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Improved hyperacuity estimation 
of spike timing from calcium 
imaging
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Mitsuo Kawato1 & Keisuke Toyama1*

Two‑photon imaging is a major recording technique used in neuroscience. However, it suffers from 
several limitations, including a low sampling rate, the nonlinearity of calcium responses, the slow 
dynamics of calcium dyes and a low SNR, all of which severely limit the potential of two‑photon 
imaging to elucidate neuronal dynamics with high temporal resolution. We developed a hyperacuity 
algorithm (HA_time) based on an approach that combines a generative model and machine learning to 
improve spike detection and the precision of spike time inference. Bayesian inference was performed 
to estimate the calcium spike model, assuming constant spike shape and size. A support vector 
machine using this information and a jittering method maximizing the likelihood of estimated spike 
times enhanced spike time estimation precision approximately fourfold (range, 2–7; mean, 3.5–4.0; 
2SEM, 0.1–0.25) compared to the sampling interval. Benchmark scores of HA_time for biological data 
from three different brain regions were among the best of the benchmark algorithms. Simulation 
of broader data conditions indicated that our algorithm performed better than others with high 
firing rate conditions. Furthermore, HA_time exhibited comparable performance for conditions with 
and without ground truths. Thus HA_time is a useful tool for spike reconstruction from two‑photon 
imaging.

Recently, because of its high spatial resolution, two-photon imaging has been one of the major means of recording 
multi-neuronal activities in the �eld of neuroscience to determine the precise morphology and location of the tar-
get  neurons1–6. However, it has relatively low temporal resolution due to the mechanical scanning of two-photon 
rays, which limits its utility. Other problems include nonlinearity, slow dynamics, and a low signal-to-noise ratio 
(SNR) of calcium (Ca)  responses7–10. To overcome these problems, many algorithms for reconstructing spike 
trains from Ca imaging data have been proposed, including conventional  thresholding11,  deconvolution12–15, 
template  matching16–20, Bayes  inference21–23, and machine  learning24,25. However, few of these proposed algo-
rithms have simultaneously addressed the two challenging goals: (1) reliable spike detection and (2) spike time 
estimation with high temporal precision in the presence of nonlinearity, slow dynamics and low SNR of the Ca 
 responses26. It is important to achieve both goals because recent neuroscience has indicated that the information 
provided by temporal coding based on neuronal spikes is as important as that provided by spike rate  coding27,28.

Regarding the former goal, the spike dynamics of the target neurons and/or the kinematics of the Ca responses 
may vary dramatically across brain regions and Ca dyes. Regarding the latter goal, there is a trade-o� between 
the number of recorded neurons and temporal resolution. In addition, the slow kinematics and low SNR of cur-
rently available Ca dyes may limit the temporal precision of the information conveyed by Ca responses. �ese 
factors hinder reliable spike detection and precise spike time estimation for high-frequency �ring, which is 
common in cortical  cells29–31.
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In this paper, we propose a hyperacuity algorithm, named HA_time (HyperAcuity time estimation), that 
combines a generative model of Ca responses, including nonlinearity and dye dynamics, with a supervised clas-
si�er to overcome the aforementioned di�culties. HA_time estimates the Ca spike model by Bayesian inference, 
assuming a constant size and shape; compensates for the nonlinearity of Ca responses; and detects spikes from 
Ca imaging data by a support vector machine (SVM) using the ground truths (i.e., simultaneously recorded 
electrical spikes) as supervised information. To achieve hyperacuity  precision32, spike timings were calibrated 
to minimize the residual errors in model prediction, using the hyperacuity vernier scale tenfold �ner than the 
sampling interval. �is approach bene�ts from the advantages of both generative models and supervised learn-
ing. �e Ca spike model is utilized to provide supplemental information for spike detection and to estimate 
spike times with higher temporal precision than the sampling resolution. Supervised learning compensates 
for �uctuations in the Ca responses that are due to noise and sampling jitters, which are not considered by the 
generative model. As a consequence, HA_time can improve both the spike detection and spike time estimation 
of two-photon recordings.

A simulation study proved that HA_time obtained an approximately fourfold improvement (range, 2–7; mean, 
3.5–4.0; 2SEM, 0.1–0.25) over the sampling rate of 10–60 Hz, even when the Ca dye kinematics and noise level 
varied as in the experimental conditions. All algorithms aiming to improve spike detection as well as spike time 
precision have used generative models and maximized the likelihood of estimates 17,22,23. Accordingly, hyperacu-
ity improvement was limited to only the cases in which the Ca responses satis�ed the assumptions of generative 
models. To prove the advantages of an approach that combines a generative model and supervised learning, we 
compared our method with four previously introduced hyperacuity  algorithms16,17,21,22 and one representative 
deconvolution algorithm not aiming for  hyperacuity15. �e benchmark results for the three biological data sets 
(visual cortex, hippocampus, and cerebellum) showed that HA_time was among the best algorithms, with statisti-
cally improved hyperacuity demonstrated for the visual cortex and hippocampus data, but not for the cerebellum 
data, presumably due to the small number of samples. �e simulation analysis, which was conducted across a 
broad range of parameters for the experimental conditions (e.g., mean neuronal �ring frequency, nonlinearity, 
decay time of Ca dyes, noise level, sampling rate), provided useful information for users aiming to select the 
most suitable algorithms for a given experimental condition. �e superiority of our algorithm was especially 
evident in cases of high �ring frequency and/or strong nonlinearity, which are common in the cortical cells of 
behaving animals.

�e advantage to combine generative model with the supervised learning was also evident for unsupervised 
version of HA_time. In this unsupervised algorithm, SVM was trained with the simulation data produced by the 
generative model (hyperacuity Bayes). It exhibited comparable performances for the experimental data with no 
ground truths to those with the ground truths. �erefore, supervised and unsupervised HA_time may be useful 
for cases with and without the ground truths, respectively.

Results
Hyperacuity algorithm for spike timing estimation. HA_time was implemented in three steps: (1) 
Bayesian inference of the Ca spike model from Ca imaging data; (2) spike detection by SVM assisted by the 
matching information of Ca imaging data and Ca spike model; and (3) hyperacuity spike time estimation using 
the hyperacuity vernier scale to minimize the errors between the Ca response model prediction and the Ca 
imaging data. Here, the term “Ca spike model” refers to the constant Ca transient (i.e., the amplitude and shape) 
of a single spike, whereas “Ca response model” refers to a generative model of the Ca spike model, superposition 
of multiple spikes, nonlinearity of the Ca responses, and noise.

We assumed that the Ca imaging data were sampled from the Ca spike model (double exponentials) with 
variable sampling jitters (SJs) between the onsets of the Ca spike and the sampling times. First, the Ca spike 
responses were linearly superimposed for multiple spikes in short intervals and then added with the Gaussian 
noise. �en, the sublinearity or superlinearity of the Ca responses was determined by comparing the observed Ca 
imaging data with the data predicted by the Ca response model. We compensated for nonlinearity by inversely 
transforming the observed Ca imaging data using nonlinearity models �tted by logarithmic functions (Fig. 1A).

Next, we estimated the coincidence score as a convolution of the �rst-order derivatives of the Ca imaging 
data and the Ca spike model. A coincidence score threshold was used to sample the data segments as spike 
candidates, and the threshold and segment size were optimized to maximize the F1 score of the training data 
(see “Methods”). �e SVM was trained to classify the sampled data segments into spike or non-spike segments. 
For this purpose, we fed the sampled Ca imaging data and the coincidence scores to the SVM as the primary 
and attribute inputs, respectively, and used the electrical spikes (ground truth) as the teaching signals (Fig. 1B).

For the test data, spike candidates were sampled in the same way as the training data, and the trained SVM 
detected spikes among the candidates. We tentatively determined the time when the coincidence score exceeded 
the threshold as the pseudo-spike time (PT; Fig. 1C) and estimated the SJs to minimize the errors between the Ca 
response model prediction and the Ca imaging data using the hyperacuity vernier scales (with a time bin 10 times 
�ner than the sampling interval). �e true spike time (TT) was calculated as the sum of the PT and SJ (Fig. 1C).

�e three steps of HA_time described above were crucial for estimating the hyperacuity spike timing from 
the Ca imaging data. �e generative model worked as a forward model to transform spiking activities into Ca 
signals and to resolve the inverse problem of reconstructing spike activities from the Ca signals by estimating the 
model parameters. �e SVM worked as a signal classi�er to enhance the precision of spike detection by selecting 
spikes from the spike candidates, assisted by matching information of the Ca signals and the Ca spike model. 
Finally, the precision of spike time was enhanced by jitter processing to achieve hyperacuity.
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Figure 1.  �e hyperacuity support vector machine (HA_time) algorithm. (A) �e generative model assumed 
that Ca responses were sampled from the Ca spike model (double exponentials) with variable sampling jitters 
(SJs) due to the low sampling rate. �e model featured multiple superimposed spikes, �uctuating nonlinearity, 
and supplemented Gaussian noise. �e nonlinearity observed in the data was compensated for by the 
nonlinearity model, which was de�ned by the logarithmic functions of the observed Ca imaging data and Ca 
response model prediction. (B) �e coincidence score, which was computed by convoluting the �rst derivatives 
of the Ca imaging data and the Ca spike model, was used to select spike candidates. An SVM was trained to 
classify spikes and non-spikes from a set of spike candidates using the Ca imaging data, coincidence scores, 
and electrical spikes as feature, attribute, and teaching signals, respectively. (C) �e true spike time (TT) was 
estimated as the sum of the SJ and pseudo-spike time (PT, the point that exceeds the threshold), minimizing 
the residual error of the Ca response model prediction using a hyperacuity vernier scale 10 times �ner than the 
sampling interval.
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Hyperacuity improvement of HA_time in a simulation. We estimated the hyperacuity index (sam-
pling interval/spike time error) for hit cases of simulation data (see Methods) and compared performance with 
 OASIS15, as a representative deconvolution algorithm aiming at no hyperacuity.

Figure 2 plots the hyperacuity index as a function of the sampling rate. �e hyperacuity index of HA_time 
was maintained at around 4 (range, 2–7; mean, 3.5–4.0, 2SEM, 0.1–0.25) across the entire range of sampling 
rates (10–60 Hz), even when other parameters varied, as in the experimental conditions. As expected, the 
hyperacuity index of OASIS remained around 2, which is the theoretical (Nyquist) limit of temporal precision 
for digital sampling.

Application of HA_time to the experimental data. We applied HA_time to the noisy Ca imaging 
data obtained from cerebellar, hippocampal, and primary visual cortical cells by two-photon recording with a 
relatively low sampling rate.

For the two-photon recording of �ve Purkinje cells in the cerebellum (Cal-520 dye; sampling rate, 7.8 Hz), 
we sampled 36 data segments (segmental length, 2 s), each of which included a single electrical spike from the 
simultaneous electrical recording (sampling rate, 20 kHz), and constructed the Ca spike model using Bayesian 
inference. In agreement with the assumption of a constant spike shape, the Ca spike model (τ1 = 0.05 s, τ2 = 0.4 s) 
was slightly faster in rise time (red line in Fig. 3A) than the electrical spike-triggered average of the Ca imaging 
data (blue line in Fig. 3A). In addition, the amplitude of the Ca spike model roughly corresponded to that of the 
spike-triggered average. �e longer time course of the spike-triggered response may be due to the SJs.

We performed a similar estimation of the Ca spike models for the data from the hippocampus (n = 9 cells, 
OGB-1AM dye, sampling rate of 10 Hz) and visual cortex (n = 29 cells, three di�erent GCaMP dyes, sampling 
rate of 50–60 Hz, see Table S1). We avoided segments that contained burst activity (inter-spike interval, < 2 s) 
because the Ca responses in the hippocampus and visual cortex showed strong nonlinearity during burst activity. 
A similar tendency, speci�cally, the rise time being faster than spike-triggered averages (blue lines in Fig. 3C,E), 
was also noticed in the Ca spike model of data from both the hippocampus (OGB-1AM dye, τ1 = 0.1 s, τ2 = 0.75 s, 
red line in Fig. 3C) and visual cortex (GCaMP6f dye, τ1 = 0.01 s, τ2 = 0.2 s, red line in Fig. 3E). �e dynamics of the 
other two Ca dyes, GCaMP6s and GCaMP5k, for the visual cortex, as well as those for the cerebellum and hip-
pocampus, estimated by HA_time were all in good agreement with those reported in the previous  studies11,33–35 
(see Table S1).

Figure 3B illustrates the performance of HA_time for detecting spikes from the Ca imaging data of cerebellar 
cortex cells. Coincidence thresholding (black dots in Fig. 3B) detected the true spikes (ground truth, gray bars) 
as well as many false positive spikes. HA_time e�ectively selected the true spikes, rejecting many false positive 
spikes from the set of candidates. A comparison of the spikes detected by HA_time (dark bars) with the ground 
truths (gray bars) indicated that HA_time detected nearly all spikes and correctly estimated the spike time from 
the Ca imaging data for the cerebellum (Fig. 3B). Similarly, HA_time estimated the spike times very close to the 
actual times for the hippocampus and visual cortex data (Fig. 3D,F).

Nonlinearity analysis of the experimental data sets. We found strong nonlinearity in the Ca imag-
ing data from the hippocampus and visual cortex during burst activities. �erefore, a nonlinearity analysis was 
conducted by plotting the amplitudes of the Ca imaging data as a function of the linear prediction of the Ca 
response model for all of the data from the cerebellum, hippocampus and visual cortex.

Figure 2.  Hyperacuity index of HA_time and OASIS for the simulation data. Ordinate: hyperacuity index for 
HA_time (black line) and OASIS (blue line). Abscissa: sampling rate of simulation data with a mean neuronal 
�ring rate of 1 Hz. �e shaded region indicates ± 2SEM when the nonlinearity parameter (α), decay time 
constant (τ2), and SNR were within the ranges of 0.5–1.5, 0.2–1 s, and 3–10, respectively.
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�e Ca imaging data from the cerebellum roughly agreed with the linear prediction for spike trains (Fig. 4A, 
black and red lines), and correspondingly, the regression analysis revealed a �ne match between the two (blue line 
in Fig. 4B, y = 1.1 x). Conversely, the nonlinearity analysis of the Ca imaging data revealed signi�cant sublinear-
ity in the hippocampus (OGB-1AM dye, black and red lines in Fig. 4C) and superlinearity in the visual cortex 
(GCaMP6f dye, black and red lines in Fig. 4E). �e nonlinearity models were constructed by �tting the plots 
with logarithmic functions (blue lines in Fig. 4D,F, y = -3.8 e(-0.16x) + 3.9 and y = 0.67 e0.88x). We found that the Ca 
imaging data recorded using the GCaMP6s and GCaMP5k dyes for the visual cortex showed the same tendency 
for superlinearity as when the GCaMP6f dye was used (Fig. S1). �e nonlinearity in the hippocampus and visual 
cortex data was compensated for by multiplying the Ca imaging data by the inverse of the nonlinearity models 
(blue lines in Fig. 4C,E). �e compensated Ca imaging data were then fed into HA_time.

Performance evaluation for experimental data. �e performances of HA_time for detecting spikes 
and estimating the spike time were examined for the cerebellum, hippocampus, and visual cortex data by leave-
one-out cross-validation and then compared with the performance of �ve benchmark  algorithms15–17,21,22 (see 
“Methods”).

Figure 3.  Estimation of the Ca spike model and spike detection by HA_time. (A) Ca spike model (red line, 
τ1, 0.05 s, τ2, 0.4 s) and average spike-triggered Ca responses synchronized with the onsets of electrical spikes. 
�e Ca spike model and the spike-triggered average were estimated for the 36 electrical spikes of �ve Purkinje 
cells. Ordinate: amplitude of Ca responses normalized by the peak of the maximum Ca imaging data for the 
individual cells. Abscissa: time a�er the onset of the electrical spikes. (B) Spike detection by HA_time. �e top 
and bottom traces represent Ca imaging data and the coincidence score of the �rst-order di�erential of the Ca 
imaging data and that of the Ca response model. �e candidate spikes detected by conventional thresholding, 
those estimated by HA_time, and electrical spikes (ground truth) are represented by black dots and thick and 
thin bars, respectively. Red lines indicate the thresholds for conventional thresholding. (C, D, E and F) are 
similar to A and B but represent the hippocampus (C, D) using OGB-1AM dye and visual cortex data (E, F) 
using GCaMP6f dye (see Table S1).
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�e spikes detected by HA_time (black bars) matched fairly well with the ground truths (gray bars) for all 
three of the experimental data sets. MLspike (red bars) performed su�ciently for the hippocampus data but 
rather poorly for the cerebellum and visual cortex data, with many false positives. OASIS (blue bars) performed 
su�ciently for the visual cortex data but rather poorly for the hippocampus and cerebellum data, with a consid-
erable number of false negatives. �e remaining three algorithms (Peeling, orange bars; Monte Carlo Markov 
Chain [MCMC], green bars; and �nite-rate-innovation [FRI], purple bars) performed rather poorly for all three 
experimental data sets, with many false positives or missing spikes (Fig. 5A–C).

We estimated spike detection performance based on the F1 score determined by a receiver operating char-
acteristic (ROC) analysis (see “Methods”). HA_time (0.51 ± 0.06) had one of the best F1 scores for the visual 
cortex data (0.50 ± 0.08 for MLspike, p = 0.53 for HA_time vs. MLspike; 0.47 ± 0.04 for Peeling, p = 0.1 for HA_
time vs Peeling; 0.35 ± 0.05 for MCMC, p = 0.0003 for HA_time vs. MCMC; 0.09 ± 0.03 for FRI, p < 0.0001 for 
HA_time vs. FRI; 0.54 ± 0.06 for OASIS, p = 0.9 for HA_time vs. OASIS; see Fig. 6A). For the hippocampus 
data, HA_time (0.56 ± 0.11) performed best, with statistically signi�cant F1 scores compared to those for FRI 
(0.14 ± 0.04, p = 0.004 for HA_time vs. FRI) and OASIS (0.18 ± 0.03, p = 0.006 for HA_time vs. OASIS), but not 
in comparison to those for MLspike (0.54 ± 0.08, p = 0.1 for HA_time vs. MLspike), Peeling (0.47 ± 0.05, p = 0.07 
for HA_time vs. Peeling), and MCMC (0.45 ± 0.04, p = 0.06 for HA_time vs. MCMC). Similarly, for the cerebel-
lum data, HA_time (0.77 ± 0.2) performed statistically signi�cantly better than OASIS (0.19 ± 0.15, p = 0.03 for 
HA_time vs. OASIS) and MCMC (0.40 ± 0.18, p = 0.03 for HA_time vs. MCMC), but no statistical signi�cance 
was found for MLspike (0.65 ± 0.23, p = 0.1 for HA_time vs. MLspike), Peeling (0.64 ± 0.19, p = 0.05 for HA_time 
vs. Peeling), or FRI (0.57 ± 0.22, p = 0.05 for HA_time vs. FRI). �is is probably due to the smaller number of 
cells (n = 5) in the cerebellum data (Fig. 6A).

Figure 4.  Nonlinearity analysis of Ca imaging data. Ca imaging data from the cerebellum (A), hippocampus 
(C) and visual cortex (E). Black, red, and blue traces represent the observed Ca imaging data, linear prediction 
of the Ca response model for spike trains, and compensated Ca imaging data, respectively. Scatter plots of the 
experimental Ca imaging data from the cerebellum (B), hippocampus (D) and visual cortex using the GCaMP6f 
dye (F) as a function of the linear prediction of the Ca response model for spike trains.
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�e improvement of HA_time in terms of the precision of spike time estimation was also found for the inverse 
of the spike  distance36 (see “Methods”). HA_time (1.20 ± 0.08) performed best for the visual cortex data (0.8 ± 0.19 
for MLspike, p < 0.0001 for HA_time vs. MLspike; 1.05 ± 0.09 for Peeling, p < 0.0001 for HA_time vs Peeling; 

Figure 5.  Spike detection by HA_time and benchmark algorithms. Examples of spike detection by HA_time 
(black bars),  MLspike21 (red),  Peeling16 (orange), Monte Carlo Markov Chain  (MCMC22, green), �nite-rate 
innovation  (FRI17, purple) and  OASIS15 (blue) algorithms for the cerebellum (A), hippocampus (B), and visual 
cortex (C) data. �e black traces represent the Ca responses. �e thin vertical lines indicate the timing of the 
ground truth (GT) electrical spikes.
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0.94 ± 0.07 for MCMC, p < 0.0001 for HA_time vs. MCMC; 1.01 ± 0.01 for FRI, p < 0.0001 for HA_time vs. FRI; 
1.05 ± 0.12 for OASIS, p = 0.02 for HA_time vs. OASIS, Fig. 6B). HA_time (1.14 ± 0.11) also statistically signi�-
cantly outperformed the benchmark algorithms for the hippocampus data (0.58 ± 0.12 for Peeling, p = 0.004 for 
HA_time vs Peeling; 0.85 ± 0.13 for MCMC, p = 0.016 for HA_time vs. MCMC; 0.91 ± 0.06 for FRI, p = 0.006 for 
HA_time vs. FRI; 0.71 ± 0.13 for OASIS, p = 0.004 for HA_time vs. OASIS), except for MLspike (1 ± 0.17, p = 0.1 
for HA_time vs. MLspike). Further, for the cerebellum data, HA_time was found to be statistically signi�cantly 
superior to OASIS (0.55 ± 0.1, p = 0.03 for HA_time vs. OASIS) and MCMC (0.59 ± 0.38, p = 0.03 for HA_time 
vs. MCMC), but not MLspike (1.15 ± 0.47, p = 0.08 for HA_time vs. MLspike), Peeling (1.25 ± 0.43, p = 0.05 for 
HA_time vs. Peeling), or FRI (1.26 ± 1.22, p = 0.3 for HA_time vs. FRI).

Performance evaluation for the simulation data. We further investigated the performance of HA_
time in comparison to the benchmark algorithms by simulating the Ca responses sampled in a broader range of 
conditions than that used for the experiment, including the mean �ring frequency of the spike train, the nonlin-
earity of the Ca responses, the sampling rate of the two-photon recording, the dye dynamics of the Ca responses 
(time decay constant for the Ca responses) and the SNR (see “Methods”).

We found that the four parameters—mean �ring frequency, nonlinearity (see Fig. S2), decay constant, and 
sampling rate—qualitatively in�uenced the performance scores of the algorithms, while SNR had only a quan-
titative in�uence (see Fig. S3).

Figure 7 represents the performance of HA_time as the function of the mean �ring frequency and decay time 
constant (τ2) for three di�erent sampling rates (10, 30, and 60 Hz) in 3D pseudo-color maps. HA_time was one 
of the best algorithms in terms of F1 score across the entire range of parameters (Fig. 7A). MLspike performed 
best under certain conditions (high sampling rate, 30–60 Hz, low �ring frequency, ≤ 2 Hz). Peeling and OASIS 

Figure 6.  Performance benchmark for experimental data. F1-score (A) and inverse of spike distance (B) for 
the HA_time (black columns), MLspike (red), Peeling (orange), MCMC (green), FRI (purple) and OASIS (blue) 
algorithms. All the algorithms were optimized using the training data (see “Methods). �e columns represent 
means with error bars of + 2SEM. Asterisks indicate the signi�cance level obtained by Wilcoxon signed-rank 
tests comparing HA_time and the benchmark algorithms. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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performed as well as HA_time in the high sampling rate condition (F1 score > 0.9). MCMC and FRI exhibited 
su�cient performance only with a high sampling rate, low �ring frequency, and fast dye (τ2 ≤ 0.5 s).

Spike time precision (1/spike distance) had a performance pro�le similar to F1 score. Although MLspike 
performed best with a high sampling rate and low �ring frequency and OASIS exhibited su�cient performance 
with a high sampling rate, the performance of HA_time remained high across the entire range of parameters. 
Notably, HA_time outperformed all of the benchmark algorithms when a fast dye was used (τ2 = 0.2 s, Fig. 7B).

Figure 8 shows the pro�les of the F1 scores and the inverse of the spike distance values for low (10 Hz) and 
high (60 Hz) sampling rates as a function of the mean �ring frequency (τ2 = 0.2 s, Fig. 7). HA_time outperformed 
all the benchmark algorithms under the low sampling rate condition across the entire range of �ring frequencies 
(1–10 Hz, Fig. 8A,B). �e advantage of our algorithm over the benchmark algorithms was also demonstrated 
with a high sampling rate condition across the entire range of spike frequencies. MLspike performed best with a 
low �ring frequency (≤ 2 Hz). However, the performance of MLspike reduced to the level of the other benchmark 
algorithms as the �ring frequency increased (Fig. 8C,D). Peeling and OASIS performed su�ciently in terms of 
spike detection (i.e., they achieved a relatively high F1 score) but not in terms of spike time precision.

Figure 7.  Performance of HA_time and benchmark algorithms for simulation data. 3D pseudo-color maps of 
the F1 score (A) and inverse of spike distance (B) as a function of mean �ring frequency (abscissa) and decay 
time constant (τ2, ordinate) for the three di�erent sampling rates (10, 30, and 60 Hz). α and SNR were �xed at 1 
and 5, respectively.
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Unsupervised benchmark for experimental and simulation data. We developed an unsupervised 
version of HA_time for cases in which simultaneous electrical recordings cannot be obtained. �e unsupervised 
HA_time algorithm is essentially similar to the supervised version, but the Ca spike model parameters are esti-
mated for spike candidates detected by the hyperacuity Bayes method instead of the ground truth spikes (see 
“Methods”). We generated simulation data for the model parameters and trained the SVM of HA_time with the 
simulation data. Finally, we selected spikes from the candidates using the trained SVM.

Unsupervised HA_time maintained su�cient F1 scores for the visual cortex data, which included a relatively 
large number of cells. HA_time was the best algorithm in terms of F1 scores for the visual cortex data (0.5 ± 0.05 
for HA_time; 0.38 ± 0.06 for MLspike, p = 0.0002 for HA_time vs. MLspike; 0.46 ± 0.04 for Peeling, p = 0.01 for 
HA_time vs Peeling; 0.35 ± 0.05 for MCMC, p = 0.0006 for HA_time vs. MCMC; 0.04 ± 0.02 for FRI, p < 0.0001 for 
HA_time vs. FRI; 0.4 ± 0.05 for OASIS, p = 0.0004 for HA_time vs. OASIS, Fig. 9A). It was also superior for the 
hippocampus data, except in comparison to Peeling (0.51 ± 0.07 for HA_time; 0.38 ± 0.08 for MLspike, p = 0.01 
for HA_time vs. MLspike; 0.51 ± 0.06 for Peeling, p = 0.6 for HA_time vs Peeling; 0.42 ± 0.04 for MCMC, p = 0.03 
for HA_time vs. MCMC; 0.12 ± 0.05 for FRI, p = 0.004 for HA_time vs. FRI; 0.14 ± 0.05 for OASIS, p = 0.004 for 
HA_time vs. OASIS). �e F1 score of HA_time (0.55 ± 0.25) was second highest for the cerebellum data, but 
without statistical signi�cance (0.27 ± 0.13 for MLspike, p = 0.05 for HA_time vs. MLspike; 0.34 ± 0.18 for Peel-
ing, p = 0.17 for HA_time vs Peeling; 0.41 ± 0.22 for MCMC, p = 0.08 for HA_time vs. MCMC; 0.64 ± 0.18 for 
FRI, p = 0.94 for HA_time vs. FRI; 0.14 ± 0.12 for OASIS, p = 0.02 for HA_time vs. OASIS). Regarding spike time 

Figure 8.  Firing frequency pro�les of performance. F1 scores (A) and inverse of spike distance values (B) 
for HA_time and the benchmark algorithms as a function of �ring frequency at a sampling rate of 10 Hz. C 
and D are the same measures at 60 Hz. �e nonlinearity parameter α, SNR, and τ2 were �xed at 1, 5, and 0.2 s, 
respectively. �e color conventions are the same as in Fig. 6.
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precision (1/spike distance), we found unsupervised HA_time had less marked advantages over the unsupervised 
benchmark algorithms, with weaker statistical signi�cance than for F1 score (see Fig. 9B).

We also conducted a similar analysis for simulation data (τ2 = 0.5 s, sampling rate, 10 Hz). We con�rmed the 
advantages of unsupervised HA_time over the unsupervised benchmark algorithms for spike detection and spike 
time precision (Fig. S4). �e results were comparable to those obtained for the experimental data.

Discussion
Hyperacuity spike‑time estimation algorithm combining the generative model and super‑
vised learning approaches. HA_time is an example of the so-called super-resolution techniques, which 
have proven successful in many �elds of signal  processing37,38. Such techniques use a forward model for signal 
distortion due to sensing and sampling and recover the lost information by estimation of the model parameters 
maximizing the likelihood of the estimates. We used a double exponential function as the forward model to rep-
resent the dynamics of Ca dyes, a method that has been widely used in  neuroscience3–5, and Bayesian inference, 
which is a common way to maximize the likelihood of estimation of model parameters. �e accuracy of spike 
detection was further enhanced by an SVM trained with the ground truth. We found that HA_time improved 
the precision of spike time estimation fourfold (range, two–sevenfold; 2SEM, 0.1–0.25) compared to the sam-
pling rate, across a wide range of sampling rates and other parameters. �e recent progress in two-photon imag-
ing with fast and linear Ca  dyes39 can use the advantages of hyperacuity algorithms to relax the trade-o� between 
the sampling rate and the number of sampled neurons.

HA_time aimed to resolve two challenging issues – reliable spike detection and enhanced spike time preci-
sion—in the presence of the nonlinearity, slow dynamics, and low SNR of Ca imaging data. �e di�culty of 
achieving this goal arose from the spike dynamics of the target neurons and/or kinematics of the Ca responses, 
which may vary dramatically across brain regions. �e slow Ca kinematics and low SNR may limit the temporal 

Figure 9.  Performance benchmark of unsupervised algorithms for experimental data. F1 score (A) and inverse 
of spike distance (B) for unsupervised HA_time and the unsupervised benchmark algorithms. �e conventions 
are the same as in Fig. 6.
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precision of the information conveyed by the Ca imaging data. HA_time overcame this di�culty by combin-
ing a generative model with a supervised classi�er. It estimated the Ca spike model using Bayesian inference 
assuming that spikes have a constant size and shape, compensating for the nonlinearity of the Ca responses by 
nonlinearity analysis, and detecting the spikes from the compensated Ca imaging data using the ground truths 
as supervised information. Hyperacuity estimation of spike time was achieved by recalibrating the spike time 
using the hyperacuity vernier scale to minimize the residual errors in the Ca response model prediction. Our 
combined approach may improve the performance of HA_time in two ways: the Ca response model enhanced 
spike detection and spike time estimation with higher temporal precision than the sampling resolution, while 
supervised learning compensated for �uctuations in the Ca imaging data caused by noise and sampling jitters, 
which are not considered by the generative model.

We also developed a generative model algorithm, hyperacuity Bayes (see “Methods" and Supplementary 
Information), which is a partial algorithm of HA_time. In this algorithm, the estimation of the generative 
model by Bayesian inference based on ground truth information was very robust. However, we found that the 
combination approach (i.e. HA_time) was superior for estimating spike timing compared to the hyperacuity 
Bayes algorithm, as evidenced by the signi�cantly higher F1 score and inverse of the spike distance for the hip-
pocampus and visual cortex data (see Fig. S5).

Notably, HA_time exhibited reasonable performance even for the experimental data with no ground truths 
(i.e., simultaneous electrical recordings). Unsupervised HA_time estimated the model parameters and detected 
spike candidates for experimental data using hyperacuity Bayes. �e SVM was trained with the simulation data 
generated for the estimated model parameters, and then used to select spikes from the set of candidates. Unsu-
pervised HA_time maintained performance comparable to the supervised version for all the experimental data 
sets (see Figs. 6 and 9). �is fact indicates that the training of the SVM with simulation data extended to spike 
detection for experimental data. �us, HA_time has good generalizability and is practical for precise spike timing 
estimation from two-photon imaging data with no ground truth information.

We realized a potential risk where the nonlinearity of Ca responses reported for strong burst activity by 
two-photon imaging studies of the cortical  activity35,39 may impair the performance of HA_time. However, we 
found that spikes of such strong burst activity (number of spikes > 6 and spike frequency > 10 Hz) only occupied 
a small fraction of all of the visual cortical spike samples (less than 10%). �erefore, this e�ect would be rather 
small. �is view is consistent with the �nding that HA_time performed best for the visual cortical data across 
all of the hyperacuity algorithms.

Performance evaluation in comparison with the benchmark algorithms. We computed the 
three metrics to evaluate the algorithm’s performance. �e F1 score of the ROC analysis increased for hits and 
decreased for both false positives and negatives in spike detection. �e inverse of spike distance (when the 
weighted cost of shi�ing spikes is proportional to the time window of spike detection) measured the temporal 
precision of detected spikes. �e CosMIC metric assessed the similarity of the estimations with the ground truth 
spike trains by convoluting the two spike trains with a smooth  kernel40 (see “Methods”). We found that CosMIC 
exhibited performance pro�les quite similar to those for the F1 score, with a strong correlation (r = 0.96, see Fig. 
S6). �us, we used the F1 score and inverse of spike distance as the metrics for evaluating spike detection and 
spike time precision, respectively.

We benchmarked HA_time and the other �ve algorithms for the three biological data sets with di�erent data 
conditions. In terms of the F1 score, we found that HA_time performed best with su�cient statistical signi�cance 
in the visual cortex and hippocampus data, which included a relatively large number of cells. However, for the 
cerebellum data, in which the number of cells was rather small (n = 5 cells), HA_time statistically outperformed 
only the OASIS and MCMC algorithms. HA_time also outperformed all benchmark algorithms in terms of 
the precision of spike time estimation, which was estimated as the inverse of the spike distance, with statistical 
signi�cance for the visual cortex and hippocampus data. Similarly, HA_time outperformed only MCMC and 
OASIS for the cerebellum data.

We conducted a systematic study of the algorithm’s performance for simulation data that covered a broader 
range of parameters than the experimental conditions, including the mean neuronal �ring frequency, nonlin-
earity, decay time of the Ca dyes, SNR and the sampling rate. �e F1 scores and the inverse of the spike distance 
values, which were studied as the functions of those parameters, indicated that mean �ring frequency, nonlinear-
ity, decay time constant (τ2) and sampling rate were the parameters with the greatest in�uences on performance. 
SNR was the least important parameter, in�uencing only size and not signi�cantly changing the shape of the 
performance functions. �e F1 score and the inverse of spike distance functions highlighted the superiority of 
HA_time over the other algorithms, where it obtained high scores with spike detection and high spike time pre-
cision across the entire range of parameters. However, in the condition with a high sampling rate and low �ring 
rate, MLspike slightly outperformed HA_time. �e performance of the other benchmark algorithms remained 
su�cient only in the condition of weak nonlinearity, high sampling rate, and low �ring frequency. Conversely, 
HA_time maintained high performance in the conditions with strong nonlinearity and/or high �ring frequency, 
which are frequently encountered in the cortical cells of behaving animals. It should be emphasized that HA_time 
exhibited practically meaningful hyperacuity performance for the fast dye with a small decay constant (τ2 = 0.2 s) 
across a wide range of nonlinearity and �ring frequency conditions. �us, it may be useful for two-photon record-
ing studies of cortical neurons using fast dye dynamics. �e simulation analysis of the performance of HA_time 
and the benchmark algorithms across a wide range of experimental conditions for two-photon recordings may 
provide useful information for selection of the best algorithm for certain experimental conditions.
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Methods
Hyperacuity support vector machine (HA_time). HA_time detects spikes contained in the Ca 
responses of two-photon recordings in three steps: (1) estimation of the Ca response model using the expecta-
tion–maximization (EM) algorithm assuming a constant shape and size of the spike model, (2) detection of 
spikes in the Ca responses by an SVM assisted by the matching information of the Ca response and Ca spike 
model, and (3) estimation of spike time for the detected spikes to minimize the errors between the Ca response 
model prediction and the Ca imaging data using the vernier scale, which is 10 times �ner than the sampling 
interval of two-photon recordings.

Ca spike model estimation by Bayesian inference. We estimated the parameters of the Ca response model 
assuming that all of the Ca responses in the two-photon recording originated from a unique Ca spike model g(t, 
T, τ) and will vary due to the noise and sampling jitters (SJs)19.

where t, T, τ = (τ1, τ2) are the time, the spike onset, and the rise and decay time constants, respectively.
We estimated a Ca response model whose parameters are the model amplitude (a), baseline  (b0) and noise (σ) 

using the EM algorithm, while the time constants of spike response (τ) were estimated by an iterative alternate 
coordinate one-dimensional grid search (see Supplementary Information).

Spike detection by SVM. We conducted spike detection and spike time estimation by an SVM supplemented 
with information from the Ca response model. We estimated the coincidence scores, determined as the convo-
lution (dy/dt * dg/dt) of the �rst-order derivative (dy/dt) of the Ca signals of a two-photon recording with the 
�rst-order derivative (dg/dt) of the Ca response model (g), estimated by Bayesian inference for the training data. 
For the spike candidates, we sampled data segments that exceeded the threshold. �e threshold and the length 
of data segments (the number of data points before and a�er the point exceeding the threshold) were optimized 
according to the F1 score for the training data (see the discussion of cross-validation in Statistical Analysis). �e 
SVM was trained to classify spike candidates into spikes or non-spikes by feeding in the spike candidates and 
coincidence scores as the primary and attribute inputs, respectively, and the electrical spikes (ground truth) as 
the teaching signals.

Hyperacuity spike time estimation. �e trained SVM was used for detection of spikes in the test data. �e 
pseudo-spike times (PTs) were tentatively determined for the detected spikes as those for which the coincidence 
score exceeded the threshold. We assumed that the PTs may vary due to the SJs (di�erence between pseudo- and 
true spike times), and thus we estimated the SJs to minimize the prediction errors between the Ca response and 
the Ca response model by systematically changing the SJ according to a vernier scale 10 times �ner than the 
sampling interval. �e true spike time (TT) was calculated as the sum of PT and SJ (see the inset of Fig. 1C). For 
spike time estimation in cases where the preceding spikes overlapped with the succeeding ones, we subtracted 
the trace of the preceding spike from the trace of the succeeding one.

Unsupervised HA_time. We developed an unsupervised version of HA_time for cases in which the ground 
truth signals are unavailable. First, we estimated the Ca response model parameters – including spike amplitude, 
time constants (τ1 and τ2), noise level and mean �ring rate – from the Ca imaging data using the hyperacuity 
Bayesian algorithm (see Supplementary Information). �en, we generated simulation data for the model param-
eters and trained the SVM with the simulation data. Next, we detected the spike candidates in a similar way as 
the supervised cases. �e SVM was used to select spikes from the set of candidates, and �nally, spike time was 
estimated using the same jittering processing as was used for the supervised algorithm.

Other benchmark algorithms. We evaluated the performance of four algorithms that aim for hypera-
cuity:  MLspike21,  Peeling16, the �nite-rate innovation method (FRI)17, and the Monte Carlo Markov chain 
(MCMC)22. In addition, we evaluated a recently developed deconvolution algorithm that does not aim at hypera-
cuity (OASIS)15. �ese evaluations were performed for supervised and unsupervised cases in which algorithm 
parameters were optimized and not optimized, respectively, using ground truth signals.

In the supervised cases, MLspike used the ground-truth signals (i.e., electrical spikes) for optimization of the 
parameter set, including the spike amplitude, time constants of Ca dye, nonlinearity parameters, Hill coe�cient, 
and spike time delay. As neither the Peeling nor the FRI method includes a routine to optimize the parameters, 
we supplemented them with the parameter settings used for the Ca response model of HA_time. MCMC was 
used to estimate the parameters directly from the Ca imaging data, and we supplemented our estimations as the 
parameters’ initial values. Unlike the other hyperacuity algorithms, which directly output the spike times, OASIS 
predicted the deconvoluted trace correlated with the underlying spike train. We used a threshold to determine the 
spike time based on this deconvoluted trace. �e threshold and the sparsity parameter of OASIS were optimized 
in the ranges of 0–5 SD and 1–10, respectively, in order to maximize the F1 score of the training data.

In unsupervised cases where no ground truth information was given, the parameters of the Peeling and FRI 
algorithms were set to the values reported in the papers in which they were  introduced16,17. �e other three 

g(t,T , τ) =

(

1 − exp

[

T − t

τ1

])

exp

[

T − t

τ2

]

, t ≥ T

g(t,T , τ) = 0, t < T
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algorithms – MCMC, MLspike and OASIS – used their own routines to estimate the parameters. �e threshold 
for determining the spike time by OASIS was �xed at 2 SD.

Experimental data sets. We collected simultaneous electrical and two-photon recordings of the Ca sig-
nals in three cortical areas (cerebellum, hippocampus and visual cortex) using �ve di�erent Ca dyes as described 
below (see Table S1 for details). �e experiments for the hippocampus and cerebellum data sets were approved 
by the Animal Experiment Committees of the University of Tokyo and University of Yamanashi. All experimen-
tal protocols were carried out in accordance with the Fundamental Guidelines for Proper Conduct of Animal 
Experiment and Related Activities in Academic Research Institutions (Ministry of Education, Culture, Sports, 
Science and Technology, Japan). �e approval for the visual cortex experiments were described in refs 35,41.

Recording of cerebellar Purkinje cell complex spikes. We collected experimental data for the complex spikes of 
�ve cerebellar Purkinje cells from the work  of33, where simultaneous two-photon Ca imaging (sampling rate, 
7.8 Hz) using multicell bolus loading of Cal-520 dye and extracellular recording (sampling rate, 20 kHz) was 
performed on adult mice.

Recording of hippocampal CA3 neurons. We collected the simultaneous cell-attached recording (sampling rate, 
20 kHz) and one-photon images (10 Hz) of Ca responses from nine CA3 pyramidal neurons in organotypic 
cultured slices of rats stained with OGB-1AM  dye34. �e Ca signals were normalized by the peak of the Ca spike 
model estimated for individual cells.

Recording of the primary visual cortex. We collected the three data sets recorded from the mouse visual cor-
tex using di�erent Ca indicators (GCaMP6f, GCaMP6s, GCaMP5k). All included simultaneous loose-seal cell-
attached patch recordings (sampling rate, 20 kHz) and two-photon recordings of Ca responses (sampling rate, 
50–60 Hz, see 1–3 in Table S1)35,41.

Simulation data. We conducted a simulation of the Ca responses for the three experimental data sets (i.e., 
cerebellum, hippocampus, and primary visual cortex). Spike events were generated according to a Poisson dis-
tribution, with the mean �ring rate varying from 1–10 Hz. �e Ca responses were simulated by convolving the 
double exponentials with time constants for rise and decay with the spike events. �e rise time constant τ1 was 
�xed at 0.01 s, while the decay time constant τ2 was varied from 0.2–1 s, corresponding to those of the OGB-
1AM, Cal-520, and GCaMP6f dyes. We introduced the parameter α to reproduce the nonlinearity found in the 
Ca responses f(t) in the three cortices as follows:

where x(t) = g(t) * s(t) is the linear response of the Ca spike model given the spike train s(t). �e parameter α for 
saturation (α < 1) and superlinearity (α > 1) varied in the range of 0.2–3, based on the values found in the three 
experimental data sets. Finally, Gaussian noise was added to reproduce the SNR (3, 5, 10) of the experimental 
data. For each set of simulation parameters, 500 spike signals were generated in a total of 10 cells, and those from 
�ve cells were used as the training and test data sets.

Performance analysis. To evaluate spike detection performance, a correct hit case was de�ned as one in 
which the time di�erence between an estimated spike and a true one was smaller than a time window of half the 
sampling interval. �e opposite was true for missing cases. A false positive case was de�ned as one in which the 
time di�erence between the true spike and the estimated one was greater than the time window. For data sets 
with a high sampling rate (30–60 Hz), the time window was relaxed to 50 ms.

�e receiver operating characteristic (ROC) analysis was conducted as follows:

We estimated the temporal precision of spike time estimation as the inverse of the spike distance, de�ned as 
the minimal cost for reconstructing the true spike train from the estimated one. We allowed one each for dele-
tion or insertion of the spike event and the weighted cost of the shi� in spike  time36. To emphasize the precision 
of spike time estimation, the weighted cost of shi�ing spikes was equal to the inverse of the time window for 
accepting hit cases. �e spike distance was further normalized by the number of ground truth spikes.

We computed the CosMIC metric to determine spike time  precision40. �e ground truth and estimated mem-
bership functions – y(t) and yest(t), respectively – were computed by convoluting the ground truth and estimated 
spike train – s(t) and sest(t), respectively – with the triangle kernel p(t):

f (t) = x(t)α , for x(t) > 1

f (t) = x(t), otherwise,

Sensitivity = Hit/(Hit + misses)

Precision = Hit/
(

Hit + False positive
)

F1 score = 2 ×
(

Sensitivity × Precision
)

/
(

Sensitivity + Precision
)

y(t) = s(t) ∗ p(t) yest(t) = sest(t) ∗ p(t)

p(t) =
e−|t|
e , |t| < e p(t) = 0, otherwise

,
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where e is the width of the triangle kernel p(t), and is equal to the time window of the ROC analysis. �e CosMIC 
metric was then computed as follows:

We also evaluated the improvement of spike time precision as the hyperacuity index, estimated as the ratio 
of the sampling interval to the mean spike time errors (i.e., di�erence between the estimated and ground truth 
spike times) for hit cases.

Statistical analysis. Performance analyses of all algorithms applied to the experimental data were con-
ducted with leave-one-out cross-validation, and the data from one cell and remaining cells were used for testing 
and training, respectively.

All of the performance scores were estimated as the mean ± 2SEM. To assess statistical signi�cance, we com-
pared the performance of HA_time to that of the benchmark algorithms using a one-sided Wilcoxon signed-rank 
test, and we reported the signi�cance level (p).

Hyperacuity Bayesian algorithm. We also developed a hyperacuity Bayesian algorithm by essentially 
creating an algorithm similar to that for HA_time for cases in which no ground truth signals are available. �is 
algorithm maximizes the likelihood for the Ca signals recorded by two-photon recordings (see Supplemental 
Information).

Data availability
�e MATLAB implementation of our algorithm can be found online (https ://githu b.com/hoang -atr/HA_time). 
�e hippocampus and cerebellum data sets used in this work are available from the authors upon request.

Received: 5 February 2020; Accepted: 1 October 2020

References
 1. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).
 2. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning �uorescence microscopy. Science 248, 73–76 (1990).
 3. Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 

54, 151–162 (1994).
 4. Stosiek, C., Garaschuk, O., Holtho�, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. 

Acad. Sci. USA 100, 7319–7324 (2003).
 5. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).
 6. Kerr, J. N. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205 (2008).
 7. Hamel, E. J. O., Grewe, B. F., Parker, J. G. & Schnitzer, M. J. Cellular level brain imaging in behaving mammals: an engineering 

approach. Neuron 86, 140–159 (2015).
 8. Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal population recordings. Nat. Neurosci. 

19, 1165–1174 (2016).
 9. Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. 

Methods 9, 201–208 (2012).
 10. Ji, N., Freeman, J. & Smith, S. L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19, 1154–1164 (2016).
 11. Tsutsumi, S. et al. Structure–function relationships between aldolase C/zebrin II expression and complex spike synchrony in the 

cerebellum. J. Neurosci. 35, 843–852 (2015).
 12. Yaksi, E. & Friedrich, R. W. Reconstruction of �ring rate changes across neuronal populations by temporally deconvolved  Ca2+ 

imaging. Nat. Methods 3, 377–383 (2006).
 13. Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 

104, 3691–3704 (2010).
 14. Friedrich, J. & Paninski, L. Fast active set methods for online spike inference from calcium imaging in Advances In Neural Informa-

tion Processing Systems (Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I. & Gargnett, R., eds.) 1984–1992 (Curran Associates, 
2016).

 15. Pachitariu, M., Stringer, C. & Harris, K. D. Robustness of spike deconvolution for neuronal calcium imaging. J. Neurosci. 38, 
7976–7985. https ://doi.org/10.1523/jneur osci.3339-17.2018 (2018).

 16. Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network 
activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).

 17. Oñativia, J., Schultz, S. R. & Dragotti, P. L. A �nite rate of innovation algorithm for fast and accurate spike detection from two-
photon calcium imaging. J. Neural Eng. 10, 046017 (2013).

 18. Greenberg, D. S., Houweling, A. R. & Kerr, J. N. D. Population imaging of ongoing neuronal activity in the visual cortex of awake 
rats. Nat. Neurosci. 11, 749–751 (2008).

 19. Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W. & Helmchen, F. Inference of neuronal network spike dynamics and topology from 
calcium imaging data. Front. Neural Circuits 7, 201. https ://doi.org/10.3389/fncir .2013.00201  (2013).

 20. Sebastian, J. et al. GDspike: An accurate spike estimation algorithm from noisy calcium �uorescence signals in IEEE International 
Conference on Acoustics, Speech and Signal Processing, 1043–1047 (IEEE, 2017); https://doi.org/https ://doi.org/10.1109/ICASS 
P.2017.79523 15.

 21. Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal 
populations in vivo. Nat. Commun. 7, 12190. https ://doi.org/10.1038/ncomm s1219 0 (2016).

 22. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 
(2016).

 23. Vogelstein, J. T. et al. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 97, 636–655 (2009).
 24. �eis, L. et al. Benchmarking spike rate inference in population calcium imaging. Neuron 90, 471–482 (2016).
 25. Sasaki, T., Takahashi, N., Matsuki, N. & Ikegaya, Y. Fast and accurate detection of action potentials from somatic calcium �uctua-

tions. J. Neurophysiol. 100, 1668–1676 (2008).

CosMIC = 2
||min(y, yest)||

(||y|| + ||yest ||)

https://github.com/hoang-atr/HA_time
https://doi.org/10.1523/jneurosci.3339-17.2018
https://doi.org/10.3389/fncir.2013.00201
https://doi.org/10.1109/ICASSP.2017.7952315
https://doi.org/10.1109/ICASSP.2017.7952315
https://doi.org/10.1038/ncomms12190


16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17844  | https://doi.org/10.1038/s41598-020-74672-y

www.nature.com/scientificreports/

 26. Berens, P. et al. Community-based benchmarking improves spike rate inference from two-photon calcium imaging data. PLoS 
Comput. Biol. 14, e1006157. https ://doi.org/10.1371/journ al.pcbi.10061 57 (2018).

 27. Richmond, B. J. & Optican, L. M. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex 
II. Information transmission.  J. Neurophysiol. 64, 370–380 (1990).

 28. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation di�erentially involved in motor 
cortical function. Science 278, 1950–1953 (1997).

 29. Stringer, C. & Pachitariu, M. Computational processing of neural recordings from calcium imaging data. Curr. Opin. Neurobiol. 
55, 22–31 (2019).

 30. Peron, S., Chen, T. W. & Svoboda, K. Comprehensive imaging of cortical networks. Curr. Opin. Neurobiol. 32, 115–123 (2015).
 31. Wilt, B. A., Fitzgerald, J. E. & Schnitzer, M. J. Photon shot noise limits on optical detection of neuronal spikes and estimation of 

spike timing. Biophys. J. 104, 51–62 (2013).
 32. Westheimer, G. Visual hyperacuity in Progress in Sensory Physiology, Vol. 1 (eds. Autrum, H., Perl, E.R., Schmidt, R.F. & Ottoson, 

D.) 1–30 (Springer, New York, 1981).
 33. Tada, M., Takeuchi, A., Hashizume, M., Kitamura, K. & Kano, M. A highly sensitive �uorescent indicator dye for calcium imaging 

of neural activity in vitro and in vivo. Eur. J. Neurosci. 39, 1720–1728 (2014).
 34. Takahashi, N., Sasaki, T., Usami, A., Matsuki, N. & Ikegaya, Y. Watching neuronal circuit dynamics through functional multineuron 

calcium imaging (fMCI). Neurosci. Res. 58, 219–225 (2007).
 35. Chen, T.-W. et al. Ultrasensitive �uorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
 36. Victor, J. D. & Purpura, K. P. Metric-space analysis of spike trains: theory, algorithms and application. Network Comput. Neural 

Syst. 8, 127–164 (1997).
 37. Wei, X. & Dragotti, P. L. FRESH-FRI-based single-image super-resolution algorithm. IEEE Trans. Image Process. 25, 3723–3735 

(2016).
 38. Oñativia, J. & Dragotti, P. L. Sparse sampling: �eory, methods and an application in neuroscience. Biol. Cybern. 109, 125–139 

(2015).
 39. Inoue, M. et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. 

Cell 177, 1346-1360.e24 (2019).
 40. Reynolds, S., Abrahamsson, T., Sjöström, P. J., Schultz, S. R. & Dragotti, P. L. CosMIC: A consistent metric for spike inference from 

calcium imaging. Neural Comput. 30, 2726–2756 (2018).
 41. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

Acknowledgements
�is research was conducted under contract with the National Institute of Information and Communications 
Technology and entitled “Analysis of multi-modal brain measurement data and development of its application 
for BMI open innovation” (Grant No.209). HH, KK and KT were supported by the Grants-in-Aid for Scienti�c 
Research on Innovative Areas (17H06313). HH, YI, and KT were partially supported by JST ERATO (JPM-
JER1801, "Brain-AI hybrid").

Author contributions
M. Kawato and K.T. conceived and designed the study. H.H. and M.S. developed the algorithms. S.T., M.H., 
T.I., M. Kano., Y.I., K.K. performed the two-photon recordings. H.H., M.S. and S.S. analyzed the data. H.H., M. 
Kawato and K.T. wrote the manuscript. All authors reviewed the manuscript.

Competing interests 
�e authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-74672 -y.

Correspondence and requests for materials should be addressed to K.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access  �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© �e Author(s) 2020

https://doi.org/10.1371/journal.pcbi.1006157
https://doi.org/10.1038/s41598-020-74672-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improved hyperacuity estimation of spike timing from calcium imaging
	Results
	Hyperacuity algorithm for spike timing estimation. 
	Hyperacuity improvement of HA_time in a simulation. 
	Application of HA_time to the experimental data. 
	Nonlinearity analysis of the experimental data sets. 
	Performance evaluation for experimental data. 
	Performance evaluation for the simulation data. 
	Unsupervised benchmark for experimental and simulation data. 

	Discussion
	Hyperacuity spike-time estimation algorithm combining the generative model and supervised learning approaches. 
	Performance evaluation in comparison with the benchmark algorithms. 

	Methods
	Hyperacuity support vector machine (HA_time). 
	Ca spike model estimation by Bayesian inference. 
	Spike detection by SVM. 
	Hyperacuity spike time estimation. 
	Unsupervised HA_time. 

	Other benchmark algorithms. 
	Experimental data sets. 
	Recording of cerebellar Purkinje cell complex spikes. 
	Recording of hippocampal CA3 neurons. 
	Recording of the primary visual cortex. 

	Simulation data. 
	Performance analysis. 
	Statistical analysis. 
	Hyperacuity Bayesian algorithm. 

	References
	Acknowledgements


