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,e target and background will change continuously in the long-term tracking process, which brings great challenges to the
accurate prediction of targets. ,e correlation filter algorithm based on manual features is difficult to meet the actual needs due to
its limited feature representation ability. ,us, to improve the tracking performance and robustness, an improved hierarchical
convolutional features model is proposed into a correlation filter framework for visual object tracking. First, the objective function
is designed by lasso regression modeling, and a sparse, time-series low-rank filter is learned to increase the interpretability of the
model. Second, the features of the last layer and the second pool layer of the convolutional neural network are extracted to realize
the target position prediction from coarse to fine. In addition, using the filters learned from the first frame and the current frame to
calculate the response maps, respectively, the target position is obtained by finding the maximum response value in the response
map. ,e filter model is updated only when these two maximum responses meet the threshold condition. ,e proposed tracker is
evaluated by simulation analysis on TC-128/OTB2015 benchmarks including more than 100 video sequences. Extensive ex-
periments demonstrate that the proposed tracker achieves competitive performance against state-of-the-art trackers.,e distance
precision rate and overlap success rate of the proposed algorithm on OTB2015 are 0.829 and 0.695, respectively. ,e proposed
algorithm effectively solves the long-term object tracking problem in complex scenes.

1. Introduction

Visual object tracking [1–4] is one of the most fundamental
and challenging research problems in the computer vision
area, which combines advanced technologies in several fields
such as image processing, pattern recognition, and computer
applications. ,e essence of video moving target tracking is
to analyze and research the captured image sequence
through image processing technology. First, the features
such as the overall or partial edge, texture, shape, contrast,
and brightness information of the specific target are
extracted and analyzed. After the specific target is detected in
the initial image frame of the video sequence, the real-time
position of the specific target is dynamically estimated based
on the extracted target features in the subsequent frames.
,en, the corresponding relationship between the target
position in the front and rear frames is established to obtain

the motion trajectory of the target. Despite having achieved
enormous improvements, visual object tracking remains
more challenging to handle critical situations perfectly.

Among the mainstream tracking algorithms, the
tracking algorithm based on the discriminative correlation
filter (DCF) [5–7] framework has strong advantages and has
been rapidly applied and developed. Bolme et al. [8] first
adopted the correlation filter framework, which used the
minimum output sum of square error (MOSSE) algorithm,
and the tracking speed was greatly improved. However, the
tracking accuracy of the MOSSE tracker could not meet the
actual demand. To improve the tracking accuracy, Henri-
ques proposed the circulant structure of tracking-by-
detection with kernels (CSK) algorithm [9, 10], which used
the diagonalization of the circulant matrix in the calculation
process to simplify the calculation of nuclear regression, so
the target tracking speed was greatly improved, and its
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tracking accuracy was also higher. However, when the target
scale continues to increase, the convolution calculation for
extracting target features and training filters would increase,
which would lead to a decrease in target tracking speed. ,e
kernel correlation filter algorithm (KCF) [11] was a further
improvement of the CSK algorithm which used the histo-
gram of oriented gradients (HOGs) to track the target and
improved the accuracy of tracking. ,e HOG features were
extracted to detect the object, improving the accuracy of
tracking. Galoogahi et al. [12] put forward a background-
aware correlation filter (BACF) based on HOG features,
which efficiently modulates the variety of an object in both
foreground and background. Liu et al. [13] explored a patch-
based tracking method with multi-CF models. ,e combi-
nation of multiple parts could effectively adjust the effects of
noise. In 2014, Danelljan et al. proposed a DSST algorithm
that used HOG features to construct a scale pyramid for
target scale estimation based on MOSSE [14]. However,
when the target scale continued to increase, the convolution
calculation in training would increase, which would lead to a
decrease in tracking speed. In [15, 16], the Kalman filter
algorithm was used to predict the state of the target, de-
termined whether the target was occluded, and marked it to
predict the target that was still occluded later. In the long-
term target tracking process, due to the changeable tracking
environment, the target may have different deformations,
severe occlusion, and other problems, which may cause
tracking failure. How to quickly restore the target tracking
function is the key to achieving long-term target tracking.
Zhang et al. [17] established the descriptors for rotation and
scale normalization and fused color and texture features to
perform optimal similarity matching on the descriptors in
the candidate of the front and rear frames for target tracking.
To pay more attention emphasis on the target sample than
on the background samples, Yuan et al. [18] designed a
target-focusing convolutional regression model for the vi-
sual object tracking task. ,e target-focusing loss function
could effectively balance the proportion of positive and
negative samples and prevent overfitting the appearance
model to the background samples. Ma et al. [19] trained an
online random fern classifier to redetect objects in case of
tracking failure. To deal with the shortcomings of one single
feature to represent the target, some tracking methods based
on multiple feature fusion were designed [20–23], which
could improve the robustness of the algorithm to a certain
extent.

In recent years, with the rapid development of deep
learning in the field of machine vision, its accuracy has
surpassed traditional image processing methods in face
recognition and image detection. Unlike traditional
methods, deep learning does not require the manual design
of features but simulates the human visual perception system
and abstract expressions based on the characteristics of the
original image. Ma et al. [24] improved tracking accuracy
and robustness by pretraining deep CNNs, extracting the last
three layers of convolutional features, and learning adaptive

correlation filters. Qi et al. [25] focused on a hierarchical
CNN-based tracking framework (HDT), which took full
advantage of different features and used an adaptive Hedge
way to hedge these trackers into a stronger one. Valmadre
et al. [26] decoded the DCF learner as a differentiable CNN
layer and tracking target in an end-to-end way. Although
those methods achieved some success, all of them are either
limited by a larger computational cost or produce an un-
satisfactory tracking performance.

To solve the abovementioned problems, further research
on target tracking technology is necessary to improve the
tracking efficiency and effect. In this paper, we mainly focus
on the problem of long-term tracking in a complex envi-
ronment, especially when the tracking object is occluded,
illumination variation, deformation (DEF), and background
clutter. To improve the algorithm’s semantic description
ability and precise positioning ability, the features of dif-
ferent layers of the convolutional neural network are merged
to improve the accuracy of tracking. ,e objective function
is modeled by lasso regression, and the sparse filter model is
learned to improve the interpretability of the model. In the
process of modeling, the low-rank constraint between dif-
ferent video frames is added to improve the temporal
correlation of the filter to solve the problem of overfitting
and unstable performance. ,e multilayer convolution
features of candidate regions are extracted, and the response
map of each layer is calculated by using the learned filter
model. In this work, the coarse-to-fine localization strategy
is used, using high-level features for rough positioning and
low-level features for precise positioning. By finding the
maximum response value in the response map, we can get
central of the target. To solve the problem of target template
drift in the process of target tracking, two template updating
strategies are introduced to update the target template only
when the two maximum responses fmax meet the threshold.

,e main contributions of this work are summarized as
follows:

(i) ,rough the lasso regression modeling of the ob-
jective function and the low-rank constraint be-
tween different frame filters, the interpretability and
performance stability of the model are improved.

(ii) A coarse-to-fine target localization strategy is pro-
posed by making full use of the rich semantic in-
formation in the high level and accurate position
information in the low level of the deep convolution
feature. ,e high-level feature is used to predict the
target position for coarse-grained location, and then
the location result is applied to the fine-grained
location of low-level features to obtain the accurate
target location.

(iii) A robust template updating method is designed: the
filter ω1 learned from the first frame and the filter ωt
learned from the t-th frame are used to calculate the
maximum response f1

max and ft+1max, respectively.
When the two maximum response values meet the
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preset threshold, the template is updated, which can
solve the tracking failure in the following frame
caused by incorrect template update.

,e remainder of this study is organized as follows.
Section 2 describes the extraction methods of different
features, establishes a target feature model via the correlation
filter framework, which includes the fundamental intro-
duction about the KCF tracker, sparse and low-rank filter
modeling, a coarse-to-fine target prediction model, and
template update strategy. Section 3 verifies the effectiveness
and robustness of the algorithm through experiments in two
aspects, namely, quantitative and qualitative analyses, and
describes the comparison with some correlative and rep-
resentative trackers. Section 4 summarizes the brief con-
clusions about this work.

2. Methodology

Deep convolution features can effectively solve the tracking
problem of severe deformation by extracting rich semantic
information. ,e Conv5-4 convolutional features are se-
lected to locate the target roughly, and the Block2-pool layer
features are used to achieve accurate target location (see
Section 2.1 for details). ,e traditional KCF algorithm uses
the L2 norm to design the objective function, which makes
the learned model poor in interpretability. By forcing the
sparse filter model when minimizing the objective function,
the robustness of the algorithm can be enhanced. In this
paper, we use the lasso regression to model the objective
function and learn a sparse filter ωt. To solve the problem of
overfitting and unstable performance, low-rank constraints
between different video frames are added in the lasso re-
gression modeling process of the objective function to
improve the temporal correlation of the filter and enhance
the robustness and stability of the algorithm (see Section 2.2
for details). A coarse-to-fine target localization strategy is
designed (see Section 2.3 for details). Firstly, the position of
the maximum response value fmax of the last layer is pre-
dicted which is used as a regular term of other layers to carry
out the iteration layer by layer, and the response results of
other layers are calculated. ,e position of the maximum
response value is the predicted target position. A robust
template updating method is designed: the filter ω1 learned
from the first frame and the filter ωt learned from the t-th
frame are used to calculate the maximum response f1

max and
ft+1max, respectively. When the two maximum response values
meet the preset threshold T0, the template is updated, which
solves the problem that the template is not updated in-
correctly and the failures of the subsequent tracking. ,e
proposed algorithm model is shown in Figure 1.

2.1. Feature Representation. We use the hierarchical con-
volution features from pretrained VGGNet-19 [27] to
encode object appearance for their expressive ability to
solve the target tracking problem in complex scenes such as
target deformation. ,e VGGNet-19 network has 19 layers,
including 16 convolution layers and 3 full connection
layers. VGGNet-19 has five convolution modules,

Block1–Block5, and each module has a pooling layer. To
make the feature graph have strong expression ability, the
Relu function expressed as ReLU(x) � max(0, x) is used to
perform nonlinear processing operations after each con-
volution layer. Features of different convolutional layers
have different expressive capabilities. ,e shallower the
number of layers, the more detailed information contained
in the feature map, but background clutter will be gen-
erated; the deeper the number of layers, the more semantic
information contained in the feature map, but including
the less detailed information. ,e pooling operation of the
neural network reduces the spatial resolution of the image,
improves the respective field, and makes the high-level
features have scale and rotation invariance. To improve the
ability of semantic description and precise positioning,
some advanced tracking algorithms merge convolutional
neural networks and manual features to improve the ac-
curacy of tracking. However, manual features often contain
a lot of background noise, which brings challenges to
tracking and affects tracking performance. ,erefore, it is
considered to extract the complete edge information from
the convolution neural network to locate the target ac-
curately. ,e deeper the convolution neural network is, the
more obvious the background suppression is. ,e visual-
ization results of the five convolution modules in VGGNet-
19 are shown in Figure 2. Conv1-2 is not selected because it
is too close to the input layer (big noisy) and its receptive
field is small. Compared with Conv2-2, the Block2-pool
layer retains accurate location information while reducing
spatial resolution. ,erefore, the Block2-pool layer of the
Block2 is used to extract features to achieve an accurate
target location. As can be seen from Figure 2, although the
output of the Conv3-4 convolution layer has a lot of po-
sition information, the edge information of the target is
incomplete, which is easy to cause the target detection
failure. Both Conv5-4 and Block5-pool have rich semantic
information, but the feature resolution of the Block5-pool
layer is half of that of the Conv5-4 layer. In the complex
scene with background clutters, the rough position of the
Block5-pool layer within the yellow bounding box is in-
correct. In the contrast, the Conv5-4 convolutional features
within the yellow bounding box are discriminative from
background areas despite the dramatic background
changes.,e property of the Conv5-4 convolutional layer is
suitable to deal with significant appearance changes and
accurately locate the target at coarse-grained level.
,erefore, considering the efficiency and complexity, the
Block2-pool layer with strong spatial resolution and the
Conv5-4 layer with strong semantics are selected to de-
scribe the appearance of the target.

,e size of the feature map in different network layers is
different for the pool operation applied in the convolutional
neural networks. ,e deeper the layer is, the smaller the size
of the feature map is. For example, the Block5-pool layer
feature map size is 7× 7, which is (1/32) of the output image
size 224× 224. However, low spatial resolution is not enough
to accurately locate the target. In this paper, bilinear in-
terpolation is used to map each feature to a larger size to
alleviate this problem. Let f is the feature map before
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Figure 2: Visualization of convolutional layers on the challenging MotorRolling sequence.,e yellow bounding boxes indicate the tracking
results by our method. ,e red bounding boxes indicate the feature layer selected by our algorithm. Although the target is seriously
deformed, the target position can still be identified by using the output features of the Conv5-4 layer. Compared with the features of the
Conv5-pool layer, the resolution is too low to locate the accurate target position.
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Figure 1: Algorithm model. In frame t, the blue box presents the prediction result of the previous frame and the green box presents the
searching area with 1.5 padding.,e convolution features are extracted from the original image within the green box. In frame t+ 1, features
for the prediction are extracted around the location in the previous image. ,e response of the candidate region is calculated by the trained
filter ωi, and the position with the maximum response value is the predicted target position.
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interpolation and X is the upsampled feature map. ,en, the
eigenvector of the i-th position is expressed as follows:

Xi �∑
j

βi,jfj. (1)

Among them, the interpolation coefficient is βi,j, and its
value depends on the eigenvector in the (i, j) domain.
Convolution feature is a multichannel feature, but not every
channel feature is effective, and it may contribute less to
target tracking. If such features are used for tracking, it may
bring tracking uncertainty in the prediction phase. ,e
feature redundancy can be reduced by the spatial feature
selection and cross-channel method [28] to improve the
tracking performance. Considering the low resolution of
each layer of the deep convolution network, the application
of spatial features to the deep convolution network can only
achieve limited capacity improvement. A large number of
redundant channels can be reduced by adding the channel
feature regularization term into the objective function of the
filter. To simplify the design of the objective function of the
filter, redundant channels are reduced by calculating
channel variance. For example, in the VGGNet-19 model,
the Conv2-pool layer contains 256 channels, and the Conv5-
4 layer contains 512 channels. Each layer selects the con-
volution features of the first 128 or 256 channels according
to the variance size to remove the redundant feature
channels and improve the accuracy of the tracking algo-
rithm. ,e variance of each channel is calculated as follows:

σ̂2 �
1

WH
∑W
i�1

∑H
j�1

Xi,j − Xmean( )2, (2)

whereW andH represent the width and height of the feature
map, respectively. Xi,j represents the eigenvalue of the
midpoint (i, j) of a channel, and Xmean represents the av-
erage characteristic of a channel.

2.2.DiscriminativeCorrelationFilter. ,e typical correlation
tracker can learn a discriminative classifier and complete the
estimation of the target object by searching the maximum
value of the relevant response maps. By exploiting the shifted
samples, correlation filters can be efficiently trained with a
substantially large number of training samples using the fast
Fourier transform (FFT). ,e task of target tracking is to
predict the position of the target in the subsequent frame
after the target position in the initial frame is given. Figure 3
shows the result of cyclic shifting different pixels in the X-
axis and Y-axis directions of the target sample.

2.2.1. Single-Channel Ridge Regression Modeling. ,e
extracted feature map is xt ∈ RW×H, which is a features
tensor extracted from the t-th frame.W and H indicate the
width and height of feature channels, respectively. We
consider all the circularly shifted results of the feature xt
along the W and H dimensions as training samples. Each
shifted sample xt,ij, (i, j) ∈ 0, 1, 2, . . . ,W − 1{ } × 0, 1, 2, . . . ,{

H − 1} has a Gaussian function yij expressed as follows:

Yij � e
− (i− (W/2))2+(j− (H/2))2/2σ2( ), (3)

where σ is the core bandwidth. ,e center position has the
highest score, which is Y(W/2)(H/2) ) � 1. When the position
(i, j) is gradually away from the target center, the score yij
decays rapidly from one to zero. ,e filter of the t-th frame
namedωt ∈ RW×H is learned using a pair of training samples.
To obtain ωt, DCF formulates the objective as a regularised
least square problem:

ωt � argmin
ω

∑
ij

xtωt − yij






 




22 + λ ωt



 



22, (4)

where λ is the regularization term to prevent overfitting. To
simplify the description, the subscript t is omitted, and the
closed solution is obtained by deriving equation (4) and
setting it to zero:

ω � XHX + λI( )− 1XTY. (5)

Among them, X � [x1, x2, . . . , xn]
T and each row rep-

resents a vector. Y is a column vector, and each element
represents the expected output
yij, (i, j) ∈ 0, 1, . . . ,W{ } × 0, 1, . . . , H{ }. XH represents the
complex conjugate transpose matrix, that is XH � (X∗)T. I
is an identity matrix with the same size, and all elements of I
are 1.,e circulant matrix can be diagonalized in the Fourier
domain, and the result in the Fourier domain can be ob-
tained by using this characteristic:

ω̂ �
x̂⊙ ŷ∗

x̂∗ ⊙ x̂ + λI.
(6)

,e addition and division in (6) are carried out by el-
ement, ⊙ means multiply by the element, ⌃ is the corre-
sponding Fourier representation, and ∗ is complex
conjugate.

2.2.2. Single-Channel Lasso Regression Modeling. ,e L2
norm is used to achieve the design of the objective function
in formula (4) to balance the deviation problem in the
evaluation process.,e L2 norm is the square root calculated
from the sum of the squares of the elements in the vector ω.
To minimize the rule item ‖ω‖2, each element made is very
small, but not equal to 0. When each weight coefficient of ωis
not equal to 0, that is, all elements are activated, such a filter
model is not sparse. In other words, to enhance the gen-
eralization ability of the model, the norm L2 sacrifices the
interpretability of the model. Especially when dealing with
multichannel deep neural network features, most of the
features in the training sample xt of the xt, Y{ } are not
closely related to the final output Y. By forcing a sparse
model ω when minimizing the objective function, the in-
terference to correct prediction can be reduced. To solve this
problem, we use the lasso regression method to model the
objective function.,e sparse regularization operator L1 can
remove these uninformed features through learning, that is,
reset the weights corresponding to these features to 0. A
sparse filter is learned by modeling with lasso regression,
which is represented as follows:
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ω � argmin
ω

‖xω − y‖22 + λ‖ω‖1. (7)

2.2.3. Low-Rank Constraint of the Filter. In the long-term
target tracking process, the appearance and background of
the tracking target will change dynamically. ,e filters
learned from the lasso regression model may have problems
of overfitting and unstable performance. To solve this
problem, low-rank constraints between different video
frames are added in the lasso regression modeling of the
objective function to improve the temporal correlation of the
filter and enhance the robustness and stability of the algo-
rithm. ,e time-series low-rank smoothing term is defined
as follows:

rank ωt( ) − rank ωt− 1( ). (8)

Each column of ωt � [vec(ω1), . . . , vec(ωt)] ∈ RW×H×D
is a vectorized filter ωi. In the process of tracking, the rank
rank(ωt) of the ωt calculated in real-time will affect the
efficiency of the algorithm. By calculating the average value
and adding a new increment each time, the difference be-
tween the ranks of two adjacent filters can be solved.
,erefore, formula (8) is calculated in the following
equivalent form [20]:

d ωt − ω
mean
t− 1( ),

ωmean
t− 1 �∑t− 1

i�1

ωi
(t − 1)

,


(9)

where ωmean
t− 1 is the mean value of the filter learned before the

t − 1 frame and d is a distance measurement function.
,erefore, the regularization term represented by the L2
norm in formula (7) achieves low-rank time series, which
can be approximately described as follows:

ωt � argmin
ω

xωt − y




 



22 + λ1 ωt



 



1 + λ2 ωt − ωmean

t− 1





 



22.
(10)

It can be seen from formula (10) that the ωmean
t− 1 calcu-

lation is performed in an incremental manner, and only one
parameterωmean

t− 1 is needed to realize the time-series low-rank
smoothing in the calculation process.

2.2.4. Multichannel Low-Rank Modeling. ,e Block2-pool
layer with strong spatial resolution and the Conv5-4 layer
with strong semantics are selected to describe the char-
acteristics of the target. ,e extracted multichannel feature
map of the t-th frame is xt ∈ RW×H×D, which is a tensor
consisting of d-channel features extracted from the t-th
frame.,en, Y ∈ RW×H is the corresponding ideal Gaussian
waveform of the response. ,e multichannel filters
ωt ∈ RW×H×D of t-th frame are learned from a pair of
training samples xt, Y{ }. ,e process of solving the filter is
to minimize the objective function. ,e multichannel
objective function of low-rank modeling is defined as
follows:

ω̃t � argmin
ωt

∑D
d�1

ωdt ∗x
d
t − Y





















2

F

+ λ1∑D
d�1

ωdt






 




1,1 + λ2∑
D

d�1

ωdt − w
d
t− 1






 




2F.
(11)

where ∗ is the circular convolution operator [9],ωdt ∈ RW×H
is the corresponding discriminative filter of the d-th channel,
xdt ∈ RW×H represents the d-th channel feature, and wdt− 1
represents the multichannel form of ωmean

t− 1 . ‖A‖F is the
Frobenius norm of matrix A defined as the square root
calculated from the sum of the squares of the elements in the
matrix A, which represents the Euclidean distance between
two matrices, expressed as follows:

‖A‖F�

����������
∑W
i�1

∑H
j�1

ai,j

∣∣∣∣∣ ∣∣∣∣∣2
√√

, (12)

where ai,j represents the element in the i-th row and j-th
column of matrix A. ,e L1 norm ‖A‖1,1 of matrix A can be
expressed as ‖A‖1,1 � ∑Wi�1∑Hj�1 |ai,j|.

+30 +15 Base sample –15 –30

Figure 3: Cyclic shift of the target sample. Taking the target image as the base image, the method of cyclic offset can get some approximate
negative samples as training samples.
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2.2.5. Optimization of the Objective Function. ,e objective
function expressed by formula (11) is convex and can be
optimized by the extended Lagrangian method [29]. By
introducing relaxation variables ω′ � ω, the Lagrangian
function is constructed as follows:

ℓ � ∑D
d�1

ωdt ∗x
d
t − Y





















2

F

+ λ1∑D
d�1

ω′dt





 




1,1

+ λ2∑D
d�1

ωdt − w
d
t− 1






 




2F + α2 ∑
D

d�1

ωdt − ω′
d
t +
Πk
α



















2

F

,

(13)

where α is the optimization parameter and Π is the La-
grangian multiplier with the same dimension size as xt.
Iterative optimization of formula (13) is carried out by using
alternating direction multiplier to ensure convergence [19],
which is specifically expressed as follows:

ω � argmin
ω

ℓ(ω,ω′,Π, α),
ω′ � argmin

ω′
ℓ(ω,ω′,Π, α),

Π � argmin
Π

ℓ(ω,ω′,Π, α).


(14)

(i) Solution of variables ω

Given variables ω′, Π, and α, the solution of the
variable ω is obtained by optimizing the corre-
sponding objective function, which is expressed as
follows:

min ∑D
d�1

ω̂dt ∗ x̂
d
t − Ŷ





















2

F

+ λ2∑D
d�1

ω̂dt − ŵ
d
t− 1






 




2F
+
α

2
∑D
d�1

ω̂dt − ω̂
′d
t +
Π̂k

α





















2

F

.

(15)

For the sake of simplicity, the corresponding closed
solution is obtained after omitting the subscript t as
follows [30]:

ω̂i,j � I −
x̂i,jx̂

T
i,j

λ2 + α/2 + x̂i,jx̂
T
i,j( )  x̂i,jŷi,j + αω̂′i,j − αΠ̂i,j + λ2ŵi,j( )

λ2 + α( ) .

(16)

Among them, the vectors ωi,j′ , x̂i,j, and ŵi,j are,
respectively, composed of the elements in the i-th
row and the j-th column in all channels of the
vectors ω̂′, x̂, and ŵ.

(ii) Solution of variables ω′
Given variables ω, Π, and α, the solution of the
variable ω′ is obtained by optimizing the corre-
sponding objective function, which is expressed as
follows:

min λ1∑D
d�1

ω′dt





 




1,1 + α2 ∑

D

d�1

ωdt − ω′
d
t +
Πk
α



















2

F

. (17)

,e closed solution can be obtained by shrinking the
threshold [20]:

ω′di,j � sign ωdi,j +
Πdi,j
α

 max 0, ωdi,j +
Πdi,j
α

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ −

λ1
α

 ,
(18)

where ωdi,j and Πdi,j represent the elements in the i-
th row and j-th column of ω and Π of d-channel,
respectively. sign is a symbolic function that
determines the positive and negative problems of
ω′di,j.

(iii) Solution of variables Π
Given variables ω and ω′, the update mode of
variables Π and α is as follows:

Π � Π + α(ω − ω′),
α � min βα, αmax( ).

 (19)

αmax is the maximum penalty parameter to prevent
singularity, and β is the similarity measure between
the slack variable ω′ and the original variable ω.

2.3.Coarse-to-FineLocationPrediction. ,e correlation filter
ωt learned from the t-th frame is used in the target esti-
mation of the subsequent (t+ 1)-th frame.,e features of the
layer l � 2, 5{ } of frame t+ 1 are extracted, and the filtering
response in the frequency domain is calculated as follows:

f(x) � F− 1 ∑D
d�1

x̂dt+1 ⊙ ω̂
d
t

 , (20)

where ∧ represents the discrete Fourier transform, ⊙ rep-
resents element-wise multiplication, and F− 1 represents the
inverse transform of the fast Fourier. By searching for the
position with the maximum response value fmax with size of
W ×H, the target location of the l-th convolution layer can
be estimated based on hierarchical prediction. ,e position
is predicted based on the maximum response value fmax of
the last layer and iterated layer by layer as the regular term to
calculate the response results of the other layers. It is as-
sumed that the response of the position (x, y) in the layer l is
expressed as fl(x, y) and the maximum response position is
expressed as (xc, yc):

xc, yc( ) � argmax
x,y

fl(x, y). (21)

Given the response fl(x, y) and maximum response
position (xc, yc) of layer l, the position of layer l − i can be
predicted with the following formula:
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argmax
x,y

fl− i(x, y) + clfl(x, y),

s.t.
�������������������
x − xc
∣∣∣∣ ∣∣∣∣2 + y − yc∣∣∣∣ ∣∣∣∣2 ≤ r,√ (22)

where cl is the regularization term of layer l, which is
propagated to the response maps of early layers. Specifically,

with (xc, yc) as the center and
����������������
|x − xc|

2 + |y − yc|
2

√
as the

radius, we can get a circle C. Formula (22) indicates that the
maximum response location (x, y) is searched in the r × r
neighboring regions centered at (xc, yc) on the (l − i)-th
correlation response map. Finally, using formula (22), the
maximum response location is found on the Block2-pool
layer as the final target location.

In practice, the tracking results are not sensitive to the
parameter r of the neighborhood search regions. ,e target
location can be predicted by computing the weighted av-
erage of the response maps from different layers defined as
follows:

argmax
x,y

∑
l

clfl(x, y). (23)

,e last layer of the convolutional neural network
contains rich semantic information, which is robust to target
deformation. ,erefore, we hope to assign larger regulari-
zation coefficients to deeper layers. It is found that the
deeper the layers are, the lower the spatial resolution is, and
the lower the maximum response value is. Taking advantage
of the fact that the regularization term cl of each layer is
inversely proportional to the maximum response value fmax,
the regularization term is designed as follows:

cl∝
1

fmax

. (24)

Combined with formulas (23) and (24), the target po-
sition can be located as follows:

argmax
x,y

∑
l

fl(x, y)

fmax

. (25)

In Figure 4, we compare the weighted maximum re-
sponse values from four different convolutional layers to
locate the target in Dog sequence. By comparing the four
filtering response curves in Figure 4, it can be found that the
maximum response value of the Conv2-2 layer is the best.
,e reason is that Conv2-2 has a stronger spatial resolution
than the Block2-pool layer, but it also leads to a low frame
rate when using the Conv2-2 layer for tracking (see Figure 5
for details). ,e weighted maximum response values of
Block2-pool using formula (25) help to track the target well
over the entire sequence.

2.4.Model Update. In the long-term target tracking process,
background interference may occur, which may cause the
template to be updated incorrectly. ,e response of the filter
on the background is greater than the threshold T0, but at
this time, the predicted position is wrong, and the newly
learned template is also wrong. In this case, if the template is

updated, it will cause tracking drift. By calculating the re-
sponse value of each subsequent frame, it will be found that
the maximum response value still meets the threshold
condition, but the target is not located. At this time, the
template is no longer accurate, and the maximum response
position is the background. To solve the problem of target
template update in complex scenes such as background
interference, target deformation, and occlusion, an accurate
template is used for prediction to obtain more accurate
location information. For this reason, two template update
judgment methods are proposed. ,e filter ω1 learned from
the first frame and the filter ωt learned from the t frame are
used to calculate the maximum response f1

max and ft+1max,
respectively. When the two maximum response values meet
the preset threshold value T0, the template is updated (see
Section 2.4 for details), which can solve the tracking failure
in the following frame caused by incorrect template update.

To obtain a better approximation, we update the cor-
relation filter ωt in (26) using a moving average with a
multichannel filter ωt− 1 obtained in the optimization process
in Section 2.2:

wt � cωt +(1 − c)ωmean
t− 1 , (26)

where t is the frame index and c is a learning rate. Some
existed trackers update object models [13, 16] at each frame
without considering whether the detection is accurate or not.
However, in the target tracking process, the target is likely to
be severely occluded or completely occluded. If the target
model continues to be updated in this case, it is equivalent to
updating the background as the target, which may easily
cause template drift. When there is more than one similar
object in the scene, the tracker treats a similar target as the
background. Only when the two maximum response values
are greater than the preset threshold value T0, the model is
updated using equation (26). Otherwise, the model is not
updated, and the previous filter will be used for position
prediction in the subsequent frames. ,erefore, the learned
filter is robust to noisy updates that often cause rapid model
degradation and obtains a long-term memory of target
appearance.

3. Result Analysis and Discussion

To evaluate the proposed algorithm objectively and com-
prehensively, we run the proposed algorithm on two stan-
dard benchmark datasets: OTB2015 [31] and TC-128 [32].
OTB2015 is annotated with 11 attributes that cover various
challenging factors, including scale variation (SV), illumi-
nation variation (IV), occlusion (OCC), motion blur (MB),
deformation (DEF), fast motion (FM), out-of-plane rotation
(OPR), out-of-view (OV), in-plane rotation (IPR), back-
ground clutters (BC), and low resolution (LR). ,e TC-128
benchmark contains 128 color video sequences with 11
annotated attributes, and it aims at analyzing the impact of
color information on tracking. In this paper, the video se-
quence with more than 1000 frames belongs to long-term
tracking. We use the benchmark protocols and the same
parameters shown in Table 1 for all the sequences as well as
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all the sensitivity analysis. For completeness, we also report
the results in terms of distance precision rate, overlap
success rate, and center location error in comparison with
state-of-the-art algorithms: BACF [12], KCF [11], DSST [14],
HDT [25], Struck [7], and SAMF [22]. We implement the
proposed tracker in MATLAB R2018b on a computer with
the configuration of an Intel Core i7-8550U 2.0GHz CPU,
8GB RAM, and a GeForce GTX GPU with MatConvNet
toolbox.

3.1. Evaluation Criterion. To evaluate the tracking perfor-
mance, the one-pass evaluation (OPE) is used as the eval-
uation index on the OTB2015 [31] dataset. ,e OPE strategy

has two evaluation criteria, namely, distance precision rate
(DPR) and overlap success rate (OSR). ,e distance pre-
cision rate represents the percentage of the center location
errors between predicted position and ground-truth with
different thresholds. ,e center position error refers to the
Euclidean distance between the estimated position (x′, y′)
obtained by iteration and the true position (x, y), which can
be calculated using formula:

D �

������������������
(x − x′)

2
+(y − y′)

2.
√

(27)

As D decreases, the accuracy and stability of the algo-
rithm increase. Given the predicted bounding box Rp es-
timated by the tracking algorithm and the ground-truth
bounding box Rg, the overlap rate (R) can be computed as
follows:

R �
S Rp ∩Rg( )
S Rp ∪Rg( ), (28)

where ∩ represents the intersection of the two bounding
boxes, ∪ represents the union of the two bounding boxes,
and S(·) represents the area of the two bounding boxes. As
the overlap rate increases, the tracking success rate increases.

Table 1: Parameter settings.

Parameter Value

Regularization term λ1 10− 4

Regularization term λ2 4
Learning rate c 0.15
fmax threshold T0 0.3
Gaussian kernel bandwidth σ 0.5
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Overlap success rate represents the percentage of frames
with an overlap rate greater than a given threshold. With
different thresholds, a curve can be obtained, and the
threshold is set to 0.3.

3.2. Quantitative Analysis. ,e algorithms will be evaluated
and analyzed from four aspects on the OTB2015 dataset and
two evaluation indicators, DPR and OSR on the TC-128
dataset.

3.2.1. Experiment on OTB2015 Dataset. In this section, the
experimental results on the OTB2015 are given in terms of
the tracking performance, center position error, DPR, and
OSR, comparing with BACF [12], KCF [11], DSST [14],
HDT [25], Struck [7], and SAMF [22] algorithm:

(1) ,e tracking performance

Figure 5(a) shows that the comparison of tracking
results when different convolutional layers of
VGGNet-19 are selected as features. Note that if one
convolutional layer contains multiple sublayers, we
use features from the last sublayer, e.g., C2 indicates
the Conv2-2 layer in VGGNet-19. We use different
layers (C5, C4, and C3) separately and merge dif-
ferent layers to express the comparison result of the
speed and success rate. ,e VGG-C5-C2 strategy
performs better than the VGG-C5-Block2-pool in
terms of success rate and worse than the VGG-C5-
C2 scheme in terms of speed. Since target tracking is
a real-time task and requires relatively high pro-
cessing speed, the VGG-C5-Block2-pool scheme
achieves the most ideal comprehensive effect.

Figure 5(b) shows the success rate and tracking speed
between the proposed tracker and other compared
trackers on the OTB2015 dataset. It shows that the
proposed tracker achieves favorable tracking accu-
racy with the highest tracking success rate. However,
the tracking speed at 59 frames per second (FPS) is
slower than other algorithms, such as KCF and
DSST, so it still needs to be improved.

(2) Center position error (CPE)

In this section, we analyze the proposed tracker with
BACF [12], KCF [11], DSST [14], HDT [25], Struck
[7], and SAMF [22] in terms of CPE on OTB2015.
CPE is an evaluation index of tracking target ac-
curacy, which is the mean value of the Euclidean
distance between the predicted center position and
the actual target center position. Figure 6 shows the
results of the CPE in sequences of the Singer1 with
351 frames and Car4 with 659 frames. ,e proposed
algorithm performs well against the state-of-the-art
trackers in CPE. ,e proposed algorithm obtains the
low CPE value, with the maximum of only 9.69, in
both Singer1 and Car4 sequence. ,e object in the
video sequence of Singer1 has large illumination
variations from frame 90. ,e CPE of BACF is much

more than 20 pixels and even leads to tracking
failures.

(3) Distance precision rate plot and overlap success rate
plot

We use the success rate plot and precision plot
calculated by the OPE evaluation standard to further
analyze the tracking performance of the proposed
algorithm and the other six comparison algorithms.
,e overlap success rate (R defined in formula (28))
represents the size of the tracking success rate, and
the range is 0 to 1. Figure 7 shows the comprehensive
statistical results between the proposed algorithm
and the comparison algorithm on OTB2015. Com-
pared with the highest score of 0.832, the distance
precision rate of the proposed algorithm is 0.829,
which is in the second rank and is 16.76% higher
than the traditional KCF algorithm. ,e proposed
algorithm with 0.695 scores achieves top rank in the
average success plots, which is 1.58% higher than
that of the second-ranked HDT (0.684). Compared
with the KCF tracker, which has a success ranking
score of 0.504, the proposed algorithm obtains an
improvement of over 27.48%. From the above
analysis, it is concluded that the modeling method of
lasso regression enhances the interpretability be-
tween different channel features and improves the
accuracy of the algorithm.

Figure 7 shows the comparison of the average perfor-
mance of the algorithm in different scenarios under the OPE
evaluation index.,e effect of the algorithmwill be different if
the attributes of the data set are different. To comprehensively
and accurately analyze the performance of the proposed al-
gorithm in various complex scenarios, Figure 8 shows the
comparison of the tracking results of the proposed algorithm
and the other compared tracking algorithms in IV, OCC, BC,
and SV with different attributes. ,e proposed tracker ach-
ieves almost the best performance among all other compared
algorithms, only performs slightly worse in video sequences
with occlusion properties. ,e proposed algorithm has a
significant improvement against the second-ranked algorithm
under complex scenes with the attributes of illumination
variation, occlusion, background clutter, and scale variation.

3.2.2. Experiment on TC-128. In this section, the TC-128
[32] dataset is used to validate the performance of the
proposed tracker. ,e comparison with some state-of-the-
art trackers, including BACF [12], KCF [11], DSST [14],
HDT [25], Struck [7], and SAMF [22], is shown in Table 2.
Besides, we use OTB2015 and TC-128 datasets to perform a
quantitative comparison of DPR with 20 pixels and OSR
with 0.5 pixels shown in Table 2. It shows that the proposed
tracker obtains the highest performance with the DPR of
80.5 and the OSR of 66.5 on TC-128. ,e proposed tracker
achieves the DPR of 82.9 and performs slightly worse than
HDTwith a DPR of 83.2 on OTB2015. Compared with KCF,
the proposed tracker achieved significant improvements,
which shows the benefits of using the Lasso regression
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modeling method and the multichannel feature selection
scheme.

3.3. Qualitative Analysis. To visually illustrate the tracking
accuracy of the proposed algorithm, Figure 9 shows the
tracking results of other advanced tracking algorithms in the
challenging video sequences Matrix, Dog, Singer1, and
Girl2. ,e comparison algorithms include correlation filter

tracker (KCF), multifeature tracker (SAMF), deep learning
tracker (HDT), and representative tracker (Struck). ,e
Matrix sequence as shown in Figure 9(a) has attributes of IV,
SV, OCC, FM, IPR, OPR, and BC. ,e Dog sequence as
shown in Figure 9(b) has attributes of SV, DEF, and OPR.
,e Singer1 sequence as shown in Figure 9(c) has attributes
of IV, SV, OCC, and OPR. ,e Girl2 sequence as shown in
Figure 9(d) has attributes of SV, OCC, DEF, MB, and OPR.
Taking Figure 9(d) as an example, where the object is
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Figure 8: Continued.
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Figure 8: Distance precision and overlap success plots on different attribute scenarios.

Table 2: Comparisons with the state-of-art tracker in terms of DPR and OSR (%), including BACF, KCF, DSST, HDT, Struck, and SAMF on
OTB2015 and TC-128 datasets. ,e first and second best values are highlighted in bold and italics.

Dataset Evaluation criterion Ours BACF KCF DSST HDT Struck SAMF

OTB2015
DPR 82.9 65.9 69.0 69.4 83.2 63.4 74.3
OSR 69.5 52.7 50.4 51.9 68.4 53.9 63.4

TC-128
DPR 80.5 63.7 54.9 66.4 80.1 59.7 67.3
OSR 66.5 49.7 49.4 46.8 56.4 50.9 53.4
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Figure 9: Continued.
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occluded by other objects, other compared algorithms all fail
to locate the object, while the proposed tracker can accu-
rately locate the target due to its redetection function. ,e
HDT performs well in sequences with deformation and fast
motion (Matrix and Dog) but fails when the object is oc-
cluded (girls). It can be seen from Figure 9(b) that all al-
gorithms have good results in the Dog video sequence, which
shows that the algorithms can deal with the problem of slight
deformation of the target. However, other algorithms cannot
solve the problem of target tracking in complex scenes such
as target deformation and background interference. In the
Matrix video sequence containing background interference,
the proposed algorithm can also effectively remove the
background information and establish an effective model to
smooth the filter.

4. Conclusion

To improve the tracking performance and robustness, an
improved hierarchical convolutional features model is
proposed into a correlation filter framework for visual object
tracking. ,e objective function is designed through lasso
regression modeling to obtain a sparse, time-series low-rank
filter, which improves the time-series correlation of the filter
and prevents algorithm overfitting and performance deg-
radation.,e proposed coarse-grained to fine-grained target

location strategy makes full use of the complementary
characteristics of different layers in the deep convolutional
network and can achieve robust tracking in challenging
videos. By extracting the features with rich semantic in-
formation in the last layer, coarse-grained positioning is
performed, which effectively solves the problem of target
deformation. By extracting low-level features with a high
spatial resolution for fine-grained positioning, the posi-
tioning accuracy and precision can be improved. A robust
template updating method is designed: the filter ω1 learned
from the first frame and the filter ωt learned from the t frame
are used to calculate the maximum response f1

max and f
t+1
max,

respectively. When the two maximum response values meet
the preset threshold value T0, the template is updated, which
solves the subsequent tracking failures caused by incorrect
template updating. ,e experiment results with different
attributes show the competitive performance of the pro-
posed tracker.
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Figure 9: Qualitative comparison between the proposed tracker and other representative trackers (KCF [11], HDT [25], Struck [7], and
SAMF [22]) on some visual object tracking sequences. (a) Matrix video sequence. (b) Dog video sequence. (c) Singer1 video sequence. (d)
Girl2 video sequence. ,e proposed model provides consistent results in challenging scenarios, such as occlusions, illumination variation,
fast motion, and background clutter.
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