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Abstract

This paper presents improved HMM/SVM methods for a two-
stage phoneme segmentation framework, which tries to imitate
the human phoneme segmentation process. The first stage per-
forms hidden Markov model (HMM) forced alignment accord-
ing to the minimum boundary error (MBE) criterion. The objec-
tive is to align a phoneme sequence of a speech utterance with
its acoustic signal counterpart based on MBE-trained HMMs
and explicit phoneme duration models. The second stage uses
the support vector machine (SVM) method to refine the hy-
pothesized phoneme boundaries derived by HMM-based forced
alignment. The efficacy of the proposed framework has been
validated on two speech databases: the TIMIT English database
and the MATBN Mandarin Chinese database.

Index Terms: automatic phoneme segmentation, duration
model, HMM, minimum boundary error, support vector ma-
chine

1. Introduction

The development of speech technology relies heavily on corpus-
based methodologies in which phoneme transcription and seg-
mentation usually play indispensable roles. For example,
the development of a text-to-speech (TTS) system, requires a
precisely segmented speech database for training data-driven
prosodic models. However, manual segmentation of speech sig-
nals is extremely time consuming and costly. To reduce the
human effort and speed up the labeling process, several ap-
proaches try to utilize automatic phoneme segmentation tech-
niques to provide initial phoneme segmentation for subsequent
manual segmentation and verification. Such methods include
dynamic time warping (DTW) [1], methods that utilize spe-
cific features and algorithms [2], HMM-based Viterbi forced
alignment [3, 4], and two-stage approaches [5, 6]. HMM-based
segmentation is the most widely used, while the support vec-
tor machine (SVM) method with some discriminative features
is useful for post-correction [6].

This paper presents a HMM/SVM-based two-stage frame-
work for phoneme segmentation. The first stage performs
HMM-based forced alignment according to the minimum
boundary error (MBE) criterion. The objective is to align
a phoneme sequence of a speech utterance with its acoustic
signal counterpart based on MBE-trained HMMs and explicit
phoneme duration models. The second stage uses SVM to re-
fine the hypothesized phoneme boundaries derived by HMM-
based forced alignment, based on some discriminative features
and MFCCs. The proposed framework has been extensively
evaluated on the TIMIT English database, and applied to semi-
automatic phonemic labeling of speech utterances selected from
the MATBN Mandarin Chinese database [7].

2. HMM-based phoneme segmentation
2.1. Minimum Boundary Error (MBE) training

Given a training set of observation sequences {O?, ..., O%},
the MBE criterion for acoustic model training tries to minimize
the expected boundary errors in the sequences as follows:
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where ®@" is a set of possible phoneme alignments for the train-
ing observation utterance O"; S; is one of the hypothesized
alignments in ®"; S7 is the manually labeled phoneme align-
ment; P(S;|O") is the posterior probability of alignment S;,
given the training observation sequence O"; and ER(S], S?)
denotes the “boundary error” of S; compared with the manually
labeled phoneme alignment S.. For each training observation
sequence O7, Furpr gives the weighted average boundary er-
ror of all hypothesized alignments. However, Eq. (1) cannot be
used directly because, in practice, P(S7 |O") is unknown. For
simplicity, the plug-in approximation of the posterior probabil-
ity is used. We assume the prior probability of alignment S}
is uniformly distributed, and the likelihood p(O7|S7) of align-
ment S; is governed by the acoustic model parameter set A.
Therefore, Eq. (1) can be rewritten as:
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where £ is a scaling factor that prevents the denominator
ZS,’C'E‘PT pa(O7|SE) from being dominated by only a few
alignments. If £ is set to zero, all the hypotheses are equally
weighted. The boundary error ER(S], S;.) of the hypothe-
sized alignment S; is calculated as the sum of the boundary
errors of the individual phonemes in S7, i.e., ER(S],S;) =
Zgzyl er(qh, q), where N7 is the number of total phonemes
in O"; ¢&, and ¢ are the n-th phonemes in S} and S7, respec-
tlvely, and er(qn, qy) is the phoneme boundary error calculated
as & x (|si, — s&| + |eh, — e5]), where s}, and €}, are, respec-
tlvely, the hypothesized start time and end time of phoneme ¢, ;
and s;, and ey, correspond to the human-labeled start time and
end time, respectively. Since ®" contains a huge number of
hypothesized phoneme alignments, for efficiency, we restrict
the hypothesized space ®" to the set of alignments constructed
from a phoneme lattice like the example shown in Fig. 1. To
minimize Eq. (2), we adopt the extended Baum-Welch (EB)
algorithm for optimization.

2.2. MBE segmentation

The MBE alignment approach is a promising realization of
the minimum Bayes-Risk classifier for the automatic phoneme



Figure 1: An illustration of the phoneme lattice for the speech
utterance “Where were they?”

segmentation task. The latter can be considered as an action,
as(0), taken to identify a certain alignment, S, from all the
phoneme alignments of a given utterance . Let the func-
tion L(S,Sc) be the loss incurred when the action as(O) is
taken, given that the true alignment is S.. During the classi-
fication stage, we do not know the true alignment in advance,
i.e., any arbitrary alignment S; could be true. The MBR clas-
sifier is designed to select the action whose conditional risk,
R(as|O) = Zsjeé L(S,S;)P(S;]|0), is minimal, i.e., the
best alignment based on the MBR criterion is found by:

St = arg min szep L(S, S;)P(S;]0). 3)

By replacing the loss function in Eq. (3) with the boundary
error function defined in Sec 2.1, the best alignment based on
the MBE criterion is found by:

S = argmsin Z ER(S,S;)P(S;]0)
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where N is the number of phonemes in utterance O; and g,
and ¢Z, are the n-th phonemes in the alignments S and S, re-
spectively. To simplify the implementation, we restrict the hy-
pothesized space ® to the set of alignments constructed from
the phoneme lattice, which can be generated by a conventional
beam search.

Let the cut C,, be the set of phoneme arcs of the n-th
phoneme in the utterance. For example, in Fig. 1, there are
four phoneme arcs for the second phoneme “w” in C2 and six
phoneme arcs for the third phoneme “eh” in Cg. From the fig-
ure, it is obvious that each hypothesized alignment will pass a
single phoneme arc in each cut C,, n = 1,2,..., N. Based
on this observation, Eq. (4) can be rewritten as:

N
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where gn,m is the m-th phoneme arc in Cy, and pg, ,, =
> S;€®|gn.meES; } P(S;]0) is equivalent to the probability of
gn,m given the utterance O, which can be calculated easily by
applying a forward-backward algorithm to the phoneme lattice.
In this way, MBE forced alignment can be performed efficiently
on the phoneme lattice via a Viterbi search.

2.3. Applying the phoneme duration model to segmentation

Duration information plays an important role in discriminat-
ing between certain words in various languages. For exam-
ple, in English, it is not easy to distinguish between “ship” and

“sheep” without using duration information. However, HMM-
based systems, in which the probability of the duration of a state
decreases exponentially over time, are known to be deficient in
modeling the duration of phonemes. Many duration modeling
techniques, such as the hidden semi-Markov model (HSMM)
[8], the expanded state HMM (ESHMM) [9], and the post-
processor duration model [10], have been proposed to model the
duration more accurately. Compared to HSMM and ESHMM,
the post-processor duration model used in re-scoring a list of
likely hypotheses is more suitable for integration into the MBE
segmentation process.

In the implementation, the phoneme duration probability is
integrated into the output likelihood of a specific phoneme arc
q on the lattice as follows:

p(q) = p(q) - d(ry)”, (6)

where d(74) is the duration probability of ¢, and (3 is a scal-
ing factor that controls the duration model’s impact. We use
a nonparametric probability mass function for duration mod-
eling, which makes no prior assumption about the parametric
form of the distribution, and is more computationally efficient
than parametric approaches. Phoneme durations from the train-
ing data are used to compute the histograms with a bin width of
5 ms.

3. Boundary refinement using SVM

As noted in [6], SVM is useful for refining the initial phoneme
boundaries detected by HMM-based segmentation. For each
initial boundary, several hypothesized boundaries around it are
identified, and each one is examined by a phoneme-transition-
dependent SVM classifier; then, the initial boundary is replaced
by the most likely boundary.

3.1. Phoneme transition clustering

Ideally, we should be able to train an SVM classifier for each
type of phoneme transition. However, this is not feasible be-
cause the training data is always limited. Maintaining a balance
between the available training data and the model’s complex-
ity is critical to the training process. Furthermore, since many
phoneme transitions have similar acoustic characteristics, we
can partition them into clusters so that the training data can be
shared and the phoneme transitions with little training data can
be covered by the SVM classifiers of the categories they belong
to. We implement phoneme transition clustering in two ways:
by K-means clustering and by decision-tree-based clustering.

K-means-based phoneme transition clustering is performed
as follows. For each type of phoneme transition, we gather all
the feature vectors associated with the human-labeled phoneme
boundaries and compute the mean vector. For each one of
the four phoneme transition classes, namely sonorant to non-
sonorant, sonorant to sonorant, non-sonorant to non-sonorant,
and non-sonorant to sonorant, we apply the K-means algorithm
to cluster the phoneme transitions according to their mean vec-
tors. Note that only phoneme transitions with enough instances
are considered in this step. Finally, we assign the phoneme tran-
sitions ignored during clustering (due to sparse instances) to the
nearest clusters according to the Euclidean distances between
their mean vectors and the cluster centers.

The drawback of K-means clustering is that it can not
cover phoneme transitions that do not occur in the training
data. In contrast, decision-tree-based clustering can generalize
to unseen phoneme transitions and take advantage of linguistic



knowledge during clustering. Here, all the questions have the
form “Is the left phoneme of the transition a member of set X
and the right phoneme a member of set Y?” The sets X and Y
range from broad phonetic classes, such as sonorant, stop, and
unvoiced classes, to distinct phonemes, such as {r} and {s}. In
total, 397 phonetic sets are used.

3.2. Support vector machine

Consider the problem of classifying data points into two classes,
A4 and A_. We are given a training data set {(z;, y:) }iz1,
where x; C R" is an input vector variable and y; € {1,—1}
is a class label that indicates which of the two classes, A and
A_, it belongs to. We represent these data points by an m X n
matrix A, in which the i-th row, A;, corresponds to the i-th data
point. The SVM classifier f(z) is of the following form:

f@) =" yioi K (Ai,x) + b, %)
=1

where K (A;, x) is a kernel function, and «; and b are parame-
ters to be trained. In this paper, the SVM classifiers with Gaus-
sian kernels are implemented by the SVM tool developed by
Lee and Mangasarian [11].

For each K-means-derived cluster or each leaf node of the
decision tree, an SVM classifier is trained by using the feature
vectors associated with the true boundaries as positive training
samples and the randomly selected feature vectors at least 20
ms away from the true boundaries as negative training samples.
In the test phase, the feature vectors associated with the speech
frames around the hypothesized boundary are examined by the
associated SVM classifier. Then, the frame index associated
with the feature vector with the maximum classifier output is
recognized as the refined boundary.

4. Experiments

We evaluate our approaches on two databases: the TIMIT
database and the MATBN (Mandarin Across Taiwan Broadcast
News) [7] database.

4.1. Evaluation on the TIMIT database

TIMIT, a well-known read speech corpus with manual acoustic-
phonetic labeling, is widely used for the evaluation of auto-
matic speech recognition and phoneme segmentation methods.
The TIMIT suggested training and testing sets contain 462 and
168 speakers, respectively. We discard utterances with phones
shorter than 10 ms. The resulting training set contains 4,546
sentences, with a total duration of 3.87 hours; while the testing
set contains 1,646 sentences, with a total duration of 1.41 hours.

The acoustic models for HMM-based segmentation consist
of 50 context-independent phoneme models, each represented
by a 3-state continuous density HMM with a left-to-right topol-
ogy. Each frame of the speech data is represented by a 39-
dimensional feature vector comprised of 12 MFCCs and log
energy, along with their first and second time derivatives. The
frame width is 20 ms and the frame shift is 5 ms.

As in our previous work [6], in the SVM refinement
stage, each frame of the speech data is represented by a 45-
dimensional feature vector comprised of the above 39 MFCC-
based coefficients, plus the zero crossing rate, bisector fre-
quency, burst degree, spectral entropy, weighted entropy, and
subband energy. For each hypothesized boundary, the feature
vectors of its adjacent left and right frames, together with the

Table 1: Results of HMM-based automatic phoneme segmenta-
tion evaluated on the TIMIT database.

Mean 90Correct marks

Training / Segmentation boundary (error < tolerance)
distance <5ms <10ms <20ms
MLY/ML 9.83 ms 46.69 71.10 88.94
ML?*°/ML 9.78 ms 46.95 71.23 88.97
ML*+MBEY/ML 7.82 ms 58.48 79.75 92.11
ML?*°/MBE 8.92 ms 49.93 74.40 90.69
ML*°+MBE°/MBE 7.50 ms 58.74 80.51 92.85

ML'°+MBE/MBE,4,,  714ms 5958 8157 93.74

symmetrical Kullback-Leibler distance (SKLD) and the spectral
feature transition rate (SFTR) between the two feature vectors,
are concatenated to form a 92-dimensional augmented vector.
The augmented vectors are used as features for phoneme tran-
sition clustering and as the input vectors for SVM.

4.1.1. HMM-based segmentation

Table 1 shows the percentage of phoneme boundaries correctly
placed within different tolerances with respect to the human-
labeled phoneme boundaries. The experiments were conducted
on the test set. The acoustic models were first trained on the
training speech according to the human-labeled phoneme tran-
scriptions and boundaries derived by the Baum-Welch algo-
rithm using the ML criterion with 10 iterations, denoted as
ML in Table 1. Then, MBE discriminative training with
10 iterations was applied to further manipulate the ML-trained
models, denoted as M L'°+M BE' in Table 1. From rows
3 (ML?*°/ML) and 4 (ML'**+M BE'/ML) of the table, we
observe that the MBE-trained models significantly outperform
the ML-trained models. Clearly, the MBE training is partic-
ularly effective in correcting boundary errors in the proximity
of human-labeled positions. Comparing the results in rows 3
and 5, and in rows 4 and 6, we also observe that MBE segmen-
tation outperforms conventional ML segmentation, though the
improvement is not as significant as that of the MBE-trained
models over the ML-trained models. This is because, MBE
segmentation, like conventional ML segmentation, is still de-
ficient in the knowledge of the true posterior distribution, even
though the MBE criterion accords with the objective of mini-
mizing boundary errors. By comparing rows 6 and 7, where
M BE,qm denotes MBE segmentation with explicit phoneme
duration models, we observe that the segmentation accuracy can
be slightly improved by integrating explicit phoneme duration
models into the segmentation process.

4.1.2. Boundary refinement using SVM

We now evaluate the SVM g s classifiers based on K-means
clustering and the SVMpr classifiers based on decision-tree-
based clustering. By using cross-validation on the TIMIT train-
ing data, 151 SVMpr classifiers and 46 SVM g s classifiers
are derived for use in the experiments.

Given the boundary of each phoneme transition obtained
by HMM-based segmentation, 11 hypothesized boundaries
(extracted every 1 ms) around the initial boundary within
+5 ms are examined by the SVM classifier associated with
that specific phoneme transition. Table 2 shows the results
of SVM-based refinement applied to the initial segmentation
derived by the best HMM-based method in Table 1, i.e.,
“ML10+MBE10/MBEpdm”. From Table 2, we observe that,
although both SVM i »r and SVM pr improve the segmentation
accuracy, SVM g s slightly outperforms SVM pr.



Table 2: Results of HMM/SVM-based automatic phoneme seg-

mentation evaluated on the TIMIT database.
Mean 9% Correct marks
Methods boundary (error < tolerance)
distance <5ms <10ms <20ms
HMM* 7.14ms 59.58 81.57 93.74
HMM*+SVM g a1 6.75ms 62.47 84.00 94.33
HMM*+SVM p 6.83ms 62.07 83.70 94.12

Table 3: Results of automatic phoneme segmentation evaluated
on the MATBN database.

Mean 9% Correct marks
Training / Segmentation boundary (error < tolerance)
distance <5ms <10ms <20ms

Unsup. M L/ML 20.29 ms 16.80 29.68 58.65
Unsup.ML/IMBE 18.62 ms 18.21 34.10 62.88
ML/ML 13.06 ms 27.67 50.50 83.70
ML/MBE 11.73 ms 30.28 58.25 87.22
ML+MBE/ML 11.99 ms 35.11 59.56 85.01
ML+MBE/MBE 10.91 ms 37.83 63.78 87.53
ML+MBE/MBEyqm 10.29 ms 40.24 66.30 88.43
HMM*+SVM g as 9.29 ms 49.02 71.36 89.11

4.2. Evaluation on the MATBN database

The MATBN Mandarin Chinese corpus contains 198 hours
of broadcast news from the Public Television Service Foun-
dation (Taiwan). The data includes orthographic transcripts
and SGML tagging for annotating acoustic conditions, back-
ground conditions, story boundaries, speaker turn boundaries,
and acoustic events, such as hesitations and repetitions. We se-
lect approximately five hours of speech data from the corpus
for further phoneme annotation. To reduce costs, we employ
HMM-based segmentation and SVM-based refinement to ob-
tain the initial phoneme segmentation for subsequent manual
segmentation and verification. To do this, we divide the speech
data into subsets, each containing five minutes of speech. First,
we perform unsupervised ML training and forced alignment on
the complete set to generate the initial segmentation. When the
first subset has been manually verified, it is used for supervised
training of the HMMSs and SVMs. To prevent over-fitting in
HMM training, the remaining unverified data is re-segmented
and used to smooth the HMM parameters. Then, based on the
new HMMs, we apply forced alignment to the remaining sub-
sets to generate more accurate phoneme boundaries. The above
training and segmentation process is repeated until all the sub-
sets have been manually verified. In this way, the accuracy of
automatic segmentation can be improved stage by stage, and the
overall cost of manual segmentation can be reduced.

Now that the first subset has been processed completely,
we evaluate the efficacy of the proposed semi-automatic
phoneme segmentation process by applying four minutes of
the human-verified speech for supervised training and the
remaining one minute for testing. In total, 34 context-
independent phoneme HMMs and 14 SVMk s classifiers are
used. From Table 3, we observe that the proposed HMM-
based segmentation (M L+M BE/M B Eyqy,, HMM¥) signifi-
cantly outperforms the conventional HMM-based segmentation
(Unsup.M L/ML). The mean boundary distance achieved is
10.29 ms. By using SVMk s for boundary refinement, the
mean boundary distance can be further reduced from 10.29 ms
to 9.29 ms. We believe that the segmentation accuracy could
be improved even further if more subsets are manually verified,
i.e., the cost of labeling one subset could be progressively re-
duced.

5. Conclusions

We have presented several improved HMM/SVM methods for
a two-stage phoneme segmentation framework that imitates
the human phoneme segmentation process. In the first stage,
HMM-based forced alignment is performed according to the
minimum boundary error (MBE) criterion, based on MBE-
trained HMMs and explicit phoneme duration models. In the
second stage, phoneme-transition-dependent SVM classifiers
are used to refine the phoneme segmentation derived by the
HMM-based forced alignment step. The efficacy of the pro-
posed framework has been validated on the TIMIT database.
We have also applied the framework in a semi-automatic pro-
cess to facilitate manual labeling of the MATBN Mandarin Chi-
nese database. The preliminary evaluation results are rather
promising. The annotation work is ongoing and the results will
be made available at a future time.
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