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Abstract

Methodology issue: The traditional implementation of the risk-adjusted Bernoulli cumulative sum

(CUSUM) chart for monitoring surgical outcome quality requires waiting a pre-specified period of

time after surgery before incorporating patient outcome information.

Proposed solution: We propose a simple but powerful implementation of the risk-adjusted

Bernoulli CUSUM chart that incorporates outcome information as soon as it is available, rather

than waiting a pre-specified period of time after surgery.

Evaluation: A simulation study is presented that compares the performance of the traditional

implementation of the risk-adjusted Bernoulli CUSUM chart to our improved implementation. We

show that incorporating patient outcome information as soon as it is available leads to quicker

detection of process deterioration.

Advice to practitioners: Deterioration of surgical performance could be detected much sooner

using our proposed implementation, which could lead to the earlier identification of problems.
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Introduction

Statistical process monitoring techniques are becoming more widely
used in healthcare applications. In particular, methods for monitor-
ing surgical outcomes are used to detect deterioration in surgical
performance as quickly as possible to avoid undesirable conse-
quences. For a comprehensive review of monitoring techniques for
surgical outcome quality, see Woodall et al. [1].

Frequently in healthcare applications, patients’ pre-operative
risks vary widely across the population. To account for the hetero-
geneity across patients, many risk-adjusted monitoring techniques
have been developed. These techniques incorporate information
about each patient’s potential risk factor characteristics, such as age,
gender, and health status, into the calculation of a statistic that is

monitored. For example, if a patient who was old and unhealthy
died shortly after surgery, this result would be more likely than an
instance where a young, healthier patient died. Risk-adjusted moni-
toring techniques use this information about each individual to
allow for meaningful monitoring of surgical outcomes. We propose
an implementation scheme for the risk-adjusted Bernoulli cumulative
sum (CUSUM) chart that significantly improves the time until detec-
tion of process deterioration.

The risk-adjusted Bernoulli CUSUM chart proposed by Steiner
et al. [2] is a control chart that can be used to monitor 30-day mor-
tality rates prospectively, where each patient has a predicted prob-
ability of 30-day mortality based on a risk-adjustment model. This
approach can be used to monitor the rate of other adverse events,

© The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com 343

D
ow

nloaded from
 https://academ

ic.oup.com
/intqhc/article/29/3/343/3746598 by guest on 21 August 2022

http://www.oxfordjournals.org


not just mortality. When discussing our proposed implementation
for risk-adjusted monitoring, we focus exclusively on the risk-adjusted
Bernoulli CUSUM chart since it has the strongest theoretical justifica-
tion and is the most popular approach [3].

When monitoring surgical outcomes, the outcome of interest is
usually based on some pre-specified period of time after surgery.
For example, Steiner et al. [2] considered death within 30 days
after surgery. When outcomes such as this one are used, there is
a period of time during which the outcome of the patient may
be unknown. Specifically, for patients who survive the entire time
period (e.g. 30 days), their outcomes are unknown until the end
of the time period. However, for patients who do experience the
adverse event sooner than the end of the time period (e.g. death
occurs within 30 days after surgery), the outcome is obtained
earlier. The standard risk-adjusted Bernoulli CUSUM method
monitors patients in the order in which they undergo surgery, des-
pite the fact that information about many of their outcomes is
known sooner than 30 days. For example, if we are monitoring
30-day mortality rate and a patient dies one day after surgery, the
traditional implementation of the risk-adjusted Bernoulli CUSUM
chart may not incorporate this outcome information into the
chart until 29 days later. We propose an implementation scheme
for the risk-adjusted Bernoulli CUSUM chart that incorporates
patients’ surgical outcomes as soon as they are available, rather
than waiting the length of the pre-specified time window to
incorporate their information. Our proposed implementation con-
siders all adverse outcomes immediately.

Methods

Risk-adjusted Bernoulli CUSUM procedure

The risk-adjusted Bernoulli CUSUM chart proposed by Steiner
et al. [2] is capable of monitoring binary outcomes while adjusting
for prior risk of the adverse event occurring. A risk-adjustment
model is fit to a Phase I sample so that predicted probabilities of
the adverse event of interest (e.g. 30-day mortality) can be calcu-
lated. Phase I data is typically a historical sample collected that
characterizes how the process being monitored operates under
stable conditions. For a comprehensive overview of Phase I and
its importance in statistical process monitoring, see Jones-Farmer
et al. [4]. When monitoring surgical outcome quality, a logistic
regression model is typically fit with covariate information about
the patients in order to obtain the predicted probability of the
adverse event of interest.

The risk-adjusted CUSUM chart is designed to detect a shift in
an odds ratio R from R0 to >R R1 0, where typically =R 10 . We let
pt represent the predicted probability of the event of interest for the
tth observation. Thus, the odds of the event can be calculated as

( − )p p/ 1t t . Therefore, under the in-control odds R0, the odds of
the event of interest are given by ( − )R p p/ 1t t0 . Likewise, under R1,
the odds of the event of interest are given by ( − )R p p/ 1t t1 . Thus, the
corresponding in-control and out-of-control probabilities are given
by the following equations:
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This leads directly to the calculation of the score for the risk-
adjusted Bernoulli CUSUM given by the following equation:
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The CUSUM statistics are given by the following equation:

= ( + ) ( )−S S Wmax 0, , 3t t t1

where, =S 00 and a signal is given when >S ht for >h 0.
Currently, the observations would be indexed in the order in

which the patients undergo surgery. However, when operating under
this assumption, the outcomes for those patients who do not survive
are observed earlier than 30 days, but for patients who survive, out-
comes are not observed until the end of the 30-day time window.

Proposed approach

We show that it is beneficial to incorporate patient outcome infor-
mation as soon as it is obtained, rather than waiting until the end of
the waiting period associated with the outcome. To illustrate this
result, we propose a simple implementation scheme for the risk-
adjusted Bernoulli CUSUM chart that incorporates patients’ surgical
outcomes as soon as they are available.

To illustrate our proposed implementation scheme of the risk-
adjusted Bernoulli CUSUM chart, we will use the same data set from
a United Kingdom center for cardiac surgeries as was used by Steiner
et al. [2]. The data set consists of 6994 patients from the years 1992
through 1998 and contains descriptive information such as surgery
date, pre-operative Parsonnet score, and the number of days before
any patient mortality. The Parsonnet score is a single value used to
characterize a patient’s overall health status [5]. The first two years of
data (1992–93) were taken as Phase I data and were used to fit the
following logistic regression model for risk-adjustment:

( ) = − + ( )p Xlogit 3.68 0.077 , 4t t

where Xt is the Parsonnet score of patient t and pt is the pre-
operative risk of mortality within 30 days of surgery for this patient.

In this set of data, for those patients who died within 30 days
after surgery, the distribution of days lived is heavily right-skewed.
Figure 1 shows that the majority of patients from the first two years
of data who died within 30 days, died within a week after surgery.
Practically, if a patient dies 5 days after surgery, it does not seem
reasonable to wait up to an additional 25 days to include the out-
come in the monitoring scheme. Figure 1 illustrates why it could be
very helpful to incorporate outcome information as soon as it is
available. If deaths occur closer to the 30-day point, then use of our
proposed method would not be as advantageous.

Proposed implementation

We propose an implementation scheme where we continue to con-
sider the patients in the order of their surgical operations as is done
in the traditional implementation [2]. Although there is no way to
know in advance if a particular patient is going to live or die, we ini-
tially assume in advance that all patients are going to survive until
the end of the 30-day time window, and then, as the operations
occur and the actual adverse outcomes are obtained, the chart is
updated accordingly, rather than waiting 30 days. Using this imple-
mentation, all patients would be assumed to survive until deter-
mined otherwise. Specifically, the chart would be updated when
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patients who were assumed to survive actually die within 30 days
after surgery. Thus, as soon as a patient dies, we would incorporate
this outcome into the chart immediately. In this manner, some previ-
ously charted CUSUM statistics would dynamically change through-
out the monitoring process.

The proposed implementation is a recursive process that would
be initiated every time an adverse event occurs. In this manner, there
would be a 30-day moving window in which the CUSUM statistics
could be updated. For instance, if we are now considering the out-
comes obtained on the 45th day of monitoring, then this backtrack-
ing window would update all outcomes considered from the 16th
day to the 45th day. Patients who were not operated on within the
last 30 days no longer need to have their control chart values
updated. It is important to realize that at the end of the monitoring
process once all outcome information has been obtained, the
CUSUM chart using the proposed implementation will be identical
to that with the traditional implementation. The dynamic updating
of the CUSUM statistics through time allows our proposed imple-
mentation to detect process deterioration sooner than the traditional
implementation.

Illustration

As an illustration of the proposed implementation, consider the
small, artificial data set of surgical outcomes with an associated 30-
day mortality response given in Table 1. Each row corresponds to a
patient. Information regarding whether or not each patient survived
30 days after surgery, as well as the number of days lived after sur-
gery was recorded. The number of days lived for patients who sur-
vived 30 days after surgery was recorded as 30+. The day on which
outcome information was obtained is calculated based on each
patient’s operation day and the number of days they lived after
surgery.

Using the proposed implementation scheme, each plotted
CUSUM statistic corresponds to a patient. However, the chart is
updated through time for each day that new outcome information
is obtained. Figure 2 illustrates how the chart updates information
as it is obtained. On Day 1, all patients operated on thus far are
assumed to survive 30 days, and thus all CUSUM statistics are zero.

The CUSUM statistics for the third patient and all subsequent patients
are updated on Day 3 when it was learned that the third patient died.
All patients after the third patient on Day 3 are still assumed to sur-
vive 30 days, and thus result in a decreasing trend of CUSUM statis-
tics. On Day 4, patients 2 and 6 died and the CUSUM statistics are
updated. Finally, on Day 7 outcome information for patients 7 and 9
was obtained and the CUSUM statistics were updated again. Hence,
previously plotted CUSUM statistics are dynamically updated as out-
come information is obtained, similar to reliability monitoring
schemes involving dynamically changing observations [6]. Also, note
that the resulting CUSUM chart for Day 7 is identical to the CUSUM
chart obtained after Day 35 using the traditional implementation. For
this illustration, a control limit of =h 2.5 is used, but another control
limit could be used in practice. If the proposed implementation is
used, the chart signals on Day 7, whereas if the traditional implemen-
tation is used, the chart would not signal until Day 34. Clearly, detec-
tion time can be reduced by using the proposed implementation.

Simulation study

A simulation study was conducted using the UK cardiac surgery
data to compare the in-control and steady state out-of-control per-
formance of the proposed implementation scheme with that of the
traditional implementation of the risk-adjusted Bernoulli CUSUM

Table 1 Example data set

Patient Operation day Survived 30 days? Days lived Outcome day

1 1 Yes 30+ 31
2 1 No 3 4
3 1 No 2 3
4 2 Yes 30+ 32
5 2 Yes 30+ 32
6 3 No 1 4
7 3 No 4 7
8 3 Yes 30+ 33
9 4 No 3 7
10 5 Yes 30+ 35
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Figure 1 Distribution of the number of days lived for patients who died within 30 days of surgery (1992–93).
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chart. For both implementations, each CUSUM statistic plotted on
the control chart corresponds to a patient, where patients are
ordered by the date of their operation. It is more informative to con-
sider the average run length (ARL) in number of days, rather than in
number of patients. It is important to note that our proposed imple-
mentation will never signal before the traditional implementation in
terms of the number of patients. When implementing the chart,
however, the time until a signal can be determined by the number of
days since monitoring began. The benefit in our implementation
scheme is clearly seen in recognizing deterioration sooner, in terms
of number of days, rather than number of patients, due to removing
the 30-day wait time restriction. For our simulation study, the num-
ber of operations for a given day was drawn with replacement from
the empirical distribution of the Phase I data and varies from one to
eight. We also considered simulations where we fixed the number of
operations per day to assess performance of the proposed implemen-
tation as the number of operations per day increases.

The simulation procedure used to compare our proposed imple-
mentation method to the traditional implementation method can be
described in the following steps. For each simulated patient t ,

1. Sample with replacement a Parsonnet score from the in-control
empirical distribution.

2. Use Equation (4) to determine the predicted probability, pt , of
death within 30 days of surgery. Adjust pt based on the assumed
odds ratio R.

3. Generate a Bernoulli random variable with probability of ‘suc-
cess’ pt .

4. With the outcome obtained in Step 3, calculate the CUSUM stat-
istic using Equation (3) with =R 21 .

5. Repeat steps 1–4 until >S ht .

To be consistent with the work of Steiner et al. [2], we used an upper
control limit of =h 4.5 which produces an in-control ARL, in terms

of the number of patients, of ~7400 [7]. We set up the control chart
so that it is designed to detect a shift of =R 21 . For the out-of-control
simulations, the process was initially simulated as in-control under the
baseline model with =R 1 for the first 50 patients to achieve steady
state conditions and the odds of death within 30 days was shifted
after patient 50. We considered various values of the odds ratio R
between 1 and 10. Additionally, we considered values of =R 2,3,4,5
for fixed numbers of operations per day of 1 through 10. Each ARL
simulation result is based on 1000 simulated control charts.

Results

The proposed implementation scheme shows improved detection
time of process deterioration in terms of days. Typically, monitoring
schemes are compared using ARL, where the in-control ARLs of the
schemes are set to be equal and the out-of-control ARLs are
observed for different size shifts. The results of the simulation study
for various odds ratios R are provided in Table 2. We note that in
our case, the in-control ARLs of the two implementation schemes
are close, but not quite equal. With the proposed implementation,
the in-control ARL is on average 15.8 days less than with the trad-
itional implementation. Any false alarm obtained by the traditional
method would likely be obtained at an earlier time by our proposed
implementation scheme. As the size of the odds ratio R increases,
the average time until detection for the proposed implementation
improves. For this application, we can signal process deterioration
up to 29 days sooner; however, if the waiting period for the
response of interest were more than 30 days, more time could be
saved. For example, in organ transplantation applications the moni-
toring of survival times is frequently used rather than the risk-
adjusted Bernoulli CUSUM because the waiting period after trans-
plantation is usually one year [8–10]. In this case, our proposed
implementation makes the risk-adjusted Bernoulli CUSUM more
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Figure 2 Illustration of proposed implementation of the risk-adjusted Bernoulli CUSUM chart. Circled triangles indicate patients who died resulting in CUSUM

statistics that were updated on the given day.
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similar to methods with continuous updating schemes that consider
time until event data and would lead to significantly improved per-
formance in terms of days until detection of a process change.

Another important aspect to notice is that the time until detection
of process deterioration will depend on the number of operations
performed per day. Figure 3 shows that the out-of-control ARL
improves for both the traditional and proposed implementations of
the risk-adjusted Bernoulli CUSUM as the number of operations per
day increases, yet the difference in days until detection between the
two implementations does not change with the number of operations
per day. However, with the proposed implementation one always
detects the shift sooner than with the traditional implementation. As
expected, larger shifts in the process result in lower ARLs for both
methods. In the limiting case, if all adverse events occurred immedi-
ately (i.e. death on the first day) the improvement in detection for the
proposed implementation would be exactly 29 days.

Discussion

With the traditional implementation of the risk-adjusted Bernoulli
CUSUM chart, one monitors patient by patient in the order of oper-
ation with a waiting period to determine the outcome. Practically, it is
inefficient to wait a specific time period, such as 30 days, if information

Table 2 ARL comparison (in days) for traditional and proposed

implementation schemes

R Traditional Proposed Difference (days) % Reduction relative
to traditional method

1 2080.9 2065.1 15.8 0.8
1.5 175.5 159.0 16.5 9.4
2 79.0 61.5 17.5 22.2
2.5 60.4 41.8 18.6 30.8
3 51.1 31.8 19.3 37.7
3.5 47.1 27.4 19.7 41.8
4 44.5 24.3 20.2 45.4
4.5 42.4 21.9 20.5 48.4
5 41.0 19.8 21.1 51.6
5.5 39.8 18.5 21.4 53.6
6 39.2 17.6 21.6 55.2
6.5 38.6 16.7 21.9 56.8
7 37.9 15.6 22.3 58.9
7.5 37.3 14.9 22.4 60.1
8 37.0 14.5 22.5 60.7
8.5 36.6 13.9 22.6 61.9
9 36.3 13.5 22.8 62.7
9.5 36.0 13.0 23.0 63.8
10 35.7 12.5 23.2 65.0
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Figure 3 ARL (in days) by number of operations per day for (a) =R 2, (b) =R 3, (c) =R 4, and (d) =R 5 (based on 1000 simulated charts).
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about some of the outcomes is available much sooner. We have pro-
posed a more practical and appealing implementation scheme for the
risk-adjusted Bernoulli CUSUM chart that incorporates outcome infor-
mation as soon as it is available. We have illustrated that the proposed
implementation significantly improves the time until detection of deteri-
oration in the process, especially when most adverse outcomes occur
toward the beginning of the waiting period.

Performance of our proposed monitoring scheme in terms of
time until detection of process deterioration is limited by the effect
of estimation error inherent in fitting the risk-adjustment model.
Furthermore, this method is intended for binary outcomes that have
a waiting period required before obtaining the outcome. If deaths
occur closer to the end of the waiting period, then use of our pro-
posed method would not be as advantageous, but would still per-
form as well as the traditional approach.

Other practical issues regarding the implementation of the risk-
adjusted Bernoulli CUSUM chart have been addressed. For example,
Tian et al. [7] discussed the impact of varying patient populations
and its effect on chart performance. As a consequence, an appropri-
ate monitoring scheme to account for varying patient populations is
the use of dynamic probability control limits [11]. Additionally,
situations arise in which observations happen concurrently and there
is no way to determine the exact order [12]. Furthermore, Paynabar
et al. [13] explored the importance of including other covariate
information, such as surgeon information, into the risk-adjustment
procedure. Jones and Steiner [14] studied the effect of Phase I esti-
mation error on the performance of the risk-adjusted Bernoulli
CUSUM chart. Also, Tang et al. [15] developed a risk-adjusted
CUSUM chart for multi-responses, in cases where the response is
not binary, but rather has several categories. This multi-response
technique was further developed by Zhang et al. [16] to include
dynamic probability control limits. Our proposed implementation
could be applied directly to accommodate dynamic probability con-
trol limits, concurrent observations, covariate information, or multi-
responses in order to improve performance.
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