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Abstract—An improved hybrid particle swarm optimization
(PSO)-based wavelet neural network (WNN) for Modeling
the development of Fluid Dispensing for Electronic Packaging
(MFD-EP) is presented in this paper. In modeling the fluid dispens-
ing process, it is important to understand the process behavior as
well as determine the optimum operating conditions of the process
for a high-yield, low-cost, and robust operation. Modeling the fluid
dispensing process is a complex nonlinear problem. This kind of
problem is suitable to be solved by applying a neural network.
Among the different kinds of neural networks, the WNN is a good
choice to solve the problem. In the proposed WNN, the translation
parameters are variables depending on the network inputs. Due
to the variable translation parameters, the network becomes an
adaptive one that provides better performance and increased
learning ability than conventional WNNs. An improved hybrid
PSO is applied to train the parameters of the proposed WNN. The
proposed hybrid PSO incorporates a wavelet-theory-based muta-
tion operation. It applies the wavelet theory to enhance the PSO
in more effectively exploring the solution space to reach a better
solution. A case study of MFD-EP is employed to demonstrate the
effectiveness of the proposed method.

Index Terms—Modeling, particle swarm optimization (PSO),
wavelet neural network (WNN), wavelet theory.

I. INTRODUCTION

R ECENTLY, a new kind of neural networks known as

wavelet neural networks (WNNs), which combine feed-

forward neural networks (FFNNs) with wavelet theory [6], [7],

has been proposed [1]–[5]. The wavelet theory provides a

multiresolution approximation for discriminate functions. The

WNN can thus exhibit better performance in function learning
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Fig. 1. Proposed architecture of the neural network.

than the conventional FFNNs. Researchers have successfully

applied WNNs in function approximation [1], motor drive

control [2], [3], robotics [4], and power systems [5]. Using

neural networks to achieve learning [9], [10] usually involves

two steps, i.e., designing a network structure and deriving an

algorithm for the learning process. The structure of the neural

network governs the nonlinearity of the modeled function.

The learning algorithm determines the rules for optimizing the

weight values of the network within the training period. A

typical WNN structure offers a fixed set of weights after the

learning process. This single set of weights is used to capture

the characteristics of all input data. However, a fixed set of

weights may not be enough to learn the data set if the data are

separately distributed in a vast domain and/or the number of

network parameters is too small.

In this paper, a variable translation WNN (VTWNN) is

proposed. Wavelets are used as transfer functions in the hidden

layer of the network. The network parameters, i.e., the transla-

tion parameters of the wavelets, are variable depending on the

network inputs. Due to the variable translation parameters, the

proposed VTWNN has the ability to model the input–output

function with input-dependent network parameters. It works

as if several individual neural networks are handling different

sets of input data. Effectively, it becomes an adaptive network

capable of handling different input patterns and exhibits a better

performance. Fig. 1 shows the architecture of the proposed

VTWNN, which consists of two units, namely, the parame-

ter memory (PM) and the data processing (DP) neural net-

work. The PM stores some parameters (κ) governing how the

DP neural network handles the input data. By using this pro-

posed neural network, some of the cases that cannot be handled

by traditional neural networks with a limited number of param-

eters can now be tackled. To illustrate this point, Fig. 2 shows

two sets of data (S1 and S2) separated far apart. (In practice,
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Fig. 2. Diagram showing two sets of data in a spatial domain.

even more data sets separated far apart can be present in a large

domain.) If we model these data sets using a traditional neural

network, the weights of the network are trained to minimize

the error between the network output and the desired value.

However, with a limited number of parameters, the network

may only model the data set S instead, as shown in Fig. 2.

In order to alleviate this problem, the VTWNN is proposed.

Referring to Fig. 1, when the input data belong to S1, the PM

will follow parameter set 1 to drive the DP neural network to

handle the S1 data. Similarly, when the input data belong to S2,

the parameters corresponding to S2 will be employed to drive

the DP neural network to handle these input data.

Concerning the training of network parameters, one com-

monly used method is the gradient method [9]–[11], such as

the Madaline Rule I (MRI), MRII, and MRIII rules, and the

backpropagation technique, which adjusts the network parame-

ters based on the gradient information of the fitness function in

order to reduce the errors over all input patterns. Different back-

propagation algorithms, such as backpropagation algorithms

with momentum [10], backpropagation algorithms with vari-

able learning rate [10], and conjugate gradient algorithm [11],

have been proposed to improve the learning process. However,

gradient methods may only converge to a local optimum and is

sensitive to the values of the initial parameters. The function

to be optimized needs to be differentiable, and the learning

method may only be good to some specific network structure.

Particle swarm optimization (PSO) [12] is one of the stochastic

search algorithms. The error functions are less likely to be

trapped in a local optimum and need not be differentiable or

even continuous. Thus, PSO is more suitable for searching in a

large, complex, nondifferentiable, and multimodal domain. It is

a good training algorithm for neural or neural fuzzy networks

[17]–[19] and fuzzy system [38]. The same PSO can be used

to train many different networks, regardless of whether they

are feedforward [9], [10], recurrent [9], wavelet [1], or other

structure-type networks. This generally saves a lot of effort in

developing the training algorithms for different types of net-

works. Lately, the real-life case studies of a neural network with

stochastic search learning algorithm are developed [29]–[33].

PSO can solve multiobjective problems by using Pareto theory

[34], [35] and penalty weight [36].

Recently, different hybrid PSOs have been proposed to over-

come the drawback of possible trapping in the local optima.

A new hybrid gradient descent PSO (HGPSO), which is inte-

grated with gradient information to achieve faster convergence

without getting trapped in the local minima, is proposed by

Noel and Jannett [14]. However, the computational effort of

the HGPSO is increased by the process of gradient descent.

Juang [15] proposed a hybrid PSO algorithm named HGAPSO,

which incorporates the genetic algorithm (GA)’s evolutionary

operations of crossover, mutation, and reproduction into it.

Ahmed et al. [13] proposed a hybrid PSO named HPSOM, in

which a constant space is used for mutation. In both HGAPSO

and HPSOM, the solution space can be explored by performing

mutation operations on particles along the search, and prema-

ture convergence is more likely to be avoided. However, the

mutating space is kept unchanged all the time throughout the

search, and the space for the permutation of particles in PSO is

also fixed.

In GAs, the solution space is more likely to be explored in

the early stage of the search by setting a larger mutating space,

and it is more likely to be fine tuned for a better solution in

the later stage of the search by setting a smaller mutating space

based on the properties of the wavelet [6]. This idea can be

applied when we introduce GA’s mutation to the hybrid PSO.

In this paper, a mutation with a dynamic mutating space by

incorporating a wavelet function [6] is proposed. Wavelet is

a tool to model seismic signals by combining dilations and

translations of a simple oscillatory function (mother wavelet)

of a finite duration. The PSO’s mutating space is dynamically

varying along the search based on the properties of the wavelet

function.

Fluid dispensing is a manufacturing process by which fluid

materials are delivered to substrates, boards, or work pieces in

a controllable manner. This process is widely used in various

packaging processes in the electronics and semiconductor man-

ufacturing industry, such as integrated circuit encapsulation, die

bonding, and surface mount technology. In the competitive mar-

ket of today, this manufacturing process needs to be controlled

at each of the many processing steps in the manufacturing line.

The process directly affects the overall quality of the finished

product as well as the throughput of the production line. All the

variables controlling the desired outputs in a given process need

to be understood and optimized for tight control. To achieve

this, it is necessary to develop an accurate model for describing

the process.

Li et al. [39] developed some analytical models to Model the

Fluid Dispensing process for Electronic Packaging (MFD-EP).

However, owing to the complex behavior of fluid dispensing

and the high degree of uncertainties of the process in the real-

world environment, an analytical model for fluid dispensing,

which can provide accurate results, is generally difficult to be

developed. Empirical modeling is another popular approach to

developing process models using experimental data. Various

techniques have been introduced in previous studies to develop

process models based on an empirical modeling approach, such

as applying statistical regression or artificial neural networks.

The statistical regression method [40] is one of the most com-

mon empirical modeling techniques to develop process models.

Statistical regression models are accurate over the range in

which they are developed. As a result, statistical regression

models can be applied only if the given data are distributed

according to a statistical model, and the relation between

dependent and independent variables is crisp. Ip et al. [41]

proposed to use fuzzy regression to model the process, but the

nonlinearity of the process was still not addressed.
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Fig. 3. Proposed VTWNN model.

Neural networks have been used to develop different models

for various manufacturing processes, such as abrasive flow

machining [23], classifying [24], machine condition monitoring

[25], die casting [26], field programmable gate array [27],

and switched reluctance motor [37]. Neural networks handle

nonlinear mathematical models by using a black-box approach,

providing a platform for the learning and generalization of the

process nonlinearities. Kwong et al. [42] demonstrated that the

classical neural network method can produce more accurate

models for the epoxy dispensing process than the ones found by

the statistical regression. In this paper, the VTWNN trained by

the hybrid PSO with wavelet mutation (HPSOWM) is proposed

for MFD-EP. By employing the proposed method on modeling

the fluid dispensing process, smaller modeling errors with lower

computational effort can be achieved as compared with other

tested modeling methods.

This paper is organized as follows. The basic theory of

wavelet is discussed in Section II. In Section III, the proposed

VTWNN model is presented. The improved HPSOWM is dis-

cussed in Section IV. In addition, the training of the parameters

of the proposed VTWNN using HPSOWM is presented. In

Section V, the application on modeling the fluid dispensing

process is given to show the merits of the proposed method-

ology. A conclusion is drawn in Section VI.

II. BASIC WAVELET THEORY

Certain seismic signals can be modeled by combining trans-

lations and dilations of an oscillatory function with a finite

duration called a “wavelet.” A continuous function ψ(x) is

a “mother wavelet” or “wavelet” if it satisfies the following

properties.

Property 1:

+∞
∫

−∞

ψ(x)dx = 0. (1)

In other words, the total positive momentum of ψ(x) is equal to

the total negative momentum of ψ(x).
Property 2:

+∞
∫

−∞

|ψ(x)|2 dx < ∞ (2)

where most of the energy of ψ(x) is confined to a finite domain

and is bounded.

In order to control the magnitude and position of ψ(x),
ψa,b(x) is defined as

ψa,b(x) =
1√
a
ψ

(

x − b

a

)

(3)

where a is the dilation parameter, and b is the translation

parameter. It should be noted that ψa,b(x) is scaled down as the

dilation parameter a increases, and the location of the center of

the wavelet is controlled by the translation parameter b.
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III. DESIGN AND ANALYSIS OF VTWNN MODEL

In this section, the design and analysis of the VTWNN model

will be presented. The WNN (WNN) can be considered as a

particular case of FFNNs. The special point is that the transfer

function of the WNN is a multiscaled wavelet function ψa,b(x).
In the proposed VTWNN, the translation parameter in the

transfer function of the hidden nodes is variable and depends on

the network inputs. With the variable translation parameters, the

proposed VTWNN performs better and has a higher learning

ability than the conventional WNN [1] and FFNN [10].

A. Design of Network Model

The proposed VTWNN has a three-layer structure with

nin nodes in the input layer, nh nodes in the hidden layer, and

nout nodes in the output layer, as shown in Fig. 3. The input of

the hidden layer Sj is given by

Sj =

nin
∑

i=1

zivji, j = 1, 2, . . . , nh (4)

where the zi’s, i = 1, 2, . . . , nin, are the input variables, and

vji denotes the weight of the link between the ith input and the

jth hidden nodes. In order to control the magnitude and the

position of the wavelet, the multiscaled wavelet function

ψa,b(x) defined in (3) is used as the hidden node transfer

function. The dilation parameter a of the first hidden node

(j = 1) is set as 1, i.e., ψ1,b1(x) = ψ(x − b1). For the second

hidden node (j = 2), the dilation parameter a is set as 2,

i.e., ψ2,b2(x) = (1/
√

2)ψ((x − b2)/2), where the output of the

wavelet is scaled down by 1/
√

2. Similarly, for the jth hidden

node, the dilation parameter a is set as j. Hence, the output of

the hidden layer of the proposed VTWNN is given by

ψj,bj
=

1√
j
ψ

(

Sj − bj

j

)

. (5)

In this proposed network, the Maxican Hat function [36], as

shown in Fig. 4, is used as the mother wavelet ψ(x), which is

defined as

ψ(x) = e−x2/2(1 − x2). (6)

Notice that ψ(x) meets the requirements of Property 1 in (1)

and Property 2 in (2). Referring to (5) and (6), we have

ψj,bj
=

1√
j
e

−

(

Sj−bj
j

)2

2

(

1 −
(

Sj − bj

j

)2
)

. (7)

The translation parameter bj is set as a variable depending on

the input Sj and is governed by a nonlinear function f j(·) as

bj = f j(Sj). (8)

We set

f j(Sj) = 4j

(

2

1 + e−κj×Sj
− 1

)

(9)

Fig. 4. Maxican Hat mother wavelet.

Fig. 5. Sample nonlinear functions with different values of parameter κ
(κ = 0.3, 0.5, 0.8, 1.0, and 1.5).

where κj is a tuned parameter that is used to control the shape of

the nonlinear function f j(·). The shape of f j(·) with different

κj is shown in Fig. 5. From (8) and (9), the value of the

translation parameters bj depends on the network inputs and

the parameter κj . In other words, it operates such that the neural

network will handle different input data with different network

parameter bj . Thus, the proposed VTWNN is an adaptive

network.

The output of the proposed VTWNN is defined as

yl =

nh
∑

j=1

ψj,bj
(Sj) · wlj (10)

=

nh
∑

j=1

ψj,bj

(

nin
∑

i=1

zivji

)

· wlj (11)

where wlj , j = 1, 2, . . . , nh, and l = 1, 2, . . . , nout, denotes

the weight of the link between the jth hidden and lth output
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Fig. 6. Operation of the proposed neuron with three sets of data patterns.

nodes. The tuned parameters of the VTWNN are vji, wlj ,

and κj . The number of parameters for vji is equal to nin × nh;

the number of parameters for wlj is equal to nh × nout; and

the number of parameters for κj is equal to nh. Thus, the total

number of parameters of the proposed VTWNN is equal to

nh(1 + nin + nout).

B. Interpretation of the Network

Fig. 6 explains the operating principle of the proposed net-

work and why it works well. In this figure, P1, P2, and P3 are

three sets of input patterns. P̂bj
1, P̂bj

2, and P̂bj
3 are the input

translation parameters for the corresponding input patterns.

When the proposed neurons manipulate the input pattern P1, the

shape of the wavelet transfer function is characterized by P̂bj
1,

and the network eventually outputs the pattern P’1. Similarly,

when the neurons manipulate the input pattern P2, the shape of

the wavelet transfer function is characterized by P̂bj
2, and the

network eventually outputs the pattern P’2. So, the activation

function parameters are variable and dynamically dependent on

the input patterns. Hence, the degree of freedom of the modeled

function is increased. Comparing with the conventional wavelet

and FFNNs, the VTWNN should be able to offer a better

performance. All the parameters of the neural network can be

tuned by an improved hybrid PSO that will be discussed in the

next section.

C. Parameter Design of VTWNN

1) Number of Hidden Nodes (nh): The size of the hidden

layer is a general question raised on designing multilayer

FFNNs for real-life applications. An analytical method to de-

termine the number of hidden nodes is difficult to obtain owing

to the complexity of the network structure and the undetermined

nature of the training process. Hence, the number of hidden

nodes is experimentally found. In practice, the number of

hidden nodes depends on the application and the dimension of

the input space.

2) Parameter κ: The parameter κ is used to control the

shape of the nonlinear function f(·) and governs the PM

Fig. 7. Pseudocode for PSO.

Fig. 8. Pseudocode for hybrid PSO with mutation operation.

(referring to Fig. 1). Fig. 5 shows the effect of the tuned

parameter κj to bj . In general, the range of κ is tuned within

0.3–1.5. We see that as κ → ∞, the function reduces to a

threshold function. Similarly, as κ → −∞, the function will

become a constant line.

3) Network Parameters (Weights): A search method (hybrid

PSO) is used to search the optimal values of the network

parameters (weights) vji and wlj in the VTWNN. The training

process of the VTWNN with hybrid PSO is a minimization

process of the error between the desired outputs and the

actual ones.

IV. TRAINING NETWORK PARAMETERS WITH HPSOWM

PSO is a novel optimization method developed by Kennedy

and Eberhart [12]. It models the process of the sociological

behavior associated with bird flocking and is one of the evo-

lutionary computation techniques. It uses a number of particles

that constitute a swarm. Each particle traverses the search space

looking for the global optimum. The PSO process is shown in

Fig. 7. In this paper, an HPSOWM is proposed and shown in

Fig. 8. The details of both PSO and HPSOWM will be discussed

as follows.
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A. PSO

From Fig. 7, X(t) denotes a swarm at the tth iteration. Each

particle x
p(t) ∈ X(t) contains χ elements xp

j (t) ∈ x
p(t) at

the tth iteration, where p = 1, 2, . . . , γ, and j = 1, 2, . . . , χ; γ
denotes the number of particles in the swarm; and χ is the

dimension of a particle. First, the particles of the swarm are

initialized and then evaluated by a defined fitness function. The

objective of PSO is to iteratively minimize the fitness values

(cost values) of particles. The swarm evolves from iteration t to

t + 1 by repeating the procedures as shown in Fig. 7. The PSO

operations are discussed as follows.

The velocity vp
j (t) (corresponding to the flight speed in a

search space) and the position xp
j (t) of the jth element of the

pth particle at the tth generation can be calculated using [20]

vp
j (t)= k ·

{

w·vp
j (t − 1) + ϕ1 ·rand()·

(

pbestpj − xp
j (t − 1)

)

+ ϕ2 · rand() ·
(

gbestj − xp
j (t − 1)

)}

(12)

xp
j (t)= xp

j (t − 1) + vp
j (t) (13)

where

pbestp =
[

pbestp1 pbestp2 · · · pbestpχ
]

gbest = [gbest1 gbest2 · · · gbestχ]

j = 1, 2, . . . , χ.

The best previous position of the pth particle is recorded and

represented as pbestp; the best position of all the particles

among all the times of iteration is represented as gbest; w is

an inertia weight factor; ϕ1 and ϕ2 are acceleration constants;

rand() returns a uniform random number in the range of

[0,1]; and k is a constriction factor derived from the stability

analysis of (13) to ensure the system to be converged but not

prematurely [8]. Mathematically, k is a function of ϕ1 and ϕ2 as

reflected in

k =
2

∣

∣

∣
2 − ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣

(14)

where ϕ = ϕ1 + ϕ2, and ϕ > 4.

PSO utilizes pbest and gbest to modify the current search

point to avoid the particles moving in the same direction but to

gradually converge toward pbest and gbest. A suitable selection

of the inertia weight w provides a balance between the global

and local explorations. Generally, w can be dynamically set

with [8]

w = wmax − wmax − wmin

T
× t (15)

where t is the current iteration number, T is the total number of

iterations, and wmax and wmin are the upper and lower limits

of the inertia weight, and are set to 1.2 and 0.1, respectively,

in this paper.

In (12), the particle velocity is limited by a maximum value

vmax. The parameter vmax determines the resolution with which

regions are to be searched between the present position and

the target position. This limit enhances the local exploration of

the problem space, and it realistically simulates the incremental

changes of human learning. If vmax is too high, particles might

fly past good solutions. If vmax is too small, particles may not

explore sufficiently beyond local solutions. From experience,

vmax is often set at 10%–20% of the dynamic range of the

element on each dimension.

B. HPSOWM Operation

We observe that PSO [14] works well in the early stage but

often presents problems on reaching the near-optimal solution.

If a particle’s current position coincides with the global best

position, the particle will only move away from this point if

its inertia weight and velocity are different from zero. If their

velocities are very close to zero, then all the particles will

stop moving once they catch up with the global best particle,

which may lead to a premature convergence, and no further

improvement can be obtained. This phenomenon is known as

stagnation [21].

Ahmed et al. [13] proposed to integrate GA’s mutation

operation into PSO, which aids to break through stagnation.

Here, we called this hybrid PSO the HPSOM. The mutation

operation starts with a randomly chosen particle in the swarm

and moves to different positions inside the search area by

using the mutation. The following mutation operation is used

in HPSOM:

mut(xj) =xj − ω, r < 0 (16a)

mut(xj) =xj + ω, r ≥ 0 (16b)

where xj is a randomly chosen element of the particle from

the swarm, and ω is randomly generated within the range

[0, 0.1 × (paraj
max − paraj

min)], representing one-tenth of the

length of the search space; r is a random number between +1

and −1; and paraj
max and paraj

min are the upper and lower

boundaries of each particle element. The pseudocode of the

hybrid PSO with mutation operation is shown in Fig. 8, in

which the mutation on particles is performed after updating

their velocities and positions. It can also be seen from Figs. 7

and 8 that the pseudocodes of both PSO methods are identical

except the mutation operation is introduced.

However, it can be noticed from (16) that the mutating space

in HPSOM is limited by ω. It may not be the best approach

in fixing the size of the mutating space all the time along the

search. Instead, a dynamic mutation operation in which the

mutating space dynamically contracts along the search can be

considered. We propose a wavelet mutation (WM) that varies

the mutating space based on the wavelet theory. The resulting

HPSOWM is identical to HPSOM except for the mutation

operation used. The proposed WM is discussed in the following

section.

C. WM

The mutation operation is used to mutate the elements of

particles. In general, various methods like uniform mutation

or nonuniform mutation [22] can be employed to realize the

mutation operation. The proposed WM operation exhibits a
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Fig. 9. Morlet wavelet.

fine-tuning ability. The details of the operation are as follows.

Every particle element of the swarm will have a chance to

mutate, governed by a probability of mutation pm ∈ [0 1],
which is defined by the user. For each particle element, a

random number between 0 and 1 will be generated such that

if it is less than or equal to pm, the mutation will take place on

that element. For instance, if x
p(t) = [xp

1(t), x
p
2(t), . . . , x

p
χ(t)]

is the selected pth particle, and the element of particle xp
j (t) is

randomly selected for mutation (the value of xp
j (t) is inside the

particle element’s boundaries [paraj
min, paraj

max]), the result-

ing particle is given by x̄
p(t) = [x̄p

1(t), x̄
p
2(t), . . . , x̄

p
χ(t)] and

x̄p
j (t) =

{

xp
j (t) + σ ×

(

paraj
max − xp

j (t)
)

, if σ > 0

xp
j (t) + σ ×

(

xp
j (t) − paraj

min

)

, if σ ≤ 0

(17)

where

σ = ψa,0(ϕ) (18)

=
1√
a
ψ

(ϕ

a

)

. (19)

By using the Morlet wavelet (as shown in Fig. 9) as the mother

wavelet, we have

ψ(x) = e−x2/2 cos(5x) (20)

σ =
1√
a
e−(ϕ

a )
2
/2 cos

(

5
(ϕ

a

))

. (21)

Fig. 10 shows different dilations of the Morlet wavelet. The am-

plitude of ψa,0(x) will be scaled down as the dilation parameter

a increases. This property is used to do the mutation operation

in order to enhance the searching performance.

According to (17), if σ is positive approaching 1, the mutated

element of the particle will tend to the maximum value of xp
j (t).

Conversely, when σ is negative approaching −1, the mutated

element of the particle will tend to the minimum value of xp
j (t).

A larger value of |σ| gives a larger searching space for xp
j (t).

When |σ| is small, it gives a smaller searching space for fine

tuning. Referring to Property 1 of the wavelet, the sum of the

Fig. 10. Morlet wavelet dilated by different values of the parameter a (x-axis:
x; y-axis: ψa,0(x)).

positive σ is equal to the sum of the negative σ when the number

of samples is large and ϕ is randomly generated. That is

1

N

∑

N

σ = 0 for N → ∞ (22)

where N is the number of samples.

Hence, the overall positive mutation and the overall negative

mutation throughout the evolution are nearly the same. This

property gives better a solution stability (smaller standard de-

viation of the solution values upon many trials). As over 99%

of the total energy of the mother wavelet function is contained

in the interval [−2.5, 2.5], ϕ can be randomly generated from

[−2.5, 2.5] × a. The value of the dilation parameter a is set

to vary with the value of t/T in order to meet the fine-tuning

purpose, where T is the total number of iteration, and t is the

current number of iteration. In order to perform a local search

when t is large, the value of a should increase as t/T increases

to reduce the significance of the mutation. Hence, a monotonic

increasing function governing a and t/T is proposed as

a = e− ln(g)×(1− t
T )

ζwm+ln(g) (23)

where ζwm is the shape parameter of the monotonic increasing

function, and g is the upper limit of the parameter a. The effects

of the various values of the shape parameter ζwm to a with

respect to t/T are shown in Fig. 11. In this figure, g is set as

10 000. Thus, the value of a is between 1 and 10 000. Referring

to (21), the maximum value of σ is 1 when the random number

of ϕ = 0 and a = 1(t/T = 0). Then, referring to (17), the

element of particle x̄p
j (t) = xp

j (t) + 1 × (paraj
max − xp

j (t)) =

paraj
max. It ensures that a large search space for the mutated

element is given. When the value t/T is near 1, the value of a
is so large that the maximum value of σ will become very small.

For example, at t/T = 0.9 and ζwm = 1, the dilation parameter

a = 4000; if the random value of ϕ is 0, the value of σ
is 0.0158. With x̄p

j (t) = xp
j (t) + 0.0158 × (paraj

max − xp
j (t)),

a small searching space for the mutated element is given for

fine tuning.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 6, 2009 at 23:24 from IEEE Xplore.  Restrictions apply.



3454 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008

Fig. 11. Effect of the shape parameter ζwm to a with respect to t/T .

After the operation of WM, a new swarm is generated. This

new swarm will repeat the same process. Such an iterative

process will be terminated if a predefined number of iteration

has been met.

D. Choosing the HPSOWM Parameters

HPSOWM is seeking a balance between the exploration of

new regions and the exploitation of the already sampled regions

in the search space. This balance, which critically affects the

performance of the HPSOWM, is governed by the right choices

of the control parameters, e.g., swarm size (γ), the probability

of mutation (pm), and the shape parameter of WM (ζwm).
Some views about these parameters are given as follows.

1) Increasing the swarm size (γ) will increase the diversity

of the search space and reduce the probability that the

HPSOWM prematurely converges to a local optimum.

However, it also increases the time required for the pop-

ulation to converge to the optimal region in the search

space.

2) Increasing the probability of mutation (pm) tends to

transform the evolutionary search into a random search

such that when pm = 1, all genes will mutate. This

probability gives us an expected number (pm × γ × χ)
of elements of particles that undergo mutation. In other

words, the value of pm depends on the desired number of

element of particles that undergo the mutation operation.

3) Changing the parameter ζwm will change the charac-

teristics of the monotonic increasing function of WM.

The dilation parameter a will take a value to perform

fine tuning faster as ζwm is increasing. It is chosen by

trial and error, which depends on the kind of optimiza-

tion problem. When ζwm becomes larger, the decreasing

speed of the step size (σ) of the mutation becomes faster.

In general, if the optimization problem is smooth and

symmetric, it is easier to find the solution, and the fine

tuning can be done in early iteration. Thus, a larger value

of ζwm can be used to increase the step size of the early

mutation.

E. Tuning of the Network Parameters

One superior characteristic of the hybrid PSO is that the

detailed information of the nonlinear system, e.g., the derivative

information of the fitness function, is not necessarily known.

Hence, it is suitable to handle some complex optimization

problems. In this paper, the proposed HPSOWM is employed

to optimize a fitness function, which is characterized by the

parameters of the VTWNN. The fitness function is a mathemat-

ical expression that quantitatively measures the performance of

the hybrid PSO tuning process. A larger fitness value indicates

a better tuning performance. By adjusting the values of the

network parameters, the fitness value is maximized by using

the hybrid PSO. During the tuning process, particles with better

fitness values are reproduced. In addition, the effect of the

proposed mutation operation gradually decreases in the search

domain with respect to the iteration number. This helps the con-

vergence of the searching process of the network parameters.

After the tuning process, the obtained network parameter values

will be used by the proposed neural network. As the proposed

neural network is a feedforward one, the outputs are bounded if

its inputs are bounded, which happens for most of the real-life

applications. Consequently, no convergence problem is present

for the neural network itself.

The proposed VTWNN can be used to learn the input–output

relationship of an application using the hybrid PSO. The

input–output relationship can be described by

y
d(t) = g

(

z
d(t)

)

, t = 1, 2, . . . , nd (24)

where z
d(t) = [zd

1(t) zd
2(t) · · · zd

nin
(t)] and y

d(t) =
[yd

1(t) yd
2(t) · · · yd

nout
(t)] are the given inputs and the

desired outputs of an unknown nonlinear function g(·), respec-

tively, and nd denotes the number of input–output data pairs.

The fitness function of the PSO depends on the application,

which is defined as

fitness = err. (25)

In (25), err can be the mean square error (MSE), mean absolute

error (MAE), mean absolute percentage error (MAPE), etc.,

where MSE is defined as

err =

nd
∑

t=1

nout
∑

k=1

(

yd
k(t) − yk(t)

)2

ndnout
(26a)

MAE is defined as

err =

nd
∑

t=1

nout
∑

k=1

∣

∣yd
k(t) − yk(t)

∣

∣

ndnout
(26b)

and MAPE is defined as

err =

nd
∑

t=1

nout
∑

k=1

|yd
k
(t)−yk(t)|
yd

k
(t)

ndnout
. (26c)
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Fig. 12. Encapsulation of microchip.

The objective is to minimize the fitness value of (25) us-

ing the PSO by coding the particles of the swarm to be

[vji wlj κj ] ∀ i, j, l. The fitness value of (25) ∈ [0, 1].

V. MFD-EP

In this paper, modeling the fluid dispensing for microchip

encapsulation is studied. Normally, silicon chips are covered

using an X–Y numerically controlled dispensing system that

delivers fluid encapsulant through a needle. The material is

commonly dispensed in a pattern, working from the center out.

A fluid dam around the die site and second wire bond points

can be made to contain the flow material and make a uniform-

looking part, as shown in Fig. 12.

Modeling the fluid dispensing process is critical for under-

standing the process behavior and achieving process optimiza-

tion. The process is controlled by a number of parameters

such as the diameter of the needle, the temperature of the

epoxy, compressed air pressure, the viscosity of the epoxy

resin, the pump motor speed, the distance between the needle

and the substrate, the substrate temperature, and the path of

dispensing. Based on the advice from the supporting company,

three significant process parameters, namely, the compressed

air pressure, the distance between the needle and the substrate,

and the pump motor speed, were studied. The process para-

meter “compressed air pressure” refers to the pressure of the

compressed air imposing on the epoxy resin, which is in the

storage device of a dispensing system. The “pump motor speed”

is to control the amount of epoxy to be dispensed. The “distance

between the needle and the substrate” is controlled by using

a stepping motor. Therefore, the distance is specified as the

number of steps in the parameter setting. The three process

parameters and their corresponding normal operating ranges are

shown as follows:

1) compressed air pressure (1–4 bar) x1;

2) pump motor speed (400–1000 r/min) x2;

3) distance between substrate and needle (250–

2000 steps) x3.

Two quality characteristics (named as the outcome variables)

were also identified, i.e., encapsulation weight (in milligrams)

y and encapsulation thickness (in millimeters) z.

Ninety-six experiments are carried out based on a full facto-

rial design with four levels in compressed air pressure (x1), six

levels in pump motor speed (x2), and four levels in the height

between the substrate and the needle (x3).

A. Modeling With WNN

A VTWNN is used to model the fluid dispensing process. Its

structure, shown in Fig. 3, consists of an input layer in which

the input vectors (i.e., the process parameters x1, x2, and x3)

are fed, an output layer that produces the output response (either

one of the quality characteristics y or z), and one hidden layer

in between.

According to (11), the input–output relationship of the pro-

posed three-layer neural networks for the encapsulation weight

y and the encapsulation thickness z can be written as

y =

nh
∑

j=1

ψj,bj

(

3
∑

i=1

xivji

)

· w1j (27)

z =

n′

h
∑

j=1

ψ′
j,b′

j

(

3
∑

i=1

x′
iv

′
ji

)

· w′
1j (28)

where nh (or n′
h) denotes the number of hidden nodes; w1j (or

w′
1j), j = 1, 2, . . . , nh (or n′

h), denotes the weight of the link

between the jth hidden node and the output node; vji (or v′
ji),

i = 1, 2, 3, and j = 1, 2, . . . , nh (or n′
h), denotes the weight

between the ith input node and the jth hidden node; ψj,bj
(or

ψ′
j,b′

j
) denotes the wavelet function; and xi (or x

′

i) denotes the

input data for the encapsulation weight and the encapsulation

thickness, respectively.

To develop the neural-network-based model for the fluid

dispensing process, the values of the neural network parameters

(i.e., vji, w1j , and κj with i = 1, 2, 3, and j = 1, 2, . . . , nh) and

the number of hidden nodes (nh) used in the hidden layer need

to be determined. These two settings are important because

they affect the prediction accuracy of the neural-network-based

process model.

To tune the network, we use hybrid PSO to minimize the

MSE by setting the swarm particle to be [vji w1j κj ] for

all i and j. The MSEs for the encapsulation weight y and the

encapsulation thickness z are defined as

MSEy =

npat
∑

k=1

(dy
k − yk)

2

npat
(29)

MSEz =

npat
∑

k=1

(dz
k − zk)2

npat
(30)

where dy
k and dz

k denote the desired value of the encapsulation

weight y and the encapsulation thickness z, respectively, and

npat denotes the number of patterns. After training, the values

of these network parameters will be fixed during the operation.

B. Results and Analysis

To illustrate the performance of the proposed method to this

industrial application, a tenfold cross validation is considered.

Cross validation [33] is the statistical practice of partitioning a

sample of data into subsets such that the analysis is initially

performed on a single subset, whereas the other subsets are
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TABLE I
MEAN COST VALUES UNDER DIFFERENT VALUES OF THE SHAPE PARAMETER OF WM FOR ENCAPSULATION

WEIGHT AND ENCAPSULATION THICKNESS (TRAINED WITH VTWNN)

TABLE II
COMPARISON BETWEEN DIFFERENT NEURAL NETWORK TOPOLOGIES WITH DIFFERENT PSO METHODS FOR MFD-EP (TRAINING).

(a) ENCAPSULATION WEIGHT. (b) ENCAPSULATION THICKNESS. ALL RESULTS ARE AVERAGED OVER 50 RUNS (RANK: 1—BEST, 5—WORST)

retained for subsequent use in confirming and validating the

initial analysis. In this paper, 96 experimental data of the

encapsulation weight and encapsulation thickness are used. In

the tenfold cross validation, the experimental data (samples) are

partitioned into ten subsamples. Nine subsamples are used for

training, and one subsample is used for testing (validation). The

cross-validation process is then repeated ten times, with each of

the ten subsamples used exactly once as the validation data. The

ten results can be averaged to produce an average training and

testing (validation) results.

For comparison purposes, a WNN [1] and a traditional FFNN

[10] trained by HPSOWM, HPSOM [13], HGAPSO [15],
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Fig. 13. (a) Comparisons between different PSO methods using VTWNN for MFD-EP (encapsulation weight). (b) Comparisons between different PSO methods
using VTWNN for MFD-EP (encapsulation thickness).

Fig. 14. (a) Comparisons between different neural network methods using HPSOWM for MFD-EP (encapsulation thickness). (b) Comparisons between different
neural network methods using HPSOWM for MFD-EP (encapsulation weight).

HGPSO [14], and PSO [16] are also used to model the MFD-

EP system. The basic settings of the parameters of the PSOs

and the neural networks are shown as follows.

• Shape parameter of the WM (ζwm): 2. It is chosen by

trial and error through experiments for good performance.

The experimental result is given in Table I. In this table,

different ζwm’s (ζwm = 0.2, 0.5, 1, 2, and 5) are tested.

The best results are obtained when ζwm = 2. Referring to

Fig. 11, HPSOWM will go to perform fine tuning fairly

fast when ζwm is set at 2. In this application, the sensitivity

of this parameter is not high.

• Acceleration constants ϕ1 and ϕ2: 2.05 [16].

• Maximum velocity vmax: 0.2 [16].

• Swarm size (γ): 50.

• Number of runs: 2000.

• Probability of mutation for HPSOWM, HPSOM, and

HGAPSO (pm): 0.1. It is chosen by trial and error through

experiments for good performance. Different pm’s (pm =
0.01, 0.05, 0.1, 0.2, and 0.5) are tested.

• Probability of crossover for HGAPSO (pc): 0.8.

• Initial population: it is generated uniform at random.

• Learning rate of HGPSO: 0.001.

• The initial ranges of the weights of the neural net-

works (VTWNN, WNN, and FFNN) for the encapsulation

weight and the encapsulation thickness are bounded be-

tween −4 and 4.

• The initial ranges of κj for VTWNN are bounded between

0.1 and 1.5.

• The number of hidden nodes (nh) of the neural network

for the encapsulation weight and the neural network for

the encapsulation thickness are set at 5 and 7, respectively.

The average training result comparisons between differ-

ent neural network topologies (VTWNN, WNN, and FFNN)

trained with different PSOs (HPSOWM, HPSOM, HGAPSO,

HGPSO, and PSO) for the encapsulation weight and encap-

sulation thickness are tabulated in Table II(a) and (b), re-

spectively. The convergence rates of different PSO methods

using VTWNN for the encapsulation weight and thickness are
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TABLE III
COMPARISON BETWEEN DIFFERENT NEURAL NETWORK TOPOLOGIES WITH DIFFERENT PSO METHODS FOR MFD-EP (TESTING).

(a) ENCAPSULATION WEIGHT. (b) ENCAPSULATION THICKNESS. ALL RESULTS ARE AVERAGED OVER 50 RUNS

(PSO1: HPSOWM, PSO2: HPSOM, PSO3: HGAPSO, PSO4: HGPSO, AND PSO5: PSO)

given in Fig. 13. The comparisons between the different neural

network topologies for encapsulation weight and thickness are

given in Fig. 14. In these tables and figures, the convergence

rate, mean value, best value, standard deviation, t-value, run

time in second, and the rank are given. Comparing different

PSO methods, the proposed HPSOWM provides a better so-

lution quality and solution stability, and these improvements

are reflected by the average mean cost values, the t values, and

the standard deviations (a smaller standard deviation implies a

more stable solution). Due to the wavelet properties, the stabil-

ity of the results is improved. The t value for all approaches is

larger than 2.15 (degree of freedom = 49), meaning that there is

a significant difference between the HPSOWM and other PSOs

with a 98% confidence level. Furthermore, comparing the run

time, we can see that the HGPSO consumes more time. It is

because the computational effort is increased by the process

of gradient descent. The other methods consume almost the

same amount of time. In general, PSO with mutation operations

(HPSOWM and HPSOM) are better than other hybrid PSOs in

terms of mean values. With the results shown in Fig. 13 and

Tables II and III, we can see that HPSOWM gives better con-

vergence and performance. It is because HPSOWM provides a

fine-tuning ability in the later stage, whereas a large search step

of mutation operation is given in the early stage. Comparing

different neural network topologies, the VTWNN gives a better

performance. The average mean error of the VTWNN trained

with HPSOWM for the encapsulation weight is 3.6492, which

implies 45% and 75% improvement over WNN (trained with

HPSOWM) and FFNN (trained with HPSOWM), respectively.

Similarly, the average mean error of the VTWNN trained with

HPSOWM for the encapsulation thickness is 0.5251 × 103,

which implies 28% and 63% improvement over WNN (trained

with HPSOWM) and FFNN (trained with HPSOWM), re-

spectively. VTWNN gives a better performance because the

translation parameters of the WNN are variable. This makes

the VTWNN capable of modeling the process with input-

dependent network parameters. It works as if several individual

networks are handling different sets of input data, which exhibit

better performance. In order to test the generalization ability

of the proposed network, the tenfold cross-validation process is

used. The results in terms of the mean testing error and standard

deviation are tabulated in Table III. In this table, the proposed

VTWNN trained with HPSOWM gives a better testing result as

compared with others.

VI. CONCLUSION

In this paper, an improved hybrid PSO has been proposed to

optimize the parameters of the VTWNN. Due to the variable

translation parameters in the network, the proposed VTWNN

becomes adaptive and is able to improve the learning ability

of the neural network. In addition, a hybrid PSO incorporated

with WM has been proposed by applying the properties of the

wavelet theory to enhance the PSO to explore the solution space

more effectively on reaching the optimal solution. An industrial

application on MFD-EP using the proposed PSO-based WNN

has been discussed. Experimental results have been given to

show the improved performance and solution stability of the

VTWNN and the WM-based hybrid PSO. One limitation in

this paper is that the choice of suitable parameters for the

PSO and the neural network is quite difficult. Most parameters

are determined by trial and error through experiments. Some

possible future research directions can be identified. Multiob-

jective PSO could be studied, which are particularly good to

handle some multiobjective optimization problems. In addition,

dynamic mutation and shape parameter rate could be studied

to reduce the time for selecting a suitable rate for application.

Physical experiments will be conducted in order to further

validate the effectiveness of the proposed predicted model.
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