the “good” basic matrix (ν(k)

1 I) before updating
it. Using, in particular, the modified scaling technique of Al-Baali [4], we obtain the
scaling factor

ν(k) = max

(
δ(k−m̂+1)Tγ(k−m̂+1)

γ(k−m̂+1)T(ν(k)
1 I)γ(k−m̂+1)

, 1

)
= max

(
ν(k)

0

ν(k)
1

, 1

)
. (14)
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Thus we update ν(k)(ν(k)
1 I) (= ν(k)

2 I , say) rather than (ν(k)
1 I), i.e., we let

D(k) = ν(k)
2 I , ν(k)

2 = max
(
ν(k)

0 , ν(k)
1

)
. (15)

In practice, Al-Baali [1] reported that there is little to choose between both basic
matrices (13) and (15). This might be because of his experiment which was based on
a small number of test problems. When we applied the L-BFGS method to various
test problems, we observed that generally the latter choice is better than the former
one (for further details, see section 4).

3. Improved basic Hessian approximations

Other modified techniques define basic matrices by some initial Hessian approx-
imations. For m > 2, we first replace the basic matrix D(k) appearing in (9) by some
basic Hessian H+, i.e., we let the Hessian approximation be defined by

H (k+1) = lbfgs
(
m̂,H+, δ(k), . . . , δ(k−m̂+1), γ(k), . . . , γ(k−m̂+1)). (16)

There are various choices for H+. In particular, we consider the p̂ updates

H+ = lbfgs
(
p̂,D(k), δ(k), . . . , δ(k−p̂+1), γ(k), . . . , γ(k−p̂+1)), (17)

which depend on {δ(i), γ(i)}ki=k−p̂+1 (a subsequence of (8)) and a basic matrix D(k)

defined by some formula in section 2. For a given p 6 m, we let

p̂ = min
(
p, k − m̂

)
, (18)

which follows from (7) with m replaced by m+ p. Note that when p̂ = 0, we assume
that the L-BFGS formula (17) is not employed (i.e., we let H+ = D(k)).

Equation (18) ensures that formula (17) becomes active once k > m and that the
total number of updates m̂+ p̂ 6 k reaches its maximum m+ p whenever k > m+ p.
Although it is possible to choose p̂ = m̂, the choice (18) ensures that the total number
of updates remains (as for L-BFGS) smaller than or equal to k and that the first m
iterations are identical to those of the L-BFGS method (as well as the BFGS method
if the basic matrix is defined by (12)). Note that this modified L-BFGS algorithm
was proposed earlier by Al-Baali [1], who applied it with m 6 5 and p = 1 to a
set of a small number of test problems. It is also similar to the method of Byrd
et al. [6], except that the p̂ pairs are generated by employing one step of a certain
method at certain iterations. Thus the storage becomes 2(m + p̂) vectors rather than
2m.

We now consider another modification of the L-BFGS Hessian (9). We let the
Hessian approximation be defined as above except that m̂ and p̂, appearing respectively
in (16) and (17), are interchanged. This technique is similar to that of Al-Baali [3],
except that the BFGS Hessian is replaced by the L-BFGS Hessian.

Since the above modified algorithms for some values of m and p seem (see
section 4) to improve the performance of L-BFGS as p increases, it is worth employing
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further updates based on the following observation. The L-BFGS method corrects the
basic matrix to a Hessian approximation, while the above modified algorithms correct
a basic Hessian approximation to a new Hessian approximation (some formulas are
given by Al-Baali [2]). Similarly, we may repeat some updates several times. In
section 4, we consider some algorithms which employ p + 1 corrections. Although
the order of the updates can be defined in various ways, we rely on the recent pairs of
the sequence (8) more than the older ones, since usually the former pairs have better
information about the curvature of the function. For example, Liu and Nocedal [11]
reported that the choice (13) works better than the choice (12), which depend on the
most recent and the oldest pairs of the sequence (8), respectively.

Finally, it is worth noting that the R-linear convergence result for the L-BFGS
method obtained under mild conditions by Liu and Nocedal [11] is still valid for
the modified L-BFGS methods considered here. The reason is that the new updating
formulas can be written like the L-BFGS formula, except that the basic matrix is
replaced by an L-BFGS Hessian form rather than a diagonal matrix.

4. Numerical experiments

Let D indicate a given basic matrix, LmH an application of the L-BFGS for-
mula (9) with D(k) replaced by H , and Rp =LpLp−1 · · ·L1L0, where L0H = H . For
given D, m and p 6 m, we can list the methods used in our tests in the following
way:

1. LmD. This is the usual L-BFGS method of Nocedal [14] (as defined by (9)).

2. LmLpD. This is defined by (16) and (17).

3. LpLmD. This is similar to LmLpD, but the Lm and Lp updates are reversed (see
section 3 for details).

4. LmRpD. This is based on (16) and (17).

5. RpLmD. This is like LmRpD, but the Lm and Rp updates are reversed.

It is clear that all these limited memory methods always begin by updating a basic
matrix D defined by either (13) or (15) (referred to as D1 and D2, respectively). These
algorithms are identical if p = 0. Note that the modes L1Lm and R1Lm reduce to Lm,
while LmL1 and L2Lm are equivalent to LmR1 and R2Lm, respectively.

For m > 2 and p > 1, table 1 gives the number of times that the BFGS updates
are employed per each iteration sufficiently large. At every iteration, m is replaced
by m̂ which is given by (7) and p by p̂, so that the total number of updates m̂+ p̂ is
less than or equal to k. For the modes LmLp and LpLm, p̂ is defined by (18), while
for LmRp and RpLm it is given by

p̂ =
{
j: j = max

(
min
(
1, k − m̂

)
, . . . , min

(
p, k − m̂

))
, j(j + 1)/2 6 k − m̂

}
. (19)
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Table 1
Number of updates per each iteration sufficiently large.

Lm LmLp LpLm LmRp RpLm

m m+ p m+ p− 1 m+ p(p+ 1)/2 m+ p(p+ 1)/2− 1

It is worth noting that in some experiments we replaced the choice (19) by
p̂ = m̂. We observed that both choices work similarly. Since the latter choice yields
more updates than the former one, we consider (19) only in this section. We also tested
other algorithms depending on other orders of updates. But we do not include them
here because it is hoped that the above algorithms give a sufficient basis to illustrate
the idea of re-using some vector pairs which belong to the sequence (8).

Our experiments were performed in double precision with machine ε = 2−52

(≈ 2.22×10−16) using a software routine that implements all the algorithms considered
here. The routine is a modified version of Fletcher’s that implements the standard
L-BFGS method of Liu and Nocedal [11] (indicated by LmD1). Thus the algorithms
used in our implementation differ only in the choices of D, the values of the fixed
numbers m and p and another number used to select one of the above methods. The
line search subroutine finds a steplength α(k) that satisfies the strong Wolfe conditions

f (k+1) 6 f (k) + c1δ
(k)T g(k),

∣∣δ(k)T g(k+1)
∣∣ 6 −c2δ

(k)T g(k), (20)

where f (k) denotes f (x(k)), with the choices c1 = 10−4 and c2 = 0.9. The runs were
terminated when both

f (k) − f (k+1) 6 εmax
(
1,
∣∣f (k+1)

∣∣) (21)

and ∥∥g(k+1)
∥∥ 6 ε̃max

(
1,
∣∣f (k+1)

∣∣), (22)

where ‖ · ‖ denotes the usual Euclidean norm and ε̃ = 10
√
ε (≈ 1.47× 10−7). We use

this stopping condition as a fair criterion for comparing different algorithms. All the
runs achieved essentially the same accuracy.

For some values of the fixed numbers, we tested the above listed algorithms on
two sets of 28 quartic functions and 27 general problems. The results are discussed in
the next subsections.

4.1. Applications to quartic functions

We now test our algorithms. In a manner similar to that of Byrd et al. [6], we
performed a set of controlled experiments. We applied our algorithms to the authors’
set of 28 test problems which belong to a class of quartic functions (seven of them
are quadratics). These tests are defined for n = 100 variables and consist of various
difficulties in which the standard LmD1 method works well on some of the tests and
suffers on the others. Another feature which is reported in [6] is that these tests show
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some improvement as the number of updates increases depending on certain difference
vector pairs.

We will compare the methods for some values of the fixed numbers, for relative
performance. We observed that both the number of line searches and the number
of gradient evaluations required to solve the problems by the methods were slightly
smaller than the number of function evaluations. Thus, we turn our attention to the
latter number. A similar conclusion could be reported for the other two numbers.

Since our results were obtained on a large number of test cases, we will therefore
present and discuss summaries and some average ratios extracted from these results.
We briefly discuss the measure we constructed when designing our methods, which
influences our treatment of the results of this paper. It is based on comparing the
performance of several methods with that of LmD1 for some values of m, in the
following way. For i = 1, 2, . . . , 28, let ai and bi be the number of function evaluations
required by two methods (say, M1 and M2, respectively) to solve problem i,

ri =

{
ai/bi if ai 6 bi,
2− bi/ai otherwise,

(23)

and r the average of these ratios. Then our average number of f calls required by M1
versus M2 is defined by

Af =

{
r if r 6 1,
1/(2 − r) otherwise.

(24)

This modified average measure is identical to the average of the ratios ai/bi if ai 6 bi
(or ai > bi) for all i. It avoids certain difficulties associated with the usual average.
For example, if two tests were solved by two methods with a1/b1 = 0.5 and a2/b2 = 2,
then the usual average is 1.25, but our measure gives Af = 1 indicating a fair result
for comparing both methods. For further details concerning this modified measure,
see Al-Baali [4]. Although this measure is not the only one which can be defined, it
is hoped that it provides a sufficient basis to make the testing discussed in this section
of interest.

We now give a brief idea about the choice (15) compared to the standard one (13).
These choices define the basic matrices for the LmD2 and LmD1 methods, respectively.
We applied these methods, using m = 2, 3, . . . , 40, to the 28 tests. For convenience,
the averages Af of f calls were calculated versus the L10D1 method. Some of these
average ratios are given in table 2, where the column headings correspond to the values
of m. As expected, both LmD1 and LmD2 improve as m increases. We observe that
the latter method performs better than the former one for all values of m. Thus we
will discuss below the results obtained for the choice D2, unless otherwise stated.

To study the performance of the new algorithms, we will discuss some exper-
iments based on the values m = 20, 15, 10, 7, 5, 4 and 3 with those of p 6 m.
Although some of these values are larger than the practical ones, it is hoped that they
provide a sufficient basis to illustrate some behaviour of the methods. We observed
that for most of these choices our methods are competitive with the LmD1 method.



M. Al-Baali / L-BFGS method 107

Table 2
Average number of f calls required versus L10D1.

Method \m 40 30 25 20 15 10 7 5 4 3

LmD1 0.67 0.69 0.70 0.80 0.87 1 1.11 1.19 1.26 1.48
LmD2 0.65 0.67 0.67 0.76 0.85 0.95 1.02 1.11 1.13 1.34

Table 3
Average number of f calls required by LmLpD2 and RpLmD2 versus L10D1.

p \m 15 10 7 5 4 3

0 0.85 – 0.95 – 1.02 – 1.11 – 1.13 – 1.34 –
1 0.78 – 0.92 – 1.00 – 1.06 – 1.13 – 1.20 –
2 0.74 0.76 0.87 0.85 0.96 0.95 1.03 1.02 1.06 1.08 1.13 1.16
3 0.69 0.74 0.82 0.83 0.94 0.93 0.98 1.00 1.01 1.02 1.13 1.11
4 0.74 0.73 0.82 0.82 0.93 0.92 0.96 0.94 0.99 1.00 – –
5 0.73 0.71 0.82 0.79 0.92 0.90 0.98 0.97 – – – –
7 0.72 0.70 0.81 0.79 0.92 0.88 – – – – – –

10 0.73 0.69 0.81 0.77 – – – – – – – –
15 0.71 0.69 – – – – – – – – – –

In general, LpLmD2 and RpLmD2 are respectively the least and most efficient type
of methods. The latter method is slightly better than the other two remaining algo-
rithms.

To give some idea about these experiments, some results are summarized in
table 3. The heading and the first column give some values of m and p, respectively.
The results consist of the average number of f calls Af required by LmLpD2 (on the
left) and RpLmD2 (on the right) versus L10D1. The results for the choice m = 20 are
not reported here, but they lie in [0.67, 0.71] and [0.64, 0.66] for both class of methods
with p 6 6 and p > 7, respectively (for further details see Al-Baali [2]). Note that the
values of Af required by the other two remaining methods LmRpD2 and LpLmD2 are
usually close to those required by LmLpD2.

It is clear that for each value of m the performance of the methods improves as
p increases. An examination of these results shows the following. For most values of
m and p, our three efficient methods perform slightly better than the Lm+pD1 method
which depends on m + p stored pairs and usually improves the performance of the
LmD1 method (substantially for p > 2).

For example, the average Af ≈ 1 appearing in table 3 for algorithms with 8
updates per each iteration sufficiently large shows that the performance of the L4L4D2,
L5L3D2 and L7L1D2 methods is similar to that of L10D1, which is usually better than
that of L8D1.

Although RpLmD2 performs slightly better than LmLpD2, the latter method is
also desirable in practice, because it employs a number of updates smaller (substantially
for large p) than that employed by the former (see table 1 for estimating the number
of updates). Thus, in general, the LmLpD2 method is economic in terms of not only



108 M. Al-Baali / L-BFGS method

the number of function evaluations required to solve the tests, but also in terms of the
number of updates.

It is worth mentioning that in another experiment which we will consider in the
next subsection, RpLmD2 seems to be a little less efficient than LmRpD1 for some
values of m and p.

4.2. Applications to general functions

We now compare the performance of our algorithms with the standard L-BFGS
method (denoted by LmD1) on a set of 27 general test problems, most of which were
used by Nash and Nocedal [13]. Table 4 presents names, abbreviated names and
references of the problem set. The two tests EX-ROSBRKI and EX-POW-SRI are
defined below. The CH-FRDRTH function is designed as CH-ROSBRK, though it is
referred to as extended Freudenstein and Roth function by Toint [19]. The Q12 and
Q20 functions belong to the set of 28 tests of Byrd et al. [6]. We have chosen them

Table 4
List of test problems.

Abbreviated name Function’s name Reference

EX-ROSBRK Extended Rosenbrock Moré et al. [12]
EX-ROSBRKI Extended Rosenbrock I
EX-FRDRTH Extended Freudenstein and Roth Moré et al. [12]
CH-FRDRTH Extended Freudenstein and Roth Toint [19]
EX-POW-SR Extended Powell Singular Moré et al. [12]
EX-POW-SRI Extended Powell Singular I
VAR-DIM Variably Dimensioned Moré et al. [12]
PENALTYI Penalty I Moré et al. [12]
EX-ENGVL1 Extended ENGVL1 Toint [19]
WR-EX-WOOD Wrong Extended Wood Toint [19]
TRIGS Trigonometric of Spedicato Moré et al. [12]
TRIDB Tridiagonal of Broyden Moré et al. [12]
TRIDT TRID (tridiagonal) Toint [19]
SP-MXSQRT Sparse Matrix Square Root Liu and Nocedal [11]
LMS Linear Minimum Surface Toint [19]
TRIGT TRIG (trigonometric) Toint [19]
VAR(-3.4) VAR(λ) (variational) Toint [18]
MXSQRT1 Matrix Square Root 1 Liu and Nocedal [11]
MXSQRT2 Matrix Square Root 2 Liu and Nocedal [11]
Q12 Quartic type I (ε = 0.09, σ = 0.18) Byrd et al. [6]
Q20 Quartic type II (ε = 0.09, σ = 0.18) Byrd et al. [6]
CH-ROSBRK Chained Rosenbrock Fletcher [9]
PE Potential Energy Siegel [17]
BVP Boundary Value Problem Toint [19]
QOR Quadratic Operations Research Toint [18]
GOR Generalized QOR Toint [18]
PSP Pseudo Penalty Toint [18]
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because the performance of the L29D1 method compared to certain methods proposed
in that paper seems to work well on the former test and suffers on the latter one.

For the test problems EX-ROSBRK and EX-POW-SR, the standard starting points
were used. These tests have the property that the components of all gradients generated
during the optimization calculation satisfy the conditions

g(k)
i+2 = g(k)

i and g(k)
i+4 = g(k)

i , (25)

respectively. Thus increasing the number of variables does not increase the number of
function and gradient evaluations required by certain methods to solve these problems
(for details, see Siegel [17], for instance). To avoid this occurrence, we replace the
initial standard point, say x̄(1), by

x(1)
i =

i

i+ 1
x̄(1)
i , i = 1, . . . ,n− n̄, (26)

where n̄ = 2 and 4 (the tests referred to as EX-ROSBRKI and EX-POW-SRI, respec-
tively). Note that we applied certain methods to the EX-FRDRTH, VAR-DIM and
PENALTYI problems using a choice similar to (26). Because the results were slightly
different from that obtained for the standard initial point, we maintain the standard
choice.

The number of variables n used for the runs ranges from 50 to 1000 (for details,
see the second column of table 5).

It is worth noting that we have considered other test problems with n 6 104. But
we do not include them in our set because we observed that the above tests seem to
give a reasonable idea about the behaviour of the limited memory methods.

We applied our algorithms, using practical choices of m ranging from 3 to 7
and values of p 6 m, to the above set of 27 tests. We observed that the average
number of f calls required by these methods for m > 5 is similar to that given in
table 3, and is a little better for m 6 4. Most of the methods improve substantially
over the corresponding LmD1 method, and some of them perform a little better than
the L10D1 method. The most efficient methods for m = 3, 4, . . . , 7 are, respectively,
R3L3D2, L4R3D1, L5R4D2, L6R6D2 and R4L7D1 (note that at each iteration suffi-
ciently large, the number of updates employed by these methods are 8, 10, 15, 27 and
17, respectively).

Because employing a large number of updates is time-consuming, it is desirable to
use the less efficient methods LmR3D1, for m = 5, 6 and 7, rather than the latter three
methods (the number of updates become 11, 12 and 13, respectively). Similarly, we
may use L3R2D1 instead of L3R3D1. The latter method performs slightly better (but
requires 3 updates more) than the former one. It is worth noting that the performance
of L4R3D1 is slightly better than that of L4R3D2, though both of them define identical
steps whenever k > 10.

To illustrate the performance of the winner L4R3D1 method, some results are
presented in table 5. For comparison, we include the results required by the L4D1 and
L10D1 methods. The results consist of the number of function and gradient evaluations
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Table 5
Number of function and gradient evaluations.

Problem n L4D1 L10D1 L4R3D1

EX-ROSBRK 103 54 47 51 46 46 42
EX-ROSBRKI 103 326 303 491 469 183 166
EX-FRDRTH 103 22 21 23 23 19 15
CH-FRDRTH 103 82 51 52 42 41 35
EX-POW-SR 103 76 69 80 76 71 64
EX-POW-SRI 103 928 889 1270 1232 592 554
VAR-DIM 103 53 53 53 53 53 53
PENALTYI 103 75 72 77 75 75 71
EX-ENGVL1 103 25 23 26 23 25 23
WR-EX-WOOD 103 63 56 44 35 64∗ 53
TRIGS 103 89 85 84 78 73 71
TRIDB 103 40 36 40 35 36 34
TRIDT 103 491 480 449 446 356 352
SP-MXSQRT 103 212 208 205 200 186 184
LMS 961 231 228 258 251 217 214
TRIGT 100 161 159 141 138 142 140
VAR(-3.4) 100 871 863 570 564 602 597
MXSQRT1 100 527 523 438 432 428 426
MXSQRT2 100 541 533 510 505 435 432
Q12 100 878 853 730 715 907 890
Q20 100 738 703 562 528 467 446
CH-ROSBRK 100 570 560 584 569 541 537
PE 100 1788 1769 1604 1583 830 818
BVP 100 4189 4149 5948 5932 3629 3628
QOR 50 50 47 45 40 49 47
GOR 50 155 151 129 123 135 133
PSP 50 167 152 124 114 143 133

∗ Different local solution.

(left and right, respectively) required by these methods to solve each problem in the
set. The asterisk indicates that the method terminates with a solution different from
that obtained by the other methods given in the table.

We observe that the performance of the L4R3D1 method is substantially better
than that of L4D1 in most cases. In general, this method is a little better than L10D1.
We note that the number of f calls required to solve some problems by L4R3D1 is
equal to approximately 50% of the number required by L4D1 (e.g., CH-FRDRTH). This
result is also observed even when the performance of the latter method is better than
that of L10D1 (e.g., EX-ROSBRKI). The opposite is observed on the Q12 test; L10D1

and L4D1 perform better than L4R3D1. However, cases like this rarely occurred.
Indeed we observed the desirable result that the number of function/gradient evaluations
required to solve the Q12 test by L4L3D1, L3L4D1 and R3L4D1 (which are defined
for m = 4) are 764/740, 795/781 and 768/747, respectively. These numbers are
slightly greater than 730/715 which is required by the L10D1 method (defined for
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m = 10). Al-Baali [2] reported some improvement of other new methods on the Q12
test.

5. Concluding remarks

This paper proposes algorithms based on employing certain extra updates for the
L-BFGS method without increasing the number of stored vector pairs. The experiments
discussed in section 4 show that the new algorithms are competitive with the L-BFGS
method and recommend the L4R3D1 method. For smaller storage, we suggest using
L3R2D1 or L2R2D1 if necessary. If the problem is ill-conditioned or the value of m
is large (say, m > 7), the LmLm−1D2 method seems desirable.

An experiment worth mentioning is that we repeated the run described in sec-
tion 4, except that some p extra updates were employed only at certain iterations
depending on some heuristic argument. We observed that the new algorithms still
improve over the L-BFGS method. We are thus concerned to keep at a minimum
the number of times the extra updates are employed because they are time-consuming.
Therefore, a future research subject is to seek a criterion to indicate whether to employ
some extra updates. Then the total number of updates required to solve a problem
could be reduced substantially.
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