
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

Improved I/O-efficient algorithms for solving graph connectivity, Improved I/O-efficient algorithms for solving graph connectivity,

biconnectivity problems. biconnectivity problems.

Shan Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation

Li, Shan, "Improved I/O-efficient algorithms for solving graph connectivity, biconnectivity problems."

(2007). Electronic Theses and Dissertations. 6994.

https://scholar.uwindsor.ca/etd/6994

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6994&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6994?utm_source=scholar.uwindsor.ca%2Fetd%2F6994&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Im proved I/O -E fficient A lgorithm s for Solving Graph

C onnectiv ity , B icon n ectiv ity Problem s

by

Shan Li

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2007

©2007 Shan Li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35019-5
Our file Notre reference
ISBN: 978-0-494-35019-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Many large-scale applications involve data sets that are too massive to fit into the
main memory. As a result, some of the data sets must be stored in external memory.
Algorithms manipulating these data sets must transfer data between the internal and
external memory using I/O (Input/Output) operations. Consequently, a computational
model, called the external memory model, have thus been proposed for these applications.
The efficiency of an algorithm in the model is measured in terms of the number of 1/O
operations performed.

In this thesis, we present I/O-efficient algorithms for solving the graph connectiv
ity and biconnectivity problems. Previously best-known external-memory algorithms
for the problems are based on simulation of their corresponding Parallel RAM algo
rithms. By contrast, our algorithms are based on depth-first search and Tarjan’s sequential
biconnected-component algorithm. All of our algorithms require 0 (|" |F |/M] scan(|A|) +
|V|) I/Os, where V is the vertex set, E is the edge set and |V| (\E\, respectively) denotes
the cardinality of V (E, respectively) in G, M is the size of the internal memory (main
memory). For the cases in which [|V |/M] = 0(1) (i.e. the vertex set size is a constant
factor larger than the main memory size) and l-E) > DB\V\ (which includes dense graphs
as special cases), where D is the number of disk drives and B is the block size, our exter
nal memory algorithms require only 0 (scan(A)) I/Os, whereas the previously best-known
external-memory algorithms require the less efficient 0(sort(J5)) I/Os. Our algorithms
are also much simpler.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my parents
Who contributed to enlightening the way of my leading

with endless love...

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express my deepest appreciation to all those who have helped me to
complete this research work.

I am greatly indebted to my supervisor Prof. Dr. Yung H. Tsin from the School of
Computer Science, who has taught me how to do research and has given me invaluable
suggestions and stimulating encouragement in all the time of research and writing of this
thesis. This work could not have been completed if it were not for the constant assistance
and the professional guidance provided by Prof. Dr. Yung H. Tsin.

I would like to express my great gratitude to Prof. Dr. Tim Traynor, Department of
Mathematics and Statistics and Prof. Dr. Richard A. Frost, School of Computer Science
for giving me corrections and constructive criticism to improve the quality of the thesis
and for being in the committee, and to Prof. Dr. Xiaobu Yuan for serving as the chair of
the defense.

My colleagues and all the faculty members and staff of the School of Computer Science
have been extremely hospitable in providing their suggestions and their support during
the mammoth research work. In particular, Mr. Aniss Zakaria has friendily supplied me
with technical support and Ms. Mandy Dumouchelle has given me helpful hands in many
day-to-day matters. Many thanks go to Ms. Lihua Duan and Ms. Lin Lan for their help
in the successful completion of this work.

There are a few people who have reviewed the thesis from outside the School of Com
puter Science. Especially, I would like to give my thanks to the staff members of the
Academic Writing Center for proof-reading the thesis.

Furthermore, I acknowledge the financial support of my supervisor,’ Prof. Dr. Yung
H. Tsin, in the form of research assistantship through NSERC, the School of Computer
Science in the form of graduate assistantship, and the Faculty of Graduate Studies and
Research in the form of Tuition Scholarship during the entire period of my study at
University of Windsor.

Finally, I would like to give my special thanks to my parents whose sustaining love
enables me to complete this work.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A b strac t 3

D edication 4

A cknow ledgm ents 5

L ist of F igures 8

List of A lgorithm s 9

1 In tro d u c tio n 10
1.1 M otivation.. 10
1.2 Existing Algorithms... 13
1.3 Contribution... 14
1.4 Organization of T h e s is ... 15

2 B ackground In fo rm ation , 16
2.1 Graph Connectivity... 16

2.1.1 Definitions.. 16
2.1.2 Depth First S e a rc h .. 18
2.1.3 Tarjan’s Sequential Biconnectivity Algorithm 20
2.1.4 The PRAM Biconnected Component A lgorithm 23

2.2 Model of C om pu ta tion .. 27

3 Review of th e C u rren t S ta te of th e A rt 29
3.1 The Existing EM Graph-Connectivity Algorithm... 31

3.1.1 A Description of the A lg o rith m ... 31
3.2 The Existing EM Biconnectivity Algorithm... 33

3.2.1 A Description of the A lg o rith m ... 33
3.3 An Existing EM Depth-first Search A lgorithm .. 35

3.3.1 A Detailed Description of the A lg o rith m ... 36
3.3.2 Correctness P ro o f .. 40

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.3 Time Complexity A nalysis.. 42

4 A n E x ternal-M em ory A lgorithm for G raph C onnectiv ity 44
4.1 A Detailed Description of the A lg o rith m .. 44
4.2 Correctness P ro o f .. 46
4.3 Time C om plexity .. 47

5 A n E x ternal-M em ory A lgorithm for B iconnectiv ity 49
5.1 An EM Algorithm for Detecting Cut-Vertices ..49

5.1.1 Input Data S tru c tu re s .. 49
5.1.2 Computing LO W PO IN T... 50
5.1.3 Correctness Proof ... 55
5.1.4 Time Complexity A nalysis.. 57
5.1.5 Detecting the cu t-v e rtic es .. . ' 58

5.2 An EM Algorithm for Detecting Biconnected C om ponen ts 59
5.2.1 The Description of EM_BCC... 60
5.2.2 Correctness P ro o f.. 63
5.2.3 Time Complexity A nalysis.. 64

6 C om parison of T im e C om plexities 6 6

7 Conclusions 69

V ITA A U C T O R IS 75

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 “The memory hierarchy of a typical uniprocessor system, including regis
ters, level 1 cache, level 2 cache, internal memory, and disks. Below each
memory level is the range of size for this level. Each value of B at the top
of the figure is the size of block switched between adjacent levels of this
hierarchy.” [45] p. 211 .. 11

1.2 Platter of a magnetic disk driver [45] p. 2 1 4 ... 12

2 . 1 An example of cut-vertex (articulation point) v2 ... 17
2.2 After the cut-vertex v2 is removed... 17
2.3 A graph on which a depth-first search is to be performed................................ 19
2.4 A depth-first search tree. The search starts at the vertex b, an arrow

denotes a tree edge leading from parent to child; a dash line denotes a
back-edge... 2 0

2.5 The depth-first tree produced by Tarjan’s algorithm for the graph of Figure
2 . 3 21

2.6 An illustration of the graph G' of the relation R c. Figure (a) presents a
graph G, including a spanning tree T shown in solid lines with the remain
ing nontree edges shown in dashed lines. Figure (b) presents the connected
components of G' that are the biconnected components of the graph G
shown in (a). [23] p. 2 3 1 ... 24

2.7 (a) A spanning tree represented by solid lines and the dashed edges are
nontree edges, (b) The connected components of G' correspond to the
biconnected components of G (a). The relation R'c defined by the three
conditions. Condition 1 : (e4, ei); (e5, e2); Condition 2: (e3 , 6 4); (e4, e5);
Condition 3: (e9 ,e 10). [23] p. 235 ... 26

2.8 External Memory Model [46]p. 1 1 3 ... 27

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Algorithms

1 Depth First s e a r c h ... 19
2 Tarjan’s Sequential Biconnected-Component A lgorithm 22
3 The PRAM Biconnected Component A lgo rithm ... 25
4 The EM_GCC algorithm of Chiang et al... 32
5 The EM_BCC Algorithm of Chiang et al.. 34
6 Routine R ooted-Tree.. 35
7 EM Evaluate_Tree.. 35
8 A lgorithm EM_DFS of Chiang et al.. 38
9 R ou tine Unvisited-vertex: To make an unvisited vertex the current vertex 39
10 R ou tine Compact-array A ... 40
11 A lgorithm E M _ G C .. 45
12 R o u tin e EM _G CC... : 45
13 R ou tine Unvisited-vertex... 45
14 R ou tine Compact-array A .. 46
15 Algorithm LOWPOINT .. 52
16 Encounter an unvisited v e r te x .. 53
17 Compact the array A when In ter Struct is f u l l .. 54
18 Algorithm EM_BCC .. 61
19 R ou tine U nvisited-vertex : Encounter an unvisited v e r te x 62
20 Compact the array A when In ter Struct is f u l l .. 62
21 R o u tin e G enerate-B C C : Generate the vertex set of a biconnected com

ponent .. 63

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation

Data sets in large-scale applications are often too massive to fit into the main memory.
As a result, traditional RAM algorithms are unsuitable for such large applications owing
to the substantial Input/Output cost. This is because in designing a RAM algorithm, one
assumes that memory access and CPU operation have uniform cost. Unfortunately, this
is not the case in large-scale applications. For economical reasons, the memory system
of a modern computer consists of a hierarchal structure with distinct access time for the

different levels. The highest level, which consists of external disks, is the slowest but has
the largest storage size. The lowest level which consists of the registers in the CPU is the
fastest but has the smallest storage size. Figure 1.1 shows the memory architecture. In
the figure, 8 K B is the block transfer size between internal memory and external disks.

For large-scale applications that have to store partial data sets on external disks, com
munication between the faster internal memory and the slower external memory is often
considered to be the major bottleneck of the computation. This is because the internal
memory is many order of magnitude faster than the external disks. Figurel.2 shows the
characteristics of a disk. External disks consist of platters of disks and a read/write head
for locating each platter surface. Each disk stores data sets on concentric circles called
tracks. At any time, the read/write head has to mechanically locate the correct track to
retrieve/transfer data. The location time from one random track to another is often in
the order of 3 to 10 milliseconds, compared to the order of nanosecond (10~ 9 seconds) for
accessing internal memory [45].

Furthermore, there is a huge gap between the growth rate of CPU speed and that of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disk transfer speed. Recently, the gap has been getting larger: developments in technol
ogy, such as parallel computing, have increased the CPU speed at an annual growth of
40 to 60 percent while the disk transfer speed has only been improved by 7 to 10 percent
annually [37]. Consequently, there has been an urgent need to design algorithms that
have minimal I/O costs in large-scale computations.

A theoretical computational model, called the external memory model, had been pro
posed for designing I/O-efficient algorithms (also called external-memory algorithms or
EM algorithms). From the perspective of the design of algorithms, minimizing the I/O
costs is equivalent to exploiting maximal data locality in the main memory. At the early
stage of the development of external memory algorithms, Aggarwal and Jeffrey [2] pro
posed a standard two-level external memory model. It consists of one logical disk and an
internal (main) memory. Later, an improved computational model with multiple logical
disks was introduced, which exploits accessing multiple disks in parallel to maximize data
locality. It is called the Parallel Disk Model (PDM) [46].

In the PDM model, an I/O operation transfers a block of D B data units between
external disks and main memory, or vice versa. At any time, D disks can be accessed in
parallel, and each disk can access B records, which are stored in consecutive locations on

32 B

ns
CPU

in s

32-64 KB 1*4 MB 10 GB
128-256 MB

Figure 1.1: “The memory hierarchy of a typical uniprocessor system, including registers,
level 1 cache, level 2 cache, internal memory, and disks. Below each memory level is the
range of size for this level. Each value of B at the top of the figure is the size of block
switched between adjacent levels of this hierarchy.” [45] p. 211

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the disk. The performance measure for external-memory (EM) algorithms is the number
of Input/Output (I/O) operations performed to transfer data between the two levels
of memory without taking internal computation time into consideration. The following
parameters are frequently used in analyzing the I/O complexity of EM algorithms [46]:

scan(N) = The number of I/O operations needed to read N data records stored on
D disks each with a buffer size B.

sort (a:) = log at The number of I/O operations needed to sort N data records stored
across D disks each with a buffer size B.

In the area of graph algorithms, substantial effort has been put into solving large-
scale graph problems arising in geographic information systems and web modelling where
the data volumes are measured in petabytes (101 5 bytes). For example, data structures
that support external-memory graph algorithms in constructing minimum spanning trees,
breadth-first search, depth-first search, and finding single-source shortest paths are pre
sented in [29]; several new techniques, such as PRAM simulation and time-forward pro
cessing for graph problems, have been developed in [13]; a large number of fundamental
graph problems have been solved efficiently [2, 46, 34, 22, 1, 21], and a number of external-
memory algorithms have been proposed for planar graphs [5, 6 , 7, 8].

Chiang et al. [13] have shown that a PRAM algorithm that runs in time T using N
processors and O(N) space can be simulated in the EM model using 0 (T *sort(Ar)) I/Os.
Many external-memory graph algorithms have thus been derived from the correspond
ing PRAM algorithms. We observed that the simulated PRAM algorithms are limited

magnetic surface
disk ©f disk

Figure 1.2: Platter of a magnetic disk driver [45] p. 214

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by sequential access to the disks, and are usually very complicated and are difficult to
understand and code.

1.2 E xistin g A lgorithm s

Graph connectivity, which is one of the fundamental graph-theoretic properties, measures
the extent to which a graph is connected. In real-life applications, the property represents
the reliability of a telecommunication network or a transportation system. Determining
biconnectivity is one of the graph connectivity problems which is related to our work. It
is a problem that has been extensively studied on different computational models.

The first biconnectivity algorithm was presented by Tarjan to run on the RAM (the
standard sequential computer model). It runs in optimal 0(|R|-|-|£^|) time for a connected
graph G = (V, E) [39]. Later on, a number of biconnectivity algorithms were developed
for the PRAM (the standard parallel computer model). Typically, Tsin and Chin [42] de
signed an optimal algorithm for dense graphs on the CREW (concurrent-read-exclusive-
write) PRAM that runs in 0(log 2 (|E |)) time using 0(\V \2 / log2 (|V” |)) 1 processors; Tarjan
and Vishkin [40] developed an algorithm that takes 0(log(|Vj)) time with 0(\V \ + |E|)
processors on the CRCW (concurrent-read-concurrent-write) PRAM. On the distributed
computer model, a number of algorithms that run in 0 (|R |) time and transmits 0(\E \)
messages of 0(log |C|) length had been proposed [4, 20, 27, 36, 38]. In the fault-tolerance
setting, with the assumption that a breadth-first search or depth-first search spanning tree
is available, Karaata [25] presented a self-stabilizing algorithm that finds all the bicon
nected components in 0 (d) rounds (d is the diameter of the graph) using 0 (|R |A log A)
bits per processor; Devismes [15] improved the bounds to 0(H) moves (H is the height
of the spanning tree) and 0(\V \ log A) bits per processor, and Tsin [41] further improved
the result to 0(dn log A) rounds and 0(|V jlogA) bits per processor without assuming
the existence of any spanning tree. In wireless sensor network, Turau [43] presented an
algorithm that takes 0 (|Vj) time and transmits at most 4m messages.

In the EM model, Chiang et al. presented the first I/O-efficient biconnected component
algorithm. The algorithm is an adaption of the biconnected component PRAM algorithm
of Tarjan et al. [13] based on simulation. The EM algorithm performs 0(m in{sort(E2),
\og(V/M) sort(E)}) I/Os. Chiang et al. also presented an 0(\og(V/M) sort(E')) con

1log denotes log2.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nected component algorithm [13]. This I/O bound was achieved later on by Abello et
al. [1] using a functional approach. Furthermore, they introduced the semi-external model
(|Vj < M < [Al). Vitter observed that several graph problems can be solved optimally
on this model. For example, finding connected component, biconnected component can
be done in 0(scan(A)) I/Os [45]. Subsequently, an I/O complexity, 0 ({E /V) sort(F) •
max{ 1 , log log(| V j D B / 1A j)}), for the EM connected component algorithm was reported
by Munagala et al. [34]. Ulrich Meyer pointed out that the I/O bound of the EM bi
connected component algorithm of Chiang et al. can be improved to 0 ((E /V) sort(U) •
max{l, loglog(|U |A£/|A[)}) using the EM connected component algorithm of Munagala
et al. [33]. A lower bound of 0 (|A |/|U | • sort(|Uj))I/Os for finding connected components,
biconnected components and minimum spanning forests was proved by Munagala and
Ranade [34]. Note that (|A |/|U | • sort(|U|)) = 0(sort(|A |)).

1.3 C ontribution

In this thesis, we design I/O-efficient algorithms for the external-memory model with par
allel disks (PDM [46]). We shall present I/O-efficient algorithms for both the connected
component and biconnected component problems. Since detecting the cut-vertices plays
a key role in determining the biconnected components, we shall first present an EM al
gorithm (called EM_CV) for detecting all the cut-vertices. We then present an algorithm
(called EM_BCC) to generate all the biconnected components based on the cut-vertices.
Our algorithms for solving the biconnectivity problem are adaptations of Tarjan’s sequen
tial algorithm. Since the sequential algorithm is developed based on depth-first search, our
algorithms are therefore based on the EM depth-first search algorithm of Chiang et al. [13].

Our algorithms for biconnectivity are much simpler than the existing best known al
gorithm of Chiang et al. Compared to our algorithm, the algorithm of Chiang et al. is
complicated, owing to the fact that it is an adaptation of the rather complicated PRAM
algorithm of Tarjan et al. Our algorithm only needs to construct a DFS tree in G. By
contrast, the PRAM algorithm uses spanning-tree and Euler-tour techniques to produce
an auxiliary graph G' such that every connected component of G' corresponds to a bi
connected component of G, and vice versa. The biconnected components of G are then
determined by running a PRAM connectivity algorithm on G' (details will be given in
Chapter 3).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In terms of I/O complexity, our algorithms make an improvement over the existing
algorithm for dense graphs under certain conditions. The algorithm of Chiang et al. [13]
performs 0 (so rt(|l/ |2)) I/Os for dense graphs (i.e. \E\ = 0 (\V \2)) while our algorithm
performs 0 {{\\V \/M \) scan(|E|)) I/Os. When \V/M~\ = 0(1) (this includes the semi-
external model as a special case), our algorithm performs 0(scan(|V |2)) I/Os on dense
graphs which is better than 0 (sort(|C |2)).

1.4 O rganization o f T hesis

Some background information related to graph theory and the EM computational model
are described in Chapter 2. A brief review of the literature of EM algorithms and a
description of the EM biconnected component algorithm of Chiang et al. are presented
in Chapter 3. Since our biconnectivity algorithms need a depth-first search tree of the
input graph, a detailed description of the EM DFS algorithm of Chiang et al. [13] is
provided in Chapter 3. Chapter 4 explains the proposed algorithms in detail and presents
a correctness proof and I/O complexity analysis for each of them. Finally, future work is
discussed in the conclusion.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background Information

2.1 G raph C onn ectiv ity

The notion of &-vertex-connectivity and fc-edge-connectivity are introduced to measure
the extent to which a graph is connected. The larger the value of k, the more connected
the graph. In telecommunication systems and transportation networks, these properties
represent the reliability of the network in the presence of vertex or link failures. A graph is
k-vertex-connected (k-edge-connected, respectively) if removing fewer than k vertices
(edges, respectively) would not result in a disconnected graph. A bi-connected graph
is a 2-vertex-connected graph. A bridge-connected graph is a 2-edge-connected
graph.

2.1.1 Definitions

We shall denote a graph with G = (V ,E), where V = {fi, t’2, ..., v\v\} is the vertex set
and E = {ei, e-i,..., e\E\} is the edge set. Each edge e is associated with a pair of vertices
{u, v }. The vertices u and v are called the endpoints of edge e which may be identical.
Edge e is in ciden t to vertex u and v.

D efinition 2 .1 . 1 D irected Graph. A directed graph is a graph in which every edge
(called an arc) is associated with an ordered pair of vertices. We shall use < u ,v > to
represent an ordered pair.

D efinition 2 . 1 . 2 An u n d irec ted g raph is a graph in which every edge is associated
with an unordered pair of vertices. We shall use (u , v) to represent an unordered pair.

D efinition 2.1.3 P ath . A sequence of vertices, v\, v^, . . . , Vk, is a path if and only if
{vi,Vi+\} E E, 1 < i < k. It is called a v\ — Vk path. The path is a circu it if v\ = v^.
The path is sim ple if every Vi is distinct; the path is a cycle if vi, u2, . . . , Vk- 1 is a simple
path and v\ = Vk- The vertices v\ and v% are called the endpoints of this path.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efinition 2.1.4 A graph G = (V,E) is a connected graph if it has a v — u path,
Mv, u e V .

D efinition 2.1.5 B ridge (o r Cut-edge). In a connected graph G — (V,E), a bridge
is an edge e £ E whose removal leads to a disconnected graph.

D efinition 2 . 1 . 6 A rticu la tion P o in t (o r C u t-vertex). In a connected graph G =
(y,E), a vertex v € V is called an articulation point, or cut-vertex, if its removal leads
to a disconnected graph. G is biconnected if it has no cut-vertex.

2 * i <’5

ih
4 V<3

Vi

Figure 2.1: An example of cut-vertex (articulation point) v2.

Figure 2.2: After the cut-vertex v2 is removed.

An articulation point is illustrated in Figure 2.1. Vertex v2 is an articulation point because
its removal results in a graph having two connected components (see Figure 2.2).

D efinition 2.1.7 Subgraph. A graph G' = (V E ') is a subgraph of a graph G = (V, E)
i f V ' C V and E' C E .

D efinition 2.1.8 B iconnected Com ponent. A biconnected component of G, denoted
by Gc = (V c,E c), is a maximal biconnected subgraph ofG.

D efinition 2.1.9 Tree. A graph T = (V,E) is a tree if it is a connected circuit-free
graph.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efinition 2 .1 . 1 0 Spanning Tree. A spanning tree T = (V t , E t) of a graph G =
(V, E) is a subgraph of G such that VF = V. E t Q E and T is a tree. An edge e of G is a
tree edge (w.r.t. T) if e G E t and is a nontree edge (w.r.t. T) if e 6 E — E t-

D efinition 2.1.11 Let u be a vertex lying on the path connecting the root r with a vertex
v in a tree T. Then u is called an ancestor o fv while v is a descendant ofu. I f u ^ v ,
u is called a proper ancestor ofv, while v is a proper descendant ofu. I f u and v
are connected by a tree edge, then u is called the paren t o fv and v is called a child ofu.

2.1.2 D epth First Search

Depth-first Search (DFS) is a powerful technique for traversing a graph G = (V, E). It
generates a spanning tree of G called a depth-first search spanning tree of G [39]
(abbreviated as the DFS tree) which shall be denoted by TDFs in this thesis. The search
starts from an arbitrary vertex of G, denoted as r, which becomes the root of the DFS
tree. The search explores the graph deeper and deeper along unvisited vertices until it
cannot explore any further, it then retreats (or backtracks) to the most recently visited
vertex with an unvisited adjacent vertex and continue exploring the graph from there.
The search will terminate when it backtracks to r. In implementing a depth-first search,
the list of visited vertices that lie on the path connecting the root and the current vertex
(to be defined below) in TDFS is maintained on a stack.

D efinition 2.1.12 During a depth-first search, the current vertex is-the most recently
visited vertex that remains active.

D efinition 2.1.13 An edge is a tree edge if it belongs to T d f s and is a back edge
otherwise.

L em m a 2.1.1 Every back-edge connects a vertex with a proper ancestor or a proper de
scendant of that vertex.

Proof: See [39]. □

Algorithm 1 describes an implementation of depth-first search using a stack. Figure
2.4 shows a depth-first tree of the graph shown in Figure 2.3.

In Figure 2.4, the depth-first search starts from vertex b and traverses all the vertices
in G in the order: a, / , d, c, h, g, i, e.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 Depth First search
In p u t: the adjacency lists A of a connected graph G — (V, E).
O u tp u t: A depth-first search tree of G with vertices being assigned their DFS number
(the ranks of the vertices in the order they are visited by the depth-first search).
In itialization : count <— 1; r «— v, (u is arbitrary}
call DFS (r);

R o u tin e DFS(v);
make v as ’’visited”; dfs(v) «— count; count *— count + 1 ;
for all vertex w in the adjacency list of v do

if w is not visited th e n
call DF S (w);

end if
end for

e h

a

J

Figure 2.3: A graph on which a depth-first search is to be performed.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d e h

a

h: root

/

Figure 2.4: A depth-first search tree. The search starts at the vertex b, an arrow denotes
a tree edge leading from parent to child; a dash line denotes a back-edge.

2.1.3 Tarjan’s Sequential B iconnectivity Algorithm

Tarjan [39] presented a linear-time sequential algorithm for determining biconnected com
ponents based on cut-vertices. The algorithm defines and computes the LOWPOINT
values to detect cut-vertices, which has become a crucial technique for solving the bicon-
necitivty problem. We give the following definition used in this algorithm for an arbitraxy
vertex w of a given graph G = (V , E).

D efinition 2.1.14 \fw € V,

• low(w) = min({d/s(u;)} U {d/s(u)|{s, u} G B, for some descendants ofw}), called
the LOWPOINT value of vertex w. [39]

• dfs(w): called the DFS number of vertex w, which is the rank ofw in the ordering
the vertices are visited by the depth-first search.

• B: the set of all back-edges.

• C(w): the set of all children of vertex w.

Lem m a 2.1.2 low(w) = min({d/s(w)} U {low(w/)\w' is a child of w}U
{dfs(u)\(w,u)is a back-edge}),Vw G V.

Proof: See [39]. □

Lem m a 2.1.3 A vertex v is a cut-vertex of G if and only if v ^ r and 3w G C(v) such
that loW(w) > dfs(v) or v — r and v has two or more children.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: See [39]. □

Figure 2.5 shows a depth-first search tree of the graph given in Figure 2.3. Using
Tarjan’s algorithm, the cut-vertices are identified to be a, b and c. The biconnected com
ponents are subgraphs induced by the vertex sets {a, /} , {a, d, b}, {c, h, g, i} and {c, b, e}.
Note that the intersection of each biconnected component and the D F S tree is a subtree
of the D F S tree whose root is a cut-vertex.

r = b

back edge

Figure 2.5: The depth-first tree produced by Tarjan’s algorithm for the graph of Figure
2.3

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A n Overview of T a rjan ’s sequential algorithm :

A lgorithm 2 Tarjan’s Sequential Biconnected-Component Algorithm
1 : Inpu t: The adjacency lists of an undirected graph G = (V, E).
2: O u tp u t: The biconnected components of G.
3: Idea: Build a depth-first search tree T of G and compute the LOWPOINT value

of each vertex; when a cut-vertex is found, output the subtree of T rooted at that
cut-vertex.

4: In itialization : count <— 1; r <— v; {v is arbitrary}
5: T <— 0; {T stores the edges of the D F S tree}
6: caRDFS(r ,±) ;
7:

R outine DFS(v , u);
8: make v as “visited” ; dfs(v) <— count; count <— count + 1; loW(v) <— dfs{v);
9: for all vertex w in the adjacency list of v do

10: if edge (v, w) has not been added to T th en
11: T <- T U {0 ,w)} ;
12: end if
13: if w is not visited th en
14: call DFS(w, v);
15: if (low[w) > dfs(v)) th en
16: T' U {(v, ?i,')} form the spanning tree of a biconnected component, where T' is

the subtree of T rooted at w;
17: Output and delete T' U {(w, w)} from T;
18: else
19: low(v) <— mm{low(vy,low(w)};
20: end if
21: else
2 2 : if (w u) th en
23: low(v) <— min{/ow(^);dfs(w)};
24: end if
25: end if
26: end for

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.4 The PR A M Biconnected Component A lgorithm

Since all of the existing EM biconnected component algorithms simulate the correspond
ing PRAM algorithm, we shall give a brief description of the PRAM algorithm, which is
due to Tarjan and Vishkin [23, 40]. The algorithm is designed for the CRCW (concurrent-
read-concurrent-write) PRAM model and takes 0(log(|Vj)) time using 0{\V\ + |E |) pro
cessors. Before discussing the PRAM algorithm,we shall give some definitions related to
the algorithm.

D efinition 2.1.15 E u lerian G raph . A graph G = (V,E) is an Eulerian graph if it
contains a circuit that traverses every edge of G exactly once. The circuit is an Euler
circu it or E uler tou r of G.

D efinition 2.1.16 T ransitive C losure. The tran sitive closure of a directed graph
G = (V, E) is the graph G* = (V, E*), where E* consists of all ordered pairs < i , j > such
that either i = j or there exists a directed path from i to j .

D efinition 2.1.17 P reo rd e r N um ber. The preorder traversal of a tree T rooted at
r is a sequence of vertices starting with the root r, following by the preorder traversals of
the subtrees of r from left to right. The preorder number, pre(v), of vertex v is the
rank of v in the preorder traversal o fT.

Given an undirected connected graph G = (V, E) and a spanning tree T of G, each
nontree edge determines a fu ndam enta l cycle which consists of the edge and the path in
T connecting the two end-points of the edge. Let R c be a relation in the set E defined by
eRcg if and only if e and g belong to a common fundamental cycle. Then the tran sitive
closure o f R c, denoted by R*. partitions the edge set E of G into a collection of edge
sets each of which induces a biconnected component of G. Therefore, the biconnected
components of G can be determined as follows. Let G' = (V', E r), where V 1 = E and
(e, g) G E' if and only if eRcg. Then the connected components of G1 correspond to the
equivalence classes of R* which uniquely identify the biconnected components of G. The
graph G' of the relation R c is depicted in Figure 2.6. In (a), The set of fundamental
cycles consists of C\ = e\, e3 , e ,̂ C2 = e2, e4, e5 and C-j = eg, eg, eio- The graph G' of the
relation R c is shown in (b). For example, there is an edge between e4 and e2 because
both e2 and e4 belong to the fundamental cycle C2. The connected components of G' are
{ei, e2, e3, e4 , e5}, {e8 ,e 9 ,e i0}, {eg} and {e7}, which define the biconnected components
of G.

Since |i?c| = 6(\V\2) is too time-consuming to compute. Tarjan and Vishkin defined
a smaller relation R'c which has the size 0(\E\) instead of (|V |2) and proved that the
transitive closure of R'c is the same as that of R c. In their PRAM algorithm, each vertex

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)

Figure 2.6: An illustration of the graph G' of the relation Rc. Figure (a) presents a graph
G, including a spanning tree T shown in solid lines with the remaining nontree edges
shown in dashed lines. Figure (b) presents the connected components of G' that are the
biconnected components of the graph G shown in (a). [23] p. 231

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is identified by its preorder number. For any two edges e and g, eR'cg if and only if one of
the following conditions holds (the parent of a vertex u is denoted by p(u) and the root
of T is denoted by r) : [23]

1. e = (u,p(u)) and g = (u,v) £ G — T and v < u.

2. e = (u,p(u)) and g — (v,p(v)) and (u,v) € G — T such that u and v are not related
(having no ancestral relationship).

3. e = (u,p(u)), g = (v,p(v)) such that p(u) = v,v ^ r, and some nontree edge of G
joins a descendant of u to a non-descendant of v.

The PRAM algorithm computes R!c instead of Rc, and for each v € V. let low(v)
denote the smallest vertex that is either a descendant of v or adjacent to a descendant
of v by a nontree edge. Similarly, highly) denotes the largest vertex that is either a
descendant of v or adjacent to a descendant of v by a nontree edge. The algorithm is
described below.

A lgorithm 3 The PRAM Biconnected Component Algorithm
1 : Inpu t: A connected undirected graph G.
2 : O u tpu t: An array C such that C(e) = C(g) if and only if e and g are in the same

biconnected component.
3: Construct a spanning tree T (not necessarily a D F S tree) of the input graph G.
4: Root T at an arbitrary vertex, and apply the Euler-tour technique to assign to each

vertex its preorder number.
5: For each vertex v, compute two values low(v) and high(v).
6 : Test conditions of R!c using the low. high values and build the auxiliary graph G'.
7: Find the connected components of Q . These connected components give rise to the

biconnected components of G and are identified by an array C.

An illustration of the algorithm is given in Figure 2.7.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.7: (a) A spanning tree represented by solid lines and the dashed edges are nontree
edges, (b) The connected components of G' correspond to the biconnected components
of G (a). The relation R'c defined by the three conditions. Condition 1: (6 4 , ei); (e5 ,e 2);
Condition 2 : (e3, e4); (e4, e5); Condition 3: (e9 ,e i0). [23] p. 235

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 M odel o f C om putation

Since retrieving data from the external disks requires a substantial amount of access time,
a block, instead of a datum, is transferred between the external disks and the main mem
ory. To simulate the behavior of I/O operations, Aggarwal and Jeffrey [2] proposed a
standard two-level I/O system with one logical disk.

The External memory model we shall use is the Parallel Disk M odel (PDM) [46]
(see Figure 2.8.)

C P T

D i - k 1 D i^ k i • • * D i< kI"
Figure 2.8: External Memory Model [46]p. 113

In this model, the external memory consists of D disks each of which is associated
with a read/write head. During each I / O operation, the D disks can simultaneously
transfer a block of B contiguous data items. Therefore, the total number of data items
transferred in each I/O is DB. The following parameters are associated with the PDM:

• N = input size (in units of data items),

• M = internal memory size (in units of data items),

• B = block transfer size (in units of data items),

• D = number of independent disk drives.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The lengths of the data items are all bounded by the same constant. The input data
are stored in the external memory because they are too large to fit into the main mem
ory. In general, M < N and 1 < D B < ^ • However, for graph-theoretic problems,
let G = (V ,E) be the input graph, it is possible that \V\ < M < \E\. In which case,
the model is called sem i-ex terna l m e m o ry m odel or sem i-ex terna l m odel for short.

Since data items are transferred in blocks of B data items, it is therefore convenient
to use the following parameters:

The input data are initially striped across the D disks in units of blocks. Specifically,
the first block of B data items are stored on the first disk, the second block of B data
items are stored on the second disk, . . . , the Dth. block of B data items are stored on the
D th disk, the (D + l) th block of B data items are stored on the first disk, the (D + 2)th
block of B data items are stored on the second disk, and so on. In this way, an input of
N data items can be read or written with 0 (N /D B) — O in jD) I/Os.

The performance measure is expressed in terms of I / O complexity. The I/O com
plexity of an EM algorithm is the total number of I/O operations it performs.

Sorting and scanning a sequence of consecutive data items are two primitive opera
tions that are frequently used in external-memory algorithms. The I/O complexity for
scanning N consecutive data items striped across the disks is:

scan(IV) = ^

The I/O complexity for sorting N consecutive data items striped across the disks is:

sort(IV) = ^ lo g M § [35]

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Review of the Current State of the
Art

In this chapter, we review works related to EM graph algorithms done in the last decade.
We shall call the sequential algorithms, which were described in the previous chapter,
internal algorithms as opposed to external algorithms.

The first publication on EM graph algorithms was due to Ullman and Yannakakis [44],
in which an external-memory transitive closure algorithm on a directed graph was pre
sented. The algorithm is based on depth-first search traversal and topological sort. It
requires 0(dfs(\V\, |£?|) + scan(\V\2 ̂ \E \ /M)) I/Os, where 0(dfs(\V\, l-EI) is the number
of I/Os performed by the depth-first search algorithm. For the semi-external model (i.e.
V < M < E), Ullman and Yannakakis proposed an EM depth-first search algorithm that
performs 0(scan(|.E|) + |V|) I/O operations.

Chiang et al. [13] presented a number of EM graph algorithms. The algorithms rely
heavily on external sorting. As a result, The asymptotic I/O bounds of their algorithms
include the parameter sort(x) as a factor.

Abello et al. [1] developed a functional approach for solving graph problems on the
external-memory model. They also showed that on the semi-external model, their ap
proach could solve the connected component problem in 0(scan(|.E|) logM/B C(G)) I/O
operations, where C(G) is the number of connected components in G.

A substantial amount of research had been devoted to the development of EM data
structures. Buchsbaum et. al. [9] presented an EM data structure for developing an op-

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timal EM breadth-first search. Subsequently, an EM breadth-first search algorithm for
undirected graphs with bounded degree was presented by Meyer [32]. Later, Kumar and
Schwabe [29] designed the EM binary heap data structure and tournament trees; as part
of the result, they presented improved graph algorithms with amortized performance, for
constructing a minimum spanning tree, breadth-first search and depth-first search, and
single-source shortest paths.

Munagala and Ranade [34] presented improved techniques for solving the connectiv
ity problem and undirected BFS problem. Arge [5] extended the technique to compute
minimum spanning forest. In Chapter 1, we mentioned EM algorithms for solving the
biconnectivity problem. These algorithms are not depth-first search based and hence do
not use EM depth-first search although a large number of 1/O-efRcient depth-first search
algorithms had been developed.

Chiang et al. [13] made a major contribution to the field by showing that parallel
algorithms for the PRAM can be simulated in the external model. Specifically, In each
step of the simulation, input data are sorted and divided into independent sets by the
indices of the processors on which they are required for computations of this step. These
data sets are then read into the main memory by a scan operation. After each simulation
step, the results are written back to the disks. The results are sorted again for the next
simulation step. Each simulation step needs 0(sort(AT)) I/Os. Therefore, if a PRAM al
gorithm runs in time T with N processors, the simulation will require 0(T -sort (AT)) I/Os.

Vitter [45] pointed out that to be simulated on the EM model, a parallel algorithm
must have a time complexity of 0((log N)c) (for some small constant c) when N processors
are available.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 T he E x istin g EM G raph-C onnectiv ity A lgorithm

3.1.1 A D escription of the Algorithm

Chiang et al. [13] adapted the parallel connected component algorithm of Chin et al [14] to
construct an EM connected component algorithm (or GCC). The input graph G — (V, E)
is represented by the adjacency lists of the vertices stored in a 2-dimensional array. The
adjacency lists are stored on the external disks.

Each vertex belongs to exactly one connected component. The array D identifies, for
each vertex, the connected component containing that vertex. Consequently, D{i) = D(j)
if and only if vertices i and j belong to the same connected component.

Let V = {1,2,3,..., |Vj}. Chiang et al. use a 0(1) number of sorts to sort the edges of
G and a list ranking method to reduce the number of vertices during the following vertex
reduction step:

The idea is to find, in each iteration, sets of vertices such that the vertices in each set
belong to the same connected component. This is accomplished as follows: in each set,
a minimal-numbered vertex is selected as the representative of the set, called the super
vertex. All edges in each set are compressed and all vertices in the same set are merged
into the super-vertex. As a result, the set is reduced to a super-vertex. The process is
repeated on the reduced graph until the reduced graph is an edgeless graph. Each single
vertex of the edgeless graph represents a connected component of G. A formal description
of EM-GCC algorithm is given below:

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4 The EM_GCC algorithm of Chiang et al.
1: Initialization: Vi G V, D(i) <— i;
2: repeat
3: Vi G V, C(i) <- min{ j \j € Adj[i]};
4: for all i G V do
5: if C(i) = N U LL then
6: C(i) = i
7: end if
8: end for
9: Label each vertex i with “isolated”if and only if C(i) = i; {vertex i is isolated}

10: Vi G V, do D(i) «- C(i);
11: Apply the list ranking algorithm to do Vi G V, C(i) <— C(C(i))\
12: Vi G V, D(i) = min{C'(i), D(C(i))};
13: Vi G V, do D{i) <- £>((£>(*));
14: Replace each edge (i, j) in E by an edge (D(i), D(j)), where D(k) is the super-vertex

of the connected component vertex to which k belongs;
15: Remove parallel edges and self-loops and vertices labelled with “isolated”
16: until |V| < M

E xplanation:
D: An array of length |V|. D(i) specifies the super-vertex into which vertex i is

merged.
C: An array of length |V|. C(i) specifies the smallest-numbered vertex to which vertex

i is adjacent.
On Line 1: Every vertex is a super-vertex initially. This step takes scan(|Vj) I/Os.
On Line 3: For every vertex i, the smallest-numbered vertex among all the adjacent

vertices is selected and assigned to C(i). In doing so, the adjacency list of i, Adj[i], has
to be read into the main memory. Chiang et al. showed that this step can be done with
0(sort(E)) I/Os.

On Lines 4-9: The isolated vertices are eliminated. Each of these isolated vertices is
a super-vertex corresponding to a connected component of G.

On Lines 10-13: Path compression is performed to merge the vertices into super
vertices based on the list-ranking technique. Chiang et al. [13] presented a list ranking
algorithm which runs on a jV-node link list in 0(sort(vV)) I/Os.

On Lines 14-15: The merged vertices are removed after all information about their
adjacent vertices are transferred to the super-vertices. As a result, the size of the graph
G is reduced before the next iteration begins. This step requires a constant number of
sorts and scans on the edges.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The total number of I/Os performed in each iteration is sort (| £71). During each itera
tion, a vertex reduction step is applied to reduce the number of vertices of G to at most
\V/M] vertices. When the number of remaining vertices is less than or equal to M during
the above reduction step, the reduced graph can fit into the main memory and the prob
lem can be solved by the internal GCC algorithm. Therefore, log(|~V/M]) iterations are
sufficient. Chiang et al. showed that Algorithm EM_GCC performs 0(log(V/M) sort(E))
I/O operations.

3.2 T he E xistin g EM B icon n ectiv ity A lgorithm

3.2.1 A D escription of the Algorithm

As was mentioned in Chapter 2, the existing EM Biconnectivity algorithm (or EM_BCC)
simulates the PRAM algorithm of Tarjan and Vishkin. Recall that in explaining the
PRAM BCC algorithm in Chapter 2, we mentioned that the central idea of the EM BCC
algorithm is to transform a given graph G into a graph G' such that the connected com
ponents of G' correspond to the biconnected components of G. Each vertex of G' is an
edge of G. The edge (el, e2) exists in G' if and only if el and e2 belong to the same cycle
in G (Section 2.1.4).

The simulation involves the following phases: firstly, find an arbitrary spanning tree
using Algorithm EM_GCC which can be done with (log(|V'|/M)(scan(|£'|)) I/Os; secondly,
use the Euler-tour technique and list ranking to compute the preorder number of each
vertex, following by a constant number of sorts and scans on the edges to check if the
conditions for R'c described in 2.1.4 are satisfied. Thirdly, construct G' and then apply
Algorithm EM_GCC to it to determine its connected components. Lastly, construct the
biconnected components of G from the connected components of G'. Chiang et al. [13]
showed that Algorithm EMJ3CC performs m in(log(|E |/M)(scan(|E |)),sort(|V |2)) I/Os.
An overview of the algorithm is given below:

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5 The EM_BCC Algorithm of Chiang et al.
1: Run Algorithm EM G enerate_SpanningT ree on a connected graph G — (V ,E)

to construct an arbitrary spanning tree of G, denoted as T = (V ,E t)• Algorithm
Generate_SpanningTree is a slight modification of Algorithm EM_GCC.

2: Find an Eulerian circuit of T' = (V, E r). where T' is produced from T by duplicating
every edge of the latter.

3: Use Routine R oot-T ree to convert T' into a rooted tree, T(r), with vertex r (r is
arbitrary) being the root.

4: Run Routine EM Evaluate_Tree on the tree T (r) to compute low(i) and high(i),
for each vertex i.

5: Test the conditions of R'c using the values low(i) and high(i) to label the edges of T.
Then, construct an auxiliary graph G'.

6: Apply Algorithm EM _GCC to G' to determine its connected components.

Explanation:
On Line 1: In Algorithm EM_GCC, the C(i) pointers induce a collection of trees.

When the super-vertices are merged into larger super-vertices, the trees are also merged
into larger trees. When execution of Algorithm EM.GCC terminates, the collection of
trees are also merged into a spanning tree of G.

On Line 2: Let the spanning tree T of G generated on Line 1 be represented by
the adjacency lists AdjT. An Eulerian circuit of T' — (V, E') can be determined by
computing the successor function s. Specifically, let Adjriv) = < u0, u-j,..., u<i-i >,
where d is the degree of vertex v. The successor function s is defined as: s(< u-i, v >) ~<

G ^(i+l) mod d -A 0 S: f d 1.
On Line 3: A rooted tree T (r) with root r is constructed by applying the Euler-tour

technique on T'. Routine Rooted-Tree (presented below) determines the parent of each
vertex r) in T(r).

On Line 4, In the rooted tree T(r), each vertex is identified by its preorder number
defined in Chapter 2. Routine EM Eavluate_Tree is presented below.

On Line 5: A list L of edges is created to determine the graph G' as follows [23]:
By condition 1 of R'c, for each edge g = (u,v) E G — T such that v < u, put the pair

(e, g) in L, where e = (u,p(u)).
By condition 2 of R'c, for each edge (u,v) E G — T such that v + size(v) < u (size(v)

is the number of vertices in the subtree rooted at v), put the pair (e, g) in L, where
e = (u,p(u)) and g = (v,p(v)).

By condition 3 of R'c, for each edge e = (u,p(u)),p(u) = v ,v ^ r, put the pair (e, g)
into L if low(u) < v or high(u) > v + size(v), where g = (v,p(v)).

On Line 6: The connected components of G' are determined after it is constructed.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6 Routine Rooted-Tree
1: Let r be an arbitrary vertex (the root);
2: s(< u, r >) 4— 0, where vertex u is the last vertex of Adjrir);
3: Assign a weight of 1 to each arc < u, v >;
4: Apply the EM list ranking algorithm on the list defined by s;
5: if V < u, v >, (rank(< u, v >)) < (rank(< v, u >)) then
6: u = parent(v)
7: else
8: v = parent(u)
9: end if

Explanation:
On Line 4: The list L defined by .s is a collection of arcs < r, u\ >, < Ui, u2

u\v\,r > such that each arc < u,;, ui+1 >, 1 < i < |V|, except of the last one (the tail),
stores a pointer next to its successor in L. The list ranking problem is to compute the
distance from the head (the first element) of L to each arc < Ui,Ui+\ >, denoted by
rank(< Ui,ui+1 >).

Algorithm 7 EM Evaluate_Tree
1: {Compute the preorder number of each vertex v}
2: W (^ r) € V,

assign the weight w(< parent(v),v >) = 1 and w(< v,parent(v) >) = 0;
3: Apply the EM list ranking algorithm on the list defined by s;
4: Vu t£ r,E V, pre{u) <— rank(< parent{u),u >); pre{r) <— 0;
5: {Compute the low values of each vertex}
6: Vu € V, w(v) «— min({u} U {u\(v,u) is a nontree edge})
7: Vu € V, low(v) <— min{w;(u)|u is in the subtree rooted at u};
8: {Compute the high values of each vertex}
9: Vu € V, w(v) <— max({u} U {u|(u,«)is a nontree edge});

10: Vw € V, high(v) <— max{w(u)|u is in the subtree rooted at u}

T heorem 3.2.1 Given a graph G = (V,E), the connected components, biconnected com
ponents of G can be computed with min{log(V/M)(scan(E)),sort(V2)} I/Os.

Proof: See [13]. □

3.3 A n E x istin g EM D epth-first Search A lgorithm

The original 0 (V + E)-time depth-first-search algorithm of Tarjan [39], is meant for the
sequential RAM. As a result, it is not 1/O-efficient.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [13], Chiang et al. presented an EM depth-first search algorithm for directed graph,
henceforth called EM_DFS, that requires 0((1 + V/M) scan(E) + U) I/Os. Unfortunately,
as the description, the correctness proof, and the time complexity analysis of the algo
rithm they give are extremely terse, we shall first provide a detailed description of the
algorithm in this chapter.

Since our objective is to develop I/O efficient algorithms for undirected graphs, we shall
thus present our detailed explanation of Algorithm EM DFS in the context of undirected
graphs. Note that every undirected graph can be viewed as a directed graph satisfying
the condition: “there is a directed edge from vertex i to vertex j if and only if there is a
directed edge from vertex j to vertex

Lem m a 3.3.1 The EM^DFS algorithm of Chiang et.al. can be executed on an undirected
graph.

P roof: Immediate from the aforementioned condition. □

3.3.1 A D etailed D escription of the Algorithm

The algorithm of Chiang et al. takes three arrays that are stored on external disks as
input. The arrays represent the input graph G = (V,E). One array A with a size of
|i£| consists of the adjacency lists of the graph. The other two arrays, start and stop,
each with size |U| mark the beginning and the end, respectively, of the adjacency list
of each vertex in array A. Specifically, for each vertex i, { A [)] ISf art [i] < j < Stop{i}\
consists of all the vertices adjacent to vertex i in G. Without loss of generality, we assume
V = {1,2,3,..., |U|}

To execute EM_DFS, the main memory is divided into two parts. One part is the input
buffer consisting of a block of D B data units. It is used to transfer data between the
external memory and the main memory. The other part is used to maintain an internal
search structure and to maintain or keep data for booking purposes. For instance, the
offset variables for calculating the location of the block of D B data units to be read into
the main memory are kept in this part.

The internal search structure is a data structure (such as a hash table or a balanced
binary search tree) which is used to hold vertices that have been visited by the search.
Its purpose is to avoid performing the expensive I/O operation when an edge connecting

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the current vertex of the search with an already visited vertex is being explored.

The algorithm maintains a stack in the external memory, called the DFS stack, to store
the vertices on the path that connects the root with the current vertex of the search. Ini
tially, the stack is empty. Suppose the depth-first search starts at a vertex, say r. Then
vertex r becomes the current vertex of the search. It is then inserted into the internal
search structure. A section (a block of DB vertices) of the adjacency list of vertex r
starting with A[start[r}\ is then read into the input buffer inside the main memory. Let
A[start[r]] = v. The internal search structure is then searched for v. Since v is clearly
unvisited, it cannot be in the search structure. Vertex v therefore becomes the current
vertex. So, start[r) is updated to start[r\ + 1 and vertex r is pushed onto the DFS stack.
Note that the updated start[r] points at the next vertex in the adjacency list of r to
be examined when the search backtracks to vertex r in a later stage. Vertex v is then
inserted into the internal search structure. The vertex is then processed in a way same
as that for vertex r described above.

In general, let vertex v be the current vertex of the depth-first search and a section of
the adjacency list of vertex v starting from A[start[v]] has just been read into the main
memory. Let A [start [u]] = u. The internal search structure is then searched for the vertex
u. If u is found in the search structure, then it is a visited vertex. So, the next vertex,
A[start[v] + 1], in the adjacency list is examined. If the vertex is again found in the search
structure, then the next vertex in the adjacency list is examined. This is repeated until
either an unvisited vertex, u, in the adjacency list is found or the section of adjacency list
of v kept in the input buffer is completely examined. In the former case, the vertex u will
become the current vertex. So start[v] is updated so that A[start[v\ — 1] = u, and vertex
v is pushed onto the DFS stack while vertex u is inserted into the search structure. In the
latter case, the next section of the adjacency list of vertex v is read into the input buffer
and the aforementioned process is repeated. If there is no next section of the adjacency
list of v that has not been examined, then the depth-first search must backtrack to the
parent vertex of vertex v which is the top element on the DFS stack. Therefore, the stack
is popped and the element popped out becomes the current vertex of the depth-first search.

Since M < \V\. the internal search structure may overflow. When that happens, The
array A is scanned, cleaned up and compacted as follows: for each vertex v, all those ver
tices in the adjacency list of v that appear in the internal search structure are removed.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These vertices represent edges tha t connect vertex v with visited vertices. Since these

edges will be ignored when they are being examined in a latter stage of the search, they

can thus be discarded at this point of time. The array A is then compacted so tha t all

the (unvisited) vertices remain in the list appear in a block of consecutive locations in the

external memory starting from the location ^4[1]. Furthermore, all the vertices belonging

to the same adjacency list are stored in a block of consecutive locations whose beginning
and end entries are marked by the updated start and stop pointers. After the array A
is cleaned up, the internal search structure is then emptied and the depth-first search re

sumes. Note tha t overflow can happen at the internal search structure at most |"|K|/M]

times. This is because every vertex can be inserted into the internal search structure

at most once and the internal search structure can accommodate O(M) vertices. The

internal search structure is needed until the array A is reduced to such a size tha t it could

fit into the main memory.

The following is a formal description of Algorithm EM_DFS.

A lgorithm 8 A lgorithm EM-DFS of Chiang et al._________________________________
1: Input: The arrays A[1 :: IE1)], start[1 :: \V\] and stop[1 :: |V|] representing a graph
g = iv, e).

2: Output: A depth-first search spanning tree of the graph G.
3: Initialization:
4: S «— 0 ; {S' is the DFS stack}
5: Push(£, 1); { vertex 1 is the root of the DFS spanning tree }
6: InterStruct <— 0; { InterStruct is the internal search structure}
7: Store(InterStruct, 1);
8: w hile not empty (S) do
9: % <— Pop(S); { i is the current vertex }

10: read (start[i\\stop[i\)\
11: w hile (start[i] < stop[i]) do
12: w <— A[start[i]j; { get next vertex ready }
13: start[i] <— start[i] + 1; { update the start[i] pointer in the main memory}
14: if (w InterStruct) then
15: call Routine Unvisited-vertex;
16: end if
17: end w hile
18: end w hile

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 9 Routine Unvisited-vertex: To make an unvisited vertex the current vertex
1: (Insert w into the internal search structure}
2: if (InterStruct is full) th en
3: call R ou tine Compact-array to clean up;
4: end if
5: Store(InterStruct,w)]
6: vead(start[w], stop[m]);
7: read a block of A starting from A [start [w]];

{w becomes the current vertex }
8; Push(5, i)\ write(sfart[i]); (update start[i}}
9: i w;

Explanation:
On Lines 1 to 3, if an overflow occurs at the internal search structure, then the Routine

Compact-array is called to clean up the internal search structure and to compact the array
A by removing all the visited vertices.

On Line 5, insert vertex w into the internal search structure to indicate that it has
become a visited vertex.

On Lines 6 and 7, a segment of the adjacency list of vertex w is read into the main
memory.

On Line 8, the current vertex i is pushed onto the DFS stack and its start pointer is
adjusted accordingly.

On Line 9, vertex w becomes the current vertex of the depth-first search.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R o u tin e C o m pact-array A: when InterStruct is full, for each vertex i, A[start[i]..stop[i}]
is scanned and all the visited vertices in it are deleted. The array A is compacted and
the arrays start and stop are updated accordingly.

A lgorithm 10 R ou tine Compact-array A
1: for i from 1 to \V\ do
2: Determine the set B,t = {A[j]\(start[i\ < j < stop[i]) A (A[j] E InterStruct)}-,
3: Remove the vertices in R from A[start[i\..stop[i]\;
4: Compact the array A to make the remaining unvisited vertices consecutive;
5: Update start[i] and stop[i], accordingly;
6: endfor
7: InterStruct <— 0.

E xplanation:
On Lines 2 and 3, the set of visited vertices in the current adjacency list of vertex i,

Bi, is determined and the vertices are removed.
Lines 4 and 5 are self-explanatory.
On Line 7, the internal search structure is emptied.

3.3.2 Correctness P roof

When a vertex is examined for the first time during the depth-first search, we must mark
the vertex as visited. To avoid using the expensive and slow I/O operation, we shall do the
marking in the internal memory. The internal search structure is used for this purpose:
whenever a vertex is first visited, it is inserted into the internal search structure. When it
is encountered in a later stage, The internal search structured is searched and its presence
in the structure indicates that it is a visited vertex. Since a clean up is performed to
the internal search structure whenever an overflow occurs, a visited vertex will no longer
have an entry in the search structure after the clean up. As a result, when the vertex is
encountered again in a later stage, it could be mistaken as an unvisited vertex as it does
not appear in the internal search structure. Fortunately, owing to the fact the the array
A is also compacted whenever an overflow occurs at the search structure, once a vertex
is removed from the search structure, it will never be examined again from another vertex.

The correctness proof of Algorithm EM_DFS given in [13] is extremely brief. We shall
thus give a detailed proof here as the correctness proofs of the algorithms presented in
the sequel rely heavily on the correctness of Algorithm EM_DFS.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lem m a 3.3.2 Let i be the next vertex in the adjacency list of the current vertex that
is being examined. Vertex i is unvisited if and only if it does not appear in the internal
search structure.

P roof: If i is unvisited, then it has never been inserted into the search structure, there
fore it will not appear in the search structure. On the other hand, it i is visited, then
it was inserted into the search structure when it was first examined. Therefore, if no
overflow had ever occurred at the search structure, then vertex i will remain in the search

structure. Otherwise, when the overflows occurred at the search structure, it would have
been removed from all the adjacency lists. Therefore, in the later case, vertex i will never
be encountered in the later stage of the search; in the former case, vertex i must become
visited after the most recent overflow. Hence, it must remain in the,search structure.
□

In Algorithm EM_DFS, vertex i always represents the current vertex while vertex w
always represents the vertex in the adjacency list of i that is being examined. The current
vertex is shifted from i to w if and only if the Routine Unvisited-vertex is invoked on Line
15. This happens if and only if vertex w is an unvisited vertex when it is being examined.
We shall show that the edge set E T = {(i, w) £ A j Routine Unvisited-vertex is invoked on
Line 15} induces a spanning tree of G.

T heorem 3.3.1 Algorithm EM-DFS constructs a depth-first search spanning tree for the
given connected graph G = (V,E).

P roof: (By induction on the number of vertices in G)

(Induction basis) Suppose G has only one vertex.
Obviously, Algorithm EM_DFS terminates after the depth-first search visited the ver

tex. The lemma clearly holds.

(Induction hypothesis) Suppose the lemma holds for G having less than N vertices.

(Induction step) Suppose G has N(> 1) vertices. Since Algorithm EM_DFS begins its
execution from vertex 1, we shall consider the graph G' = (V — {1 } ,E — {e £ E\(3w £
V)e = (1, u;)}). Note that G' is the graph resulting from G after vertex 1 and all its inci
dent edges are deleted. Let Gi, 1 < i < lo be the connected components of G'. Then there

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are less than N vertices in each G ,. By the induction hypothesis, Algorithm EMJDFS
constructs a depth-first search spanning tree for every G,;.

Let Vi, 1 < * < u be the root of the depth-first search spanning tree of G',;. Since
Algorithm EM-DFS is invoked at vertex 1 for each r*, the edge (1, r,:) is a tree-edge.
Clearly, the edge set {(1, ^) 11 < i < uj} and the depth-first search trees of the G /s form a
spanning tree of G with vertex 1 being the root. Moreover, every edge of G that is not an
edge in the spanning tree must either connect two vertices of the spanning tree of some
Gj’s or connect a vertex with vertex 1. In the former case, by the induction hypothesis,
one of the end-vertices of the edge is an ancestor of the other. In the latter case, vertex
1 is an ancestor of the other end-vertex. Therefore, every edge in G that is not an edge
in the spanning tree of G is a back-edge.

Hence, Algorithm EM _D ES constructs a depth-first search spanning tree of the graph
G. □

3.3.3 Tim e C om plexity Analysis
Theorem 3.3.2 Let G = (V, E) be a connected undirected graph represented by the ar
rays A, start and stop. Algorithm EM^DFS performs 0(|"|V |/M] scan(|i?|) + | V|) I/O
operations.1

Proof: The I/O costs come from three sources: accessing the adjacency lists, maintaining
the DFS stack and handling overflow occurred at the internal search structure. We shall
consider each of them separately.

When a vertex i becomes the current vertex, two I/O operations are performed to
read in the pair of pointers start[i] and stop[i], and a segment of array A starting at
A[start[i]}. Let A [.start [i]] = k. If vertex k is not in the internal search structure, then
by Lemma 3.3.2, it is unvisited. Vertex k thus becomes the current vertex and two I/O
operations are performed, reading in the pair start[k\ and stop[k], and a segment of array
A starting at A[start[k]]. On the other hand, if vertex k is in the internal search struc
ture, then by Lemma 3.3.2, it is visited. As a result, the edge (i , k) is a back-edge and
is thus ignored. So the next vertex to be examined is the one following k in the internal
buffer. Therefore, no I/O operation is necessary unless vertex k is at the very end of the
internal buffer; in which case, the internal buffer must be refilled and an I/O operation
is then performed. Hence, 0(1) I/O operations are performed whenever a new vertex

lrrh e tim e com plexity give in [13] is 0((1 + \V\/M) scand-Ej) + |F |) .

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is encountered or the internal buffer is exhausted. Since the encountering of each new
vertex corresponds to an edge in the depth-first search spanning tree, there are a total of
0(\V\) I/O operations performed for the former case. The latter case can occur at most
J2iev 0 (\\E i\/D B]) = 0 (\E \ /D B + \V\) times giving rise to a total of 0(scan(|E |) + |V|)
I/O operations.

Each vertex i is pushed onto the DFS stack when it is first visited. It is popped out
of the stack whenever it becomes the current vertex and is pushed onto the stack when a
new child of it is discovered. Therefore, the number of times vertex i is pushed onto or
popped out of the DFS stack is 0{degDFs{i))) where degDFS{i) is the degree of vertex i
in the depth-first search spanning tree. Since each push or pop operation involves 0(1)
I/O operations and \EDps\ = \V\ — 1, where E DFS is the edge set of the depth-first search
spanning tree, the total number of I/O operations performed is thus:

J 2 ° (deSDFs(i)) = 0(\E d f s \) = 0(|V |).
iev

Every vertex is inserted into the internal search structure when it is first visited. If it is
ever removed from the search structure, it must be caused by an overflow which occurred
at the search structure. When that happens, the array A is compacted and all occurrences
of the vertex in the array A are removed. As a result, the vertex will never be encountered
again during the rest of the depth-first search. Hence, every vertex is inserted into the
internal search structure exactly once. Since the internal search structure has a size of
O(M), there can be at most \\V \/M] overflows occurred at the search structure. As the
process of scanning the array A, discarding visited vertices and compacting the rest of
the adjacent lists take 0(scan(|J5|)) I/Os and updating the arrays start and stop takes
0 (\\V \/M]) = 0 (\ \V \/D B]) = 0(scan(|H |)) = 0(scan(|£ |)) I/Os, the total number
of I/O operations performed for handling the overflows occurred at the internal search
structure is thus 0(|" |E |/M] scan(|i?|)).

The total number of I/O operations performed by Algorithm EM_CV is thus:
0(\V\) + 0 (scan(|£ |) + |F |) + 0(\V\) + 0{\\V \/M] scan(|£|))

= Q(\\V\/M] scandal) + \V\). □

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

An External-M emory Algorithm for
Graph Connectivity

Since depth-first search traverses every vertex of a connected undirected graph, it can
thus be used to determine the connected components of an undirected graph. The idea is
to start a depth-first search from an arbitrary vertex of the given graph. When the search
terminates, the vertices are scanned to see if there is any unvisited vertex. If there is
no unvisited vertex, then all the connected components are determined.- Otherwise, start
another depth-first search from an unvisited vertex. The same procedure is repeated until
all vertices are visited.

4.1 A D eta iled D escrip tion o f th e A lgorithm

The algorithm is based on Algorithm EMJDFS. What we need is to maintain a variable,
called next.comp, in the main memory. The variable is initialized to' 1. A depth-first
search is then performed over the given graph. When the search terminates, the arrays
start and stop are scanned, starting from the entries marked by next.comp, until an index
k such that either start[k\ < stop[k], where next.comp < k < \V\, or k > |V| (i.e. the
arrays have been completely examined) is encountered. The former case indicates that
vertex k is unvisited. So, next.comp is updated to k and a depth-first search is carried out
starting from the vertex k to determine the vertex set of another connected component.
The latter case indicates that there is no unvisited vertex left in the graph. So, all the
connected components have been determined and the algorithm terminates successfully.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 11 Algorithm EM .GC
1 Input: The arrays A[1..\E], start[\..\V\) and stop[l..\V\] representing a graph G =
(Y ,e).

2 Output: The connected components of the graph G.
3 next.comp *— 1;
4 while (next.comp < U) do
5 read (start [next.comp], stop[next.comp]);
6 if (start[next.comp] > stop[next.comp]) then
7 next.comp next.comp + 1;
8 else
9 z *— next.comp; Execute Routine EM_GCC;

10 end if
11 end while

Algorithm 12 Routine EM_GCC
1 Initialization:
2 S' —̂ 0; {S' is the DFS stack}
3 Push(5', %)] { vertex i is the root of the DFS spanning tree}
4 InterStruct <— 0; {InterStruct is the internal search structure}
5 Stor e(Inter Struct,!)]
6 write(i); {add vertex i to the current connected component}
7 while not empty (S) do
8 i «- Pop(5);
9 read(start[t], stop[i]); read a block of A starting from A[start[i]\;

10 while (start[i\ < stop[i]) do
11 w <— A[start[i}]-,
12 start[i] <— .start[2] + 1; { update the start[i] pointer }
13 if (w ^ InterStruct) then
14 write(w); {add vertex w to the current connected component}
15 call Routine Unvisited-vertex;
16 end if
17 end while
18 end while

Algorithm 13 Routine Unvisited-vertex
1: {Insert w into the internal search structure}
2: if (InterStruct is full) then
3: call Routine Compact-array to clean up;
4: end if
5: Store(InterStruct, w)]
6: read a block of A starting from A[start[w]];

{w becomes the current vertex}
7: Push(5,«); write(start[i]); {update start[i}}
8: i <— w;

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 14 Routine Compact-array A
l: for i from 1 to |V| do
2: Determine the set Bi = {A[j]\(start[i] < j < stop[i\) A (A[j] € InterStruct)}-,
3: Remove the vertices in Bi from A[start[i]..stop[i]];
4: Compact the array A to make the remaining unvisited vertices consecutive;
5: Update start[i] and stop[i\, accordingly;
6: rof
7: InterStruct <— 0.

4.2 C orrectness P ro o f

Routine EM_GCC is almost identical to Algorithm EM_DFS with the following differences:
a write(i) statement on Line 6 and a w rite(w) statement on Line 14. These statements
are included to output the vertices in the current connected component generated by the
depth-first search.

Theorem 4.2.1 Algorithm EM-GC correctly determines all the connected components of
the given graph G = (V,E).

Proof: (By induction on the number of connected components in the graph G).

(Induction basis) Suppose G has only one connected component (i.e. G is connected).
By Theorem 3.3.1, Algorithm EM_DFS visits every vertex of the graph G. Since Routine
EM_GCC and Algorithm EM_DFS differ in only some write statements, therefore, the
routine also visits every vertex of the graph G and the write statements output all the ver
tices of G. When control returns from the first call of Routine EM J3C C , every vertex in
G is visited. This implies that start[next-Comp\ > stop[next-Comp], 1 < nextjcom p < |U|.
Execution of the algorithm thus terminates.

(Induction hypothesis) Suppose the theorem holds for G having less than c connected
components.

(Induction step) Suppose G has c(> 1) connected components. Let G' = IV ', E') be
the connected component containing the vertex 1. Since Algorithm EM_GC starts its
execution from vertex 1. It therefore performs a depth-first search over G'. By Theo
rem 3.3.1, Algorithm EM_DFS traverses every vertex of G'. Therefore, when the first call
to Routine EM_GCC from within Algorithm EM_GC terminates successfully, the con
nected component G' of G is identified.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let k be the vertex in G — G' that has the smallest vertex identity. Then vertex k has
not been visited, therefore start[k) < stop[k\. As a result, the while loop in Algorithm
EMJGC will iterate until next-comp = k. Prom that point onwards, Algorithm EMJGC
will behave as if it is running on the input graph G — G'. Since G — G' has c — 1 connected
components, by the induction hypothesis, Algorithm EM_GC correctly finds all the con
nected components of G — G'. □

4.3 T im e C om plexity
Theorem 4.3.1 AIgorithm EM-GC performs 0(\\V\/M~\ scan(\E |)+ |V |) I /O operations.

Proof: Suppose the graph G has u connected components. Let them be G3 = (V j,E j), 1 <
j < lo, such that Gj is traversed by the j th depth-first search during the execution of
Algorithm EM_GC.

Since Routine EM_GCC and Algorithm EM_DFS differ in only the two write state
ments. The number of I/Os performed by Routine EM_GCC is thus the sum of the
number of I/Os performed by Algorithm EM_DFS and the number of I/Os performed by
the write statements. By Theorem 3.3.2, the number of I/Os performed by Algorithm
EMJDFS is 0(l\Vj\/M]scan(\Ej\) + \Vj\), 1 < j < u .

The two write statements will involve the external memory only if the output buffer
kept in the main memory for storing vertices of the current connected component has been
completely filled. This could happened at most \\Vj\/(DB)] times. Therefore, the two
write statements could involve at most 0(\\Vj\ /(DB)]) — 0(scan(\Ej\)) I/O operations.

Hence, for each connected component Gj, Routine EM_GCC performs a total of:
0(\\Vs \IM}acan(\Ej \) + \V] \) + 0(scan(\Ei \)) = 0{\\Vj \IM\scan(\Ej \)+\Vj \) l /O o v -

erations.

For Algorithm EM_GC, the read statement on Line 5 will involve the external mem
ory only if the segment of start and stop kept in the main memory have been completely
examined. This could happened at most \\Vj\/(DB)} times. Therefore, Line 5 could in
volve at most 0(\\Vj\ /(DB)]) = 0(scan(\Ej\)) I/O operations. Since Algorithm EM_GC
invokes Routine EM_GCC u times, once for each connected component. The total number

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of I/O operations performed by Algorithm EM.GC is thus:
’L i< i < S O m \IM]sc< m (\E j \) + |le |) + 0{scan(|i?j|)))

0(\\Vj \/M]scan{\Ej \) + jV̂-|)
= O i Z ^ m / M ^ c a n d E j]) + Ei<j<u, I E I)

= 0(J2i<j <J\Vj\/M]scan(\Ej \) + \V\)

< °(J2i< j<J\vj \ /M] scan(|£;|) + \V\)
< 0(.(Yh<j<u(\Vj\/M)scan(\E\) + £ ,< .<„ 1) + \V\)
= °({'Lx<j<^{\vM M)scan{\E\) +w) + |V|)
= 0((\V\/M)scan(\E\)+cv+\V\)
= 0((\V\/M)scan(\E\) + \V\) □

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

An External-M emory Algorithm for
B iconnect i vity

5.1 A n EM A lgorithm for D etectin g C ut-V ertices

We adapt Tarjan’s LOWPOINT method to design an external-memory algorithm for de
tecting the cut vertices of an undirected connected graph based on the algorithm EM_DFS.

5.1.1 Input D ata Structures

The proposed algorithm, Algorithm EM_CV, uses the input data structure of Algorithm
EM_DFS with the following modifications. The input graph G = (V, E) is represented
by three arrays, A[l..(|Vj + |E|)], s£art[l..|V|] and s£op[l..|Vj], stored on the external
disks. Again, we assume, without loss of generality, that V = {1,2,3, • • • , n}. The array
A consists of the adjacency lists of all the vertices.

To reduce I/O cost in computing LOWPOINT, we modify the array A slightly so that
the last entry in the adjacency list, A[stop[i]}, of every vertex i is reserved for storing a
partial value of the LOWPOINT of that vertex. Specifically, only the segment of array A,
A[start[i\..stop[i\ — 1], contains the adjacency list of vertex i, 1 < i < |Vj. Furthermore,
stop[i\ + 1 = start[i + 1], 1 < i < \V\.

The internal search structure is also modified, it stores not only the vertices them
selves but also their DFS number.

The DFS stack keeps in each of its entries a vertex whose role as the current vertex
is temporarily suspended, along with the LOWPOINT value, the DFS number, and the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DFS number of the parent vertex of that vertex.

5.1.2 Com puting LOW POINT

We shall explain how to compute the LOWPOINT value of every vertex. Recall that the
LOWPOINT value of a vertex v is defined as:

L O W P O IN T (v) = min({d/s(u)} U {LO W PO INT(w)\w is a child of v}U
{dfs(w)\(v, w)is a back-edge})

For each vertex i, we shall use low^ to denote its LOWPOINT value.

As was mentioned earlier, A[stop[i]] is reserved to store an initialized value of low(,).
It is initialized to oo (an arbitrary number larger than |Vj, the largest depth-first search
number) and is updated whenever an overflow occurs at the internal search structure.

When an overflow occurs at the internal search structure, the array A is compacted.
For each vertex i, the adjacency list of vertex i is scanned and every vertex k in it that is a
visited vertex (i.e. it appears in the internal search structure) is eliminated. However, as
the edge (i , k) is a back-edge of i, the value dfs(k) must be used to update low a) if dfs{k) <
low(i) at that point of time. Since the current value of low^) is stored somewhere on the
DFS stack, we cannot update low(i) immediately. Instead, we determine the set of visited
vertices in the adjacency list of vertex i, pick the one whose depth-first-search number is
the smallest and store that number in A[stop[i}]. Specifically, whenever array A is com
pacted, we determine the set Bi = {k\vertex k appears in the internal search structure}
using the vertices in A[start[i\..stop[i]] and update A[stop[i]} with 6mvn(i) = min{d/.s'(/c)|/e G
Bi}.

Let vertex i be the current vertex of the depth-first search. Let j be the vertex
A[start(i)]. If j is in the internal search structure, then (i,j) is a back-edge and dfs(j)
is retrieved from the search structure. Furthermore, if dfs(j) < lowp) then low^ is up
dated to dfs(j). If j is not in the internal search structure, vertex j is unvisited, low a)
is then pushed onto the DFS stack along with vertex i, d f s ^ and dfs(Pa)), where p(i) is
the parent vertex of i. The depth-first search then advances to vertex j making vertex j
the current vertex of the search. As a result, vertex j is inserted into the internal search
structure along with its depth-first search number dfs(j). Furthermore, low ^ is initial-

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ized to dfs(j). When the search backtracks from vertex j to vertex i at a later stage, the
value of Iowq) is finalized. After low(y is popped out of the DFS stack, it is updated to
min {low (i), low (j)}. Furthermore, if lowfj) > dfs(i), then vertex i is a cut-vertex (Theo
rem 5.1.3).

When vertex i is the current vertex and start(i) = stop[i\, the adjacency list of ver
tex i is completely examined. The value stored in A[stop[i]} (which is a partial value of
loW(i)) is then retrieved to update low a y However, if A[stop[i}] = dfs(parent(i)), then
it is an indication that the parent-edge of vertex i was mistakenly used as an outgoing
back-edge of vertex i in computing A[stop[i}} when the array A was compacted earlier.
The actual value of A[stop[i]\ should be dfs(i) which would have no impact on the final
value of lowyy So, the value in low ay remains unchanged. Otherwise, low a) is updated
to vcdn{lowa),A[stop[i\\}.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 15 Algorithm LOWPOINT
1: Input: The arrays A[1..|V| + |1?|], siart[l..|U |] and stop[l..|V|] representing a graph

G = (y,E).
2: Output: loW(i), \/i £ V.
3: Initialization:
4: i <— 1; df s (i) *— 1; d f s <— 2; low (») *— 1;
5: S <— 0; {S' is the DFS stack}
6: Push(S, (i , d f s (i) , l o w (i) , ±)) ;

7: In terStruct <— 0; {InterStruct is the internal search structure}
8: Store (I n t e r S t r u c t , (%, d f s (i))) m,

9: w h ile not empty (S) d o
10: (i , d f s (i) , l o w {i) , d f s (p (i))) <- Pop(S);
11: rea d (start [*], s t o p [i))] read a block of A starting from A [s t a r t [i] } \

12: w h ile s t a r t [i] < s t o p [i] d o
13: w <— A [s t a r t { i })]

14: if (w (ji I n t e r S t r u c t) then
15: call R outine Unvisited-vertex;
16: e ls e
17: lowty <— mm(low(i) ,d fs (w)))
18: s t a r t [i] <— s t a r t [i] + 1;
19: e n d i f
20: en d w h ile
21: if (A[stop[i]] < d f s (p (i))) t h e n
22: l o w f t *— A [s t o p [i §) {Finalize l o w (*)}
23: en d i f

{ Update LOWPOINT of parent vertex }
24: (k , d f s (k) , l o w {k) , d f s { p { k))) <- Pop (S);
25: low^k) <— min(iou;(fc),low^));
26: Push (S, (k, d f s (k) , low(k),d f s (p(k))));
27: i <— k; {backtrack to the parent vertex k }

28: en d w h ile

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Routine Unvisited-vertex:

Algorithm 16 Encounter an unvisited vertex_______________________________

1: {Insert w into the internal search structure}
2: if (I n t e r S t r u c t is full) then
3: call Routine Compact-array to clean up;
4: end if
5: d f s (w) «- dfs- , d f s <- d f s + 1; d f s (p (w)) <- d f s (i) - ,

6: loW(w) <— dfs(w); {Initialize low(w) }
7: Store (I n t e r S t r u c t , (w , d f s (w) , i));
8: read (s t a r t [w \ , s t o p [w]) ; read a block of A starting from A [s t a r t [w]};

{w becomes the current vertex, so save i }
9: s t a r t [i] <— s t a r t [i] + 1; write(sfarf[z]); {update s t a r t [i] } - ,

10: Push(Sl, (*, d f s (i) , l o w (i) , d f s(p(*))); {save the current vertex on the DFS stack}
11: i *— w ,

Explanation:

If an overflow occurs in the internal search structure, the Routine Compact-array is
called to clean up the internal search structure and to compact the array A by removing
all the visited vertices.

On Line 5, a depth-first search number is assigned to vertex w

On Line 6, l o w ^ is initialized to d f s (w) .

On Line 7, vertex w is stored into the internal search structure, making it the current
vertex.

On Lines 9 and 10, the s t a r t pointer of the current vertex i is updated and saved in
the external memory; the values, i , d f s (i) , l o w ^ and d f s (p (i)) are saved on the DFS stack.

On Line 11, vertex w becomes the current vertex of the depth-first search.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Routine Compact-array: when I n t e r S t r u c t is full, for each vertex i , A [s t a r t [i] . . s t o p [i \ —
1] is scanned to compute Sm i n (i) and all the visited vertices in it are deleted.

Algorithm 17 Compact the array A when I n t e r S t r u c t is full

1: for i from 1 to \ V \ do
2: s t a r t [i] <— s t o p [i — 1] + 1; {Reset s t a r t [i], assuming s t o p [0] = 0}
3: Determine the set B i — {A [j] \ (s t a r t [i] < j < s t o p [i]) A (A [j] G I n t e r S t r u c t) } - ,

4: A [s t o p [i] \ <— min{A[sfop[z]], min{d/s(n)|n G B i}}-,
5: Remove the vertices in Bi from A [s t a r t [i) . . s t o p [i \ — 1];
6: Compact A [s t a r i[*]„ s t o p [*]] to make the remaining unvisited vertices consecutive;
7: Append A [s t a r t [i] . . s t o p { i \ \ to A [l . . s t o p [i — 1]]
8: Update s t a r t [i] and s t o p [i \ , accordingly;
9: rof;

10: InterStruct 0.

Explanation:
On Line 2, the pointer s t a r t is reset to the beginning of the current adjacency list of

vertex i .

On Line 3, the set of visited vertices in the current adjacency list of vertex i , B i: is
determined. (Note that by Lemma 3.3.2, a vertex is visited if and only if it is in the
internal search structure.)

On Line 4, the smallest depth-first search number among the vertices in Bi is deter
mined and is used to update A[stop[*]].

On Line 5, all the v i s i t e d vertices in the current adjacency list of vertex i are removed.
On Lines 6 and 7, the vertices remain in A [s t a r t [i] . . s t o p [i] —1] are packed with A [s t o p { i } }

into a block of consecutive locations, starting from A [s t o p [i — 1] + 1].
On Line 8, the pointers s t a r t [i \ and s t o p [i \ are adjusted accordingly.
The internal search structure is emptied on Line 10.

54

Reproduced with permission of the copyright owner. Furiher reproduction prohibited without permission.

5.1.3 Correctness Proof

Let B,; — { j \ (i , j) is a back-edge},
B ' be the first non-empty set of visited vertices that appear in the adjacency list of

vertex i during a clean up of the array A,

B ' l be the set of visited vertices that appear in the adjacency list of vertex i during
subsequent clean ups of the array A, and

B P F S be the set of visited vertices found on the adjacency list of vertex i when the
list is scanned for an unvisited vertex during the depth-first search (not during a clean
up).

Since every visited vertex found on the adjacency list of vertex i during a clean up or
a search for an unvisited vertex corresponds to a back-edge of which i is an end-point,
and vice versa, it is easily verified that: B j = B[U B ” U B FFS.

Lemma 5.1.1 F o r e a c h i E V , m m { d f s (j) \ j E £?'} < d f s (k) , w h e r e k i s a n y v i s i t e d

v e r t e x a p p e a r i n g i n t h e a d j a c e n c y l i s t o f v e r t e x i d u r i n g a s u b s e q u e n t c l e a n u p .

Proof: Since k £ B \ and vertex k is visited after any of the vertices in 5 ', therefore
d f s (j) < d f s (k) , \ / j E B[. It follows that min{d/.s(j)|j E £?(} < d f s (k) . □

Lemma 5.1.2 F o r e a c h v e r t e x i E V ,

l o w (i) = min({ d f s (i) } U { l o W (j) \ j i s a c h i l d o f i } U { d f s (j) \ j € B ^ } U
{ d f s (j) \ j E B F F S })

Proof: By Lemma 5.1.1, m i n ({ d f s (j) \ j E £ '} U { d f s (j) \ j E B ' f }) = m m { d f s (j) \ j E B [} .

It then follow from the definition of LOWPOINT that:

l o w ^ = min({ d f s (i) } U { l o w (j) \ j i s a c h i l d o f i } U { d f s (j) \ (i , j) i s a b a c k - e d g e })
= min({ d f s (i } } U { l o w { j) \ j i s a c h i l d o f *} U { d f s (j) \ j E B { U B ' f U B P FS})
= min({d/s(i)} U { l o w { j) \ j i s a c h i l d o f i } U ({ d f s (j) \ j E £ '} U { d f s (j) \ j E B ' f }

U {d/s(j)|j G B P F S }))

= min(min({d/s(z)} U { l o w (j) \ j i s a c h i l d o f i } U { d f s (j) \ j E B f F S }) ,

min({d/s (j) \ j E B 'f\ U { d f s (j) \ j E £"}))
= min(min({d/s(i)} U { l o w (j) \ j i s a c h i l d o f i } U { d f s (j) \ j € B P F S }),

m m ({ d f s (j) \ j E B I }))

= m m ({ d f s (i) } u { l o w (j) \ j i s a c h i l d o f i } U { d f s (j) \ j E £ ' } U { d / s (j) | j € B F>FS})

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□

Theorem 5.1.1 F o r e a c h v e r t e x i G V , l o w (;) i s c o r r e c t l y c o m p u t e d b y A l g o r i t h m L O W

P O I N T .

Proof: We shall apply induction on the l e v e l of i in the D F S tree, where the level of
a vertex v is the number of edges on the path connecting the root with v in the D F S tree.

(Induction basis) Let * be a vertex at the highest level of the D F S tree. Then i must be

a leaf in the D F S tree. As a result, { l o w (j) \ j i s a c h i l d o f i } = 0. When vertex i is found

as an unvisited vertex in the adjacency list of the current vertex (i.e. When the depth-first

reaches vertex i) , l o w p) is correctly initialized to d f s (i) on Line 6 in Routine Unvisited-

vertex. Vertex i then becomes the current vertex. Let j € Bi. Since i is a leave, vertex j

must be visited when it is encountered in the adjacency list of i . It is encountered as a

member of B[or B ” or B f FS. In the first two cases, d f s (j) is correctly used in updating

A[stop[i]] on Line 4 of Routine Compact-array. In the last case, d f s (j) is correctly used in

updating l o w p) on Line 17 of Algorithm LOWPOINT. When the adjacency list of vertex

i is completely examined, s t a r t [i \ = s t o p [i \, l o w a) — m m ({ d f s (i) } U { d f s (j) \ j G B FFS}),

and A [s t o p [i] \ — m i n ({ d f s (j) \ j 6 B'-}). Therefore, l o v j p) is correctly given the final value
of min({d/s(i)} U { d f s (j) \ j G B't} U { d f s (j) \ j G BPFS}) on Line 22 of Algorithm LOW

POINT.

(Induction hypothesis) Suppose l o w (,) is correctly computed for every vertex i lying
on level h or higher (farther from the root) of the D F S tree.

(Induction Step) Let i be a vertex lying on level h — 1 of the D F S tree. As with
the base case, when vertex i is found as an unvisited vertex in the adjacency list of the
current vertex, vertex i becomes the current vertex and l o w n) is correctly initialized to
d f s (i) on Line 6 in Routine Unvisited-vertex. Let j G Bi. When vertex j is encountered
in the adjacency list of i , it is either unvisited or visited. In the former case, Routine
Unvisited-vertex is invoked for vertex j . Since vertex j is on level h , by the induction
hypothesis, when the adjacency list of vertex j is completely examined and the depth-first
search backtracks to vertex i making vertex i the current vertex again, l o w ^ p is correctly
computed. As a result, l o w ^ is correctly updated on Line 24.

In the latter case, vertex i is encountered as a member of B [or B ” or B F F S . In
the first two cases, d f s (j) is correctly used in updating A [s t o p [i]] on Line 4 of Routine

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compact-array. In the last case, d f s (j) is correctly used in updating l o w ^ on Line 17
of Algorithm LOWPOINT. When the adjacency list of vertex i is completely examined,
s t a r t [i] = s t o p [i] , l o w ^ = min({d/s(i)} U { l o w ^ \ j i s a c h i l d o f i } U { d f s (j) \ j E B f F S }) ,

and A[sfop[i]] = m m ({ d f s (j) \ j E B I }) . Therefore, l o w a) is correctly given the final value
of min({d/s(i)}U{/ou;(j)|j i s a c h i l d o f i } U { d f s (j) \ j E B l } U { d f s (j) \ j € B f F S }) on Line
22 of Algorithm LOWPOINT. □

5.1.4 Tim e C om plexity Analysis
Theorem 5.1.2 L e t G = (V, E) be a c o n n e c t e d u n d i r e c t e d g r a p h r e p r e s e n t e d b y t h e a r r a y s

A , s t a r t a n d s t o p . A l g o r i t h m L O W P O I N T p e r f o r m s 0 (\ \ V \ / M] s c a n (\ E \) + | V|) I / O

o p e r a t i o n s t o c o m p u t e l o w ^ , \ / i E V .

Proof: The I/O cost comes from three resources: accessing the adjacency lists, main
taining the DFS stack and handling overflow occurred at the internal search structure.

When a vertex i becomes the current vertex, an I/O operation is performed to read
in a block of vertices starting at A [s t a r t [i] } . Let A [.start/]] = k . If vertex k is not in the
internal search structure, then by Lemma 3.3.2, it is unvisited. Vertex k thus becomes
the current vertex and an I/O operation is performed for it reading in a block starting
at A [s t a r t [k]] . On the other hand, if vertex k is in the internal search structure, then
by Lemma 3.3.2, it is visited. As a result, the edge (i , k) is a back-edge. So the next
vertex to be examined is the one following k in the internal buffer. Therefore, no I/O
operation is necessary unless vertex k is at the very end of the internal buffer; in which
case, the internal buffer must be refilled and an I/O operation is then performed. Hence,
an I/O operation is performed whenever a new vertex is encountered or the internal buffer
is exhausted. Since the encountering of each new vertex corresponds to an edge in the
depth-first search spanning tree, there are a total of 0 (|V |) I/O operations performed for
the former case. The latter case can occur at most \ E \ / D B times giving rise to a total of
\ E \ / D B = scan(|£j) I/O operations.

Each vertex i is pushed onto the DFS stack when it is first visited. It is popped out
of the stack whenever it becomes the current vertex and is pushed onto the stack when a
new child of its is discovered. Therefore, the number of times vertex i is pushed onto or
popped out of the DFS stack is 0 (d e g (i)) , where d e g (i) is the degree of vertex i in the
depth-first tree. Furthermore, vertex i is also popped out of and then pushed back to the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stack whenever the search backtracks from a child of i to i in order to update low(i) with
the LOWPOINT of that child. This can happen 0(deg(i)) time. Since each push or pop
operation involves 0(1) I/O operations, the total number of I/O operations performed is
thus

£ 0 (< f e s (i)) = 0(\V \)
iev

Since each vertex is inserted into the internal search structure once and the internal
search structure has a size of 0 (M), there can be at most [|I/|/M] overflows occurred at
the search structure. As the process of scanning the array A, discarding visited vertices
and compacting the rest of the adjacent lists take 0(scan(\E\)) I/Os, the total number
of I/O operations performed to handle overflows occurred at the internal search structure
is 0(\\V \/M]scan(\E \)).

The total number of I/Os performed by Algorithm EM-CV is thus:
0 (|P |) + 0(scan(\E\)) + 0 (|P |) + 0(\\V \/M]scan(\E \))

= 0(\\V \/M]scan(\E \) + \V\). □

5.1.5 D etecting the cut-vertices

Once we know how to compute lo w ^ y i € V, determining the cut-vertices become
straightforward owing to the following lemma.

Theorem 5.1.3 A vertex v is a cut-vertex if and only if

• v is the root of the depth-first search tree and has two or more children, or

• v is not the root and there is a child w of v such that low(w) > dfs(v)

Proof: See [39]. □

To determine the cut-vertices, we modify Algorithm LOWPOINT based on Theo
rem 5.1.3 as follows:

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Replace Line 25 with the following lines and let the resulting algorithm be called Al
gorithm EM_CV.

if (d f s (i) / 1) th en { /* Vertex i is not the root of the DFS tree * / }

if (d f s (k) < l o w (i)) then

l a w (i) <- m i n { l o w (i) , l o w (k) } ;

else

output vertex * as a cut-vertex;

else if (vertex k is the first child of vertex i) then

mark down vertex % (the root) has a child;

else
output vertex i as a cut-vertex;

T heorem 5.1.4 A l g o r i t h m E M - C V c o r r e c t l y d e t e r m i n e s t h e c u t - v e r t i c e s o f t h e g r a p h G =
(V , E) .

Proof: Immediate from Theorem 5.1.1 and Theorem 5.1.3 □

T heorem 5.1.5 L e t G = (V , E) be a c o n n e c t e d u n d i r e c t e d g r a p h r e p r e s e n t e d b y t h e a r

r a y s A , s t a r t a n d s t o p . A l g o r i t h m E M - C V p e r f o r m s 0 (\ \ V \ / M] s c a n (\ E \) + |V|) I / O

o p e r a t i o n s t o d e t e r m i n e t h e c u t - v e r t i c e s o f G .

Proof: Immediate from Theorem 5.1.2 □

5.2 A n EM A lgorithm for D etectin g B iconn ected C om
ponents

As was mentioned in Chapter 2, the cut-vertices of a graph G = (V, E) determine the
biconnected components of G. Therefore, we can develop an EM biconnected component
algorithm, EM_BCC, based on Algorithm EM_CV. The objective of Algorithm EM_BCC
is to determine the vertex set of each biconnected component of the given graph. In [39],
Tarjan determined the biconnected components by identifying their edge sets. We shall
determine the biconnected components by identifying their vertex sets. This is to ensure
that the size of the output is 0(|V j) instead of 0{\E\). Note that |£ j = 0 (|V |2) rather
than 0(|V |). This idea is based on the following lemmas.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 5.2.1 T h e s e t o f v e r t i c e s o f a b i c o n n e c t e d c o m p o n e n t i n d u c e s a s u b t r e e o f t h e

D F S t r e e , w h o s e r o o t i s e i t h e r a c u t - v e r t e x o r t h e r o o t o f t h e D F S t r e e , a n d h a s a u n i q u e

c h i l d i n t h a t s u b t r e e .

Proof: See [39]. □

Theorem 5.2.1 L e t v e r t e x j be a c h i l d o f v e r t e x i s u c h t h a t l o w y) > d f s (i) . T h e e d g e (i , j)

a n d t h e s u b t r e e o f t h e D F S t r e e r o o t e d a t j w i t h a l l t h e p r o p e r s u b t r e e s i n i t w h o s e r o o t s

a r e c u t - v e r t i c e s b e i n g t r i m m e d o f f f o r m a d e p t h - f i r s t s e a r c h s p a n n i n g t r e e o f a b i c o n n e c t e d

c o m p o n e n t o f G .

Proof: An immediate consequence of Theorem 5.1.3 and Lemma 5.2.1. □

5.2.1 The D escription of EM_BCC

During an execution of Algorithm EM_CV, when the depth-first search backtracks from
a child j to a vertex i , if the condition l o w ^ > d f s (i) holds, then vertex i is a cut-vertex
according to Theorem 5.1.3. Moreover, according to Theorem 5.2.1, the edge (i , j) and
the subtree of the DFS tree whose root is vertex j and in which all the proper subtrees
rooted at cut-vertices are trimmed off form a depth-first search spanning tree of a bicon
nected component of G . It is easily verified that this subtree of j is a m a x i m a l subtree
of j with n o cut-vertex of G residing in it as an internal vertex. We can thus modify
Algorthm EM_CV to develop an EM algorithm, called Algorithm EM_BCC, to generate
all the biconnected components of the given graph G .

The idea underlying our algorithm is to use an additional stack, called the B C C s t a c k ,
to generate the vertex set of each biconnected component. The idea is as follows: When
ever an unvisited vertex is encountered during the search, the vertex is pushed onto the
BCC stack. Whenever the search backtracks from a vertex j to a vertex i such that
l o v j (j) > d f s (i) , the BCC stack is popped until the vertex j is popped out of the stack.
The vertices popped out from the stack and the vertex i form the vertex set of the bicon
nected component containing the edge (v , w) .

The following is a formal description of Algorithm EM_BCC:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 18 Algorithm EM_BCC
1: Input: The arrays A[1..|V| + |£?|], start[l..|V|] and siop[l..|V |] representing a graph

G = (V,E).
2: Output: The vertex sets of the biconnected components of G.
3: Initialization:
4: i *— 1; d f s (i) <— 1; d f s <— 2; low^) *— 1;
5: S ^ 0; B C C <- 0; {BC C is the BCC stack}
6: Push{S ,{i,d fs{i),low ^, !))■
7: P ush(B C C S,i);
8: In terStruct <— 0; {InterStruct is the internal search structure}
9: Store(InterStruct, (i,dfs(i)));

10: while not empty (5) do
11: (i,d fs(t),low {i),dfs(p(i))) *- Pop(S);
12: read(start[i], stop[i\); read a block of A starting from A{next[i}}]
13: while start[i] < stop[i] do
14: w *—A[start[i]\;
15: if (w £ InterStruct) then
16: call Routine Unvisited-vertex;
17: else
18: low(i) <— min(Zora(j),dfs(w))\
19: start[i\ start[i] + 1;
20: end if
21: end w hile
22: if (A[stop[*]] < dfs(p(i))) then
23: low(i) +— A[stop[i]]) {Finalize low'^svalue}
24: end if

{Update LOWPOINT of parent vertex }
25: (k,dfs{k),low (k),dfs(p{k))) <- Pop (S');
26: if low(i) < dfs(k) th en
27: low(k) <— min(low(k),low(i));
28: else
29: call Routine Generate-BCC;
30: end if;
31: Push (S, (k, dfs(k),low(k)), df s(p(k)))\
32: i <— k] {backtrack to the parent vertex k}
33: end w hile

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 19 Routine Unvisited-vertex: Encounter an unvisited vertex

1: {Insert w into the internal search structure}
2: if (InterStruct is full) then
3: call Routine Compact-array to clean up;
4: end if
5: d f s (w) <- d f s ; d f s <- d f s + 1; d f s (p (w)) <- d f s (if,
6: low(w) <— dfs(w); {Initialize low(w)}
7: Store (I n t e r S t r u c t , (w, d fs (w))) \
8: read(start[w], stop[w])\ read a block of A starting from A[start[w]];

{w becomes the current vertex, so save i}
9: start[i] <— start[i] -I-1; write(sfarf[(|); {update start[i]};

10: Push(S', (i, dfs(i),low(i),dfs(p(i)))', {save the current vertex on the DFS stack}
11: Push(RC'C'_5, *); {push the current vertex onto the BCC stack}
12: i *— w; { vertex w becomes the current vertex }

E xplanation : Same as Section 3.3.1 except Line 11.

Algorithm 20 Compact the array A when I n t e r S t r u c t is full

1: for i from 1 to |V| do
2: s t a r t [i \ ■*— s t o p [i — 1] + 1; {assuming s t o p [0] = 0}
3: Determine the set Bi = { A [j } \ (s t a r t [i } < j < s t o p [i]) A (A [j) € I n t e r S t r u c t) } - ,

4: A[stop[*]] *— min{A[stop[2] — 1],min{d/s(u)|u € Bi}}-,
5: Remove the vertices in Bi from A [s t a r t [i].. s t o p l f) }:
6: Compact A [s t a r t [i \ . . s t o p [i] \ to make the remaining unvisited vertices consecutive;
7: Append A [s t a r t [i \ . . s t o p [i] } to A [l . . s t o p [i — 1]]
8: Update s t a r t [i] and s t o p [i] , accordingly;
9: rof;

10: Empty I n t e r S t r u c t .

E xplanation : Same as Section 3.3.1.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 21 R ou tine G enerate-B C C : Generate the vertex set of a biconnected
component

1: {a biconnected component whose spanning tree within the D F S tree is rooted at
vertex k and contains the edge (k. i) is to be generated.}

2: B C ^ «— {k} ;

3: r e p e a t
4: u * - Pop{BCC-S);
5: BC(k,i) *— BC{k,i) U {n};
6: un til u — i;

5.2.2 Correctness Proof
T heorem 5.2.2 Algorithm EM-BCC generates the vertex set of each biconnected com
ponent of the graph G = (V, E).

P ro o f :(By induction on the number of biconnected components)

(Induction basis)
Suppose G has only one biconnected component (i.e. G is biconnected).
Then G has no cut-vertex. By Lemma 5.1.3. Vu 6 V such that v ^ r, there is no child

w of v such that low(w) > dfs(v). Therefore Routine Generate-BCC is never invoked for
every vertex v r. As a result, no vertex had been popped out of the BCC stack when
the search backtracks to the root r. Let w be a child of r. By Lemma 5.1.3, w is the only
child of r. Since dfs(r) = 1 and low(w) > 1, loW(,w) > dfs(r) which results in Routine
Generate_BCC being invoked.

Since the root r has w as the only child, vertex w is the first vertex visited after r and
is pushed onto the BCC stack right after r. It thus lies at the bottom of the BCC stack
right above r which is at the very bottom of the stack. It follows that when vertex w is
popped out of the BCC stack, every vertex of G except the root r has been popped out.
However, as the BCC(r>w) is initialized to (r) , all the vertices of G are thus included in
BCC(r<w) when execution of EM_BCC terminates. The algorithm thus correctly generate
the vertex set of the (only) biconnected component of G.

(Induction hypothesis) Suppose the theorem holds for any graph G having less than b
biconnected components.

(Induction step) Suppose G has b (b > 1) biconnected components. -

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose Routine Generate-BCC is first executed when the search backtracks from a
vertex w to its parent vertex v. This happens because low(w) > dfs(v). We shall show
that the vertices on the BC C stack lying above the vertex v form the vertex set of a
biconnected component of G with v.

Let T(w) be the subtree of the D F S tree rooted at w. Since this is the first time Rou
tine Generate_BCC is invoked, no cut-vertex had been discovered before. Therefore, the
subtree T(w) contains no cut-vertex. By Theorem 5.2.1, the edge (v,w) and the subtree
T(w) form the spanning tree of a biconnected component, say B. of the graph G. As a
result, the vertex set of the biconnected component B consists of the vertices of T(w) and
the vertex v.

Since vertex w is a child of vertex v. it must lie directly above v when it is pushed
onto the BCC stack. All the other vertices in T(w) are visited by the depth-first search
after vertex w and are thus lie above w on the BCC stack. As a result, when Routine
EM_BCC is invoked and vertices are being popped out of the BCC stack until vertex w
is popped out, it is precisely those vertices of T(w) that are popped out. Therefore, when
Routine Generate_BCC terminates its execution, BCC(V<W) contains all the vertices of the
biconnected connected component B.

After generating the vertex set BCC(V,W), Algorithm EM_BCC behaves as it would on
the graph G — B. Since G — B has less then b biconnected components, by the induction
hypothesis, Algorithm EM_BCC correctly generates all its biconnected components. The
Theorem thus follows. □

5.2.3 Tim e C om plexity Analysis
T heorem 5.2.3 Algorithm EM^BCC performs 0 ([|E |/M] scan(|.E|) + |E |) I/O opera
tions to generate all the biconnected components of the graph G = (V,E).

Proof: Since Algorithm EMJ3CC and Algorithm EM_CV differ in the routine G enerate-
BCC. Therefore, the number of I/Os performed by Algorithm EM_BCC is the sum of
the number of I/Os performed by Algorithm EM_CV and the number of I/Os performed
by Routine G enerate-B C C . By Theorem 5.1.5, the number of I/Os performed by Algo
rithm EM_CV is 0 (\\V \/M] scan(|£|) + |V|).

Since popping out one vertex from the BC C stack takes one I/O operation and every

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex is popped out once during an execution of Algorithm EM_BCC, the total number
of I/O operations performed by Routine G enerate-B C C is thus 0(\V \).

Hence, Algorithm EM_BCC preforms 0 (\\V \/M] scan(|£j) + |1/|) I/O operations.
□

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Comparison of Time Complexities

We shall compare our results with the previously known results. We shall consider the
cases in which the input graph satisfies the condition |"|V|/M] = 0(1) (i.e. |W| is larger
than M by a constant factor). This is weaker than the semi-external model proposed by
Abello et al. [1]. Graphs satisfying this condition are not uncommon in real-life situations.
For example, it has been pointed out in Abello et al. that a graph induced by monitoring
long-term traffic patterns among relatively few nodes in a network, and a graph induced
by telephone calls in the AT&T network satisfy such a condition.

For the Graph Connectivity problem, the EM algorithm of Chiang et al. [13] performs:
0(m in{sort(|F |2), log(|F |/M) sort(|£71)}) I/O operations.

When [|V |/M] = 0 (1) , their algorithm performs:
0(m in{sort(|l/|2),sort(|i?|)}) = 0(sort(|J5|)) I/O operations.

By contrast, our algorithm performs 0(scan(|E |) + |V|) operations.
Since sort(|£7|) > scan(|.E|), therefore

C^sortd-El)) > 0(scan(|E |) + |V|)
sort(|£ |) > \V\

^ (\E \/D B) logM (\E \/B) > | V'l
^ \E\ > (D B \V \)/logM (\E \/B)
In particular, since [|V |/M] = 0 (1) , therefore \V \/M < k, or some constant k, which

implies that |V| < kM . But \E\ < \V\2. It follows that:
|E\ < {kM)2 => \E \/B < {kM)2/B \ogM_{\E\/B) < k', for some constant k '.
As a result, when \E\ = fI(D B |F |), 0(sort(|E |)) > 0(scan(|£'|) + |V|) which implies

that our algorithm outperforms the algorithm of Chiang et a l This includes dense graphs
(i.e. |E\ = 0 (|E |2) as special cases.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the Semi-external Memory model, the input graph satisfies the condition: \V\ <
M < \E\ (In other words, the vertex set V is small enough to completely fit inside
the main memory whereas the edge set E is not). Abello et al. [1] presented an EM
algorithm for the connectivity problem that performs 0(scan(|£'|) logMjB C(G)) I/O op
erations, where C(G) is the number of connected components in G. Since \V\ < M =>
\V \/M = 0(1)), our algorithm EM_GCC thus performs 0(scan(|E |) I/O operations on
semi-external model. This is better than that of Abello et al. by a factor of logM/B C(G).

Munagala et al. [32] proposed yet another EM algorithm for determining the connected
components of a graph. Their algorithm requires:

0(m ax{l, log log(|y |E .B /|E |)}(|E |/|y [) sort(|V"|) I/O operations.

For |El = 0 (|I / |2) (i.e. for dense graphs), their algorithm performs
0(m ax{l, log log(\V\D B/\E\)}(\E\/\V \) sort(|V"j))

> 0 ((|E |/ |F |) s o r t(|F |))

= 0(|V |sort(|V |))
= 0 (scan(|F |2)logM (|V |/E))
which is a factor of logM (|y|/J3) larger than ours.

B

The EM biconnected component algorithm of Chiang et al. performs
0(m in{sort(|F |2);log(|F |/M)sort(|E |)}) I/O operations. For dense graphs, i.e. |E | =
0 (|F |2), the I/O complexity is:

0(m in{sort(|y |2); \og(\V\/M) sort(|E |)}) = 0(\og(\V\/M) sort(|E |2)).

When |E |/M = 0(1), their algorithm requires: 0 (so rt(|E |2)) I/Os.
By contrast, our algorithm requires 0 ([|E |/M] sc:an(|F|2) + |V|)
= 0 (scan(|I/|2) + \V\)
= o ((\ v \2) / d b + \v \)

= 0 (\V \2)/D B) (y \V\ > M > D B)
= 0 (scan (|y |2))
Since, scan(|V|2)) < so rt(|y |2)), our algorithm thus has a better performance.

In general, when |E\ > (DB)\V\ (this includes dense graph as a special case), \E \/D B >
\V\ which implies that scan(|E|) > \V\. Our algorithm still requires 0(scan(|E |) I/Os.

Hence, Algorithm EM_BCC has a better I/O bound, compared to the previously best-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

known EM biconnected component algorithm of Chiang et al. under the aforementioned
conditions. Although another I/O bound of the form 0(max{l,loglog(|V’|.D.B||i?|)}-
(lE'l/lV’l) sort(|V|)) for the algorithm of Chiang et al. was reported later [34], under
the aforementioned conditions, the bound becomes 0(\V \ sort(|V|)) which is still greater
than our 0(scan(|V |2)) bound.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

In this thesis, we have presented external-memory algorithms for solving graph con
nectivity problems, which include the graph connectivity and biconnectivity problem.
Our algorithms are simpler and more I/O efficient than the existing algorithms when
|”|V |/M] = 0(1) and |J3| = Q(DB\V\), where G = (V ,E) is the input graph, M is the
internal memory size, B is the block size and D is the number of external disks.

Since every bridge is a biconnected component consisting of a single edge, Algorithm
EM_BCC can thus be modified to solve the bridge-connectivity (2-edge connectivity)
problem within the same I/O bound.

The following are possible future research:

• Design optimal EM algorithms for the graph connectivity and biconnectivity prob
lem.

• Extend our results to 3—vertex connectivity and 3—edge connectivity.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A b e l l o , J ., B u c h sb a u m , A. L., a n d W e s t b r o o k , J. R. A functional approach
to external graph algorithms. Algorithmica 32, 3 (Mar 2002), 437-458.

[2] A g g a r w a l , A., a n d J e f f r e y , S. V. The input/output complexity of sorting and
related problems. Commun. ACM 31, 9 (1988), 1116-1127.

[3] A h o , A . V ., H o p c r o f t , J. E ., a n d U l lm a n , J. D. The design and analysis of
computer algorithms. Addison-Wesley, (1974).

[4] A h u ja , M., AND Z hu , Y. An efficient distributed algorithm for finding articulation
points, bridges, and biconnected components in asynchronous networks. In Proceed
ings of the Ninth Conference on Foundations of Software Technology and Theoretical
Computer Science (London, UK, 1989), Springer-Verlag, 99-108.

[5] A r g e , L., B r o d a l , G. S., a n d T o m a , L. On external-memory mst, sssp and
multi-way planar graph separation. J. Algorithms 53, 2 (2004), 186-206.

[6] A r g e , L ., T o m a , L ., AND Z eh , N. I/O-efficient topological sorting of planar
dags. In SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures (New York, NY, USA, 2003), ACM Press, 85-93.

[7] A r g e , L ., AND V a h r e n h o ld , J. I/O-efficient dynamic planar point location.
Comput. Geom. Theory Appl. 29, 2 (2004), 147-162.

[8] A r g e , L ., a n d Z eh , N . I/O-efficient strong connectivity and depth-first search
for directed planar graphs. In FOCS ’03: Proceedings of the J^fth Annual IEEE
Symposium on Foundations of Computer Science (Washington, DC, USA, 2003),
IEEE Computer Society, 261.

[9] B u c h sb a u m , A. L ., G o ld w a s s e r , M., V e n k a ta s u b r a m a n ia n , S., a n d W e s t

b r o o k , J . R. On external memory graph traversal. In SODA ’00: Proceedings of

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the eleventh annual ACM-SIAM symposium on Discrete algorithms (Philadelphia,
PA, USA, 2000), Society for Industrial and Applied Mathematics, 859-860.

[10] C h a u d h u r i, P. A note on self-stabilizing articulation point detection. Journal of
System Architecture 45, 14 (1999), 305-329.

[11] CHAUDHURI, P. An o(n2) self-stabilizing algorithm for computing bridge-connected
components. Computing 62, 1 (1999), 55-67.

[12] C h ia n g , Y .-J. Dynamic and I/O-efficient algorithms for computational geometry
and graph problems: Theoretical and experimental results. Tech. Rep. CS-95-27,
(1995).

[13] C h ia n g , Y .-J., G o o d r ic h , M. T ., G r o v e , E. F ., T a m a ss ia , R., V e n g r o f f ,

D. E., a n d V i t t e r , J . S. External-memory graph algorithms. In SODA ’95: Pro
ceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms (Philadel
phia, PA, USA, 1995), Society for Industrial and Applied Mathematics, 139-149.

[14] C h in , F. Y., Lam , J ., a n d C h en , I.-N. Efficient parallel algorithms for some
graph problems. Commun. ACM 25, 9 (1982), 659-665.

[15] D e v ism e s , S. A silent self-stabilizing for finding cut-nodes and bridges. Parallel
Processing Letters 15, 1-2 (2005), 183-198.

[16] E p p ste in , D ., G a l i l , Z., I ta l ia n o , G. F ., a n d N issen zw e ig , A. Sparsification-
a technique for speeding up dynamic graph algorithms. J. A C M 44, 5 (1997), 669-696.

[17] E v e n , S. Graph Algorithms. Computer Science Press, Potomac, MD, (1979).

[18] G a b o w , H. N. Path-based depth-first search for strong and biconnected compo
nents. In f Process. Lett. 74, 3-4 (2000), 107-114.

[19] G a l i l , Z., a n d I t a l i a n o , G. F. Maintaining biconnected components of dynamic
planar graphs. In Proc. 18th Int. Colloquium on Automata, Languages and Pro
gramming, Lecture Notes in Computer Science 510 (1991), Springer-Verlag, Berlin,
339-350.

[20] H o h b e r g , W . How to find biconnected components in distributed networks. J.
Parallel Distrib. Comput. 9, 4 (1990), 374-386.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[21] H u t c h in s o n , D ., M a h e s h w a r i, A., a n d Z eh , N . An external memory data
structure for shortest path queries (extended abstract). Lecture Notes in Computer
Science 1627 (1999), 51-60.

[22] I o a n n id is , Y. E., AND R a m a k r ish n a n , R. Efficient transitive closure algorithms.
In VLDB ’88: Proceedings of the l f th International Conference on Very Large Data
Bases (San Francisco, CA, USA, 1988), Morgan Kaufmann Publishers Inc., 382-394.

[23] JAJA, J. An introduction to parallel algorithms. Addison Wesley Longman Pub
lishing Co., Inc., Redwood City, CA, USA, (1992).

[24] KARAATA, M. A self-stabilizing algorithm for finding articulation points. Interna
tional Journal of Foundations of Computer Science 10, 1 (1999), 33-46.

[25] K a r a a t a , M. A stabilizing algorithm for finding biconnected components. J. Par
allel Distrib. Comput. 62, 5 (2002), 982-999.

[26] K a r a a t a , M., a n d C h a u d h u r i, P. A self-stabilizing algorithm for bridge finding.
Distribted Computing 2, 1 (1999), 47-53.

[27] K a z m ie r c z a k , A., a n d R a d h a k r is h n a n , S. An optimal distributed ear decom
position algorithm with applications to biconnectivity and outerplanar testing. IEEE
Transactions on Parallel and Distributed Systems 11 (2000), 110-118.

[28] K n u th , D. E. The Art of Computer Programming, 2nd Ed. (Addigon- Wesley Series
in Computer Science and Information. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, (1978).

[29] K u m a r , V., a n d S c h w a b e , E. J. Improved algorithms and data structures for
solving graph problems in external memory. In SPDP ’96: Proceedings of the 8th
IEEE Symposium on Parallel and Distributed Processing (SPDP ’96) (Washington,
DC, USA, 1996), IEEE Computer Society, 169.

[30] L a m b e r t , O., a n d S ib e y n , J . Parallel and external list ranking and connected
components on a cluster of workstations. In Proc. 11th International Conference
Parallel and Distributed Computing and Systems of 1999, IASTED (1999), 454-460.

[31] M a n b e r , U. Introduction to Algorithms: A Creative Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, (1989).

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[32] M e y e r , U. External memory bfs on undirected graphs with bounded degree. In
SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms (Philadelphia, PA, USA, 2001), Society for Industrial and Applied Math
ematics, 87-88.

[33] M e y e r , U., S a n d e r s , P ., a n d S ib ey n , J. F., Eds. Algorithms for Memory Hier
archies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002] (2003),
Lecture Notes in Computer Science 2625, Springer.

[34] M u n a g a la , K., a n d R a n a d e , A. I/O-complexity of graph algorithms. In SODA
’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA, 1999), Society for Industrial and Applied Mathematics,
687-694.

[35] N o d in e , M., a n d V i t t e r , J. Greed sort: an optimal sorting algorithm for multiple

disks. J. ACM 42, 4 (1995), 919-933.

[36] P a r k , J., T o k u r a , N., M a su za w a , T., a n d H a g ih a r a , K. Efficient distributed
algorithms solving problems about the connectivity of network. Systems and Com
puters in Japan 22, 2 (1991), 1-16.

[37] R u e m m le r , C., a n d W i lk e s , J. An introduction to disk drive modeling. IEEE
Computer 27, 3 (1994), 17-28.

[38] SWAMINATHAN, B., AND GOLDMAN, K. J. An incremental distributed algorithm
for computing biconnected components in dynamic graphs. Algorithmica 22, 3 (1998),
305-329.

[39] T a r ja n , R. E. Depth-first search and linear graph algorithms. SIAM J. Comput.
1, 2 (1972), 146-160.

[40] TARJAN, R. E., a n d V ish k in , U. An efficient parallel biconnectivity algorithm.
SIAM J. Comput. 14, 4 (1985), 862-874.

[41] T sin , Y. H. An improved self-stabilizing algorithm for biconnectivity and bridge-
connectivity. Inf. Process. Lett. 102, 1 (2007), 27-34.

[42] TSIN, Y . H ., AND C h in , F . Y . Efficient parallel algorithms for a class of graph

theoretic problems. SIAM J. Comput. 13, 3 (1984), 580-599.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[43] TURAU, V. Computing bridges, articulations and 2-connected components in wire
less sensor networks. In Algorithmic Aspects of Wireless Sensor Networks, Second
International Workshop ALGOSENSORS 2006, Lecture Notes in Computer Science
4240 (Venice, Italy, 1989), 164-175.

[44] U llm a n , J. D., a n d Y a n n a k a k is , M . The input/output complexity of transitive
closure. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD international
conference on Management of data (New York, NY, USA, 1990), ACM Press, 44-53.

[45] V i t t e r , J. S. External memory algorithms and data structures: dealing with
massive data. ACM Computing Surveys 33, 2 (2001), 209-271.

[46] V i t t e r , J . S., AND S h r iv e r , E. A. M. Algorithms for parallel memory I: Two-
level memories. Algorithmica 12, 2-3 (1994), 110-147.

[47] W ils o n , R. J. Introduction to graph theory. John Wiley Sz Sons, Inc., New York,
NY, USA, (1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V IT A A U C T O R IS

NAME: Shan Li

YEAR OF BIRTH: 1976

EDUCATION: University of Sichuan, Chengdu, China
1993-1997

University of Windsor, Windsor, Ontario
2005-2007

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Improved I/O-efficient algorithms for solving graph connectivity, biconnectivity problems.
	Recommended Citation

	tmp.1507664919.pdf.fBKeC

