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Abstract. The block cipher Camellia has now been adopted as an in-
ternational standard by ISO/IEC, and it has also been selected to be
Japanese CRYPTREC e-government recommended cipher and in the
NESSIE block cipher portfolio. Most recently, Wu et al constructed some
8-round impossible differentials of Camellia, and presented an attack on
12-round Camellia-192/256 in [5]. Later in [6], Lu et al improved the
above attack by using the same 8-round impossible differential and some
new observations on the diffusion transformation of Camellia. Consid-
ering that all these previously known impossible differential attacks on
Camellia have not taken the key scheduling algorithm into account, in
this paper we exploit the relations between the round subkeys of Camel-
lia, together with some novel techniques in the key recovery process to
improve the impossible differential attack on Camellia up to 12-round
Camellia-128 and 16-round Camellia-256. The data complexities of the
two attacks are 265 and 289 respectively, and the time complexities of the
two attacks are less than 2111.5 and 2222.1 respectively. The presented re-
sults are better than any previously published cryptanalytic results on
Camellia without the FL/FL−1 functions and whitening layers.

Keywords: Block cipher, Camellia, Impossible differential, Cryptanal-
ysis, Round subkey.

1 Introduction

The block cipher Camellia [1], with the same interface specification as the Ad-
vanced Encryption Standard(AES), supports 128-bit block size and 128-, 192-
and 256-bit key sizes, which can usually be denoted as Camellia-128, Camellia-
192 and Camellia-256 respectively. Camellia was jointly developed by NTT and
Mitsubishi Electric Corporation, and it was first published at SAC 2000. Then it
was submitted to some cryptographic evaluation projects such as the European
NESSIE Project and the Japanese CRYPTREC Evaluation, and Camellia was
selected to be CRYPTREC e-government recommended cipher in 2002 and in
the NESSIE block cipher portfolio in 2003. Furthermore, it was adopted as a new
international standard for 128-bit block cipher by ISO/IEC in 2005. As Camellia
has become one of the most worldwide used block ciphers, in the last few years
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cryptanalysts had evaluated the security of Camellia against various cryptana-
lytic techniques, including truncated differential cryptanalysis [2,3], higher order
differential cryptanalysis [4], impossible differential cryptanalysis [3,5,6], Square
attack/Integral attack [7-11], collision attack [12,13], linear cryptanalysis [14,15]
and so on.

Impossible differential cryptanalysis [16] was first proposed by Biham et al
in 1999, and was applied to the Skipjack cipher reduced from 32 to 31 rounds.
Unlike traditional differential cryptanalysis which exploits differentials with the
highest possible probability, impossible differential cryptanalysis uses differen-
tials which hold with probability 0, which can also be called impossible differ-
entials. An impossible differential can usually be built in a miss-in-the-middle
manner. Recently, impossible differential cryptanalysis had received worldwide
attention, and its application to the security analysis of AES and CLEFIA both
got very good results [17-23].

The initial analysis of Camellia against impossible differential cryptanalysis
was given by M.Sugita et al [3] in 2001, they constructed a nontrivial 7-round
impossible differential for Camellia. In 2007, by exploiting some properties of the
linear diffusion function, Wu et al [5] presented some 8-round impossible differen-
tials for Camellia, and based on it they mounted an impossible differential attack
on 12-round Camellia-192/256. Then in [6], Lu et al exploited the same 8-round
impossible differential together with the early abort technique and improved the
impossible differential cryptanalysis of Camellia. However, all of these impossi-
ble differential attacks on Camellia have not taken the key scheduling algorithm
into account. Thus in this paper, we first present some observations of the re-
lations between round subkeys, and then by taking advantage of these relations
and some novel techniques in the key recovery process, we improve the impos-
sible differential attack on Camellia up to 12-round Camellia-128 and 16-round
Camellia-256. As far as we know, these are the best published cryptanalytic re-
sults on Camellia without the FL/FL−1 functions and whitening layers, and we
summarize our results together with the previously known results on Camellia
in Table 1.

The cryptanalytic results of [6] in Table 1 come from an early version, not the
published version, so we mark them with “†”. This is because there are some
mistakes in the published version. In Step 3 of the 14-round attack for camellia-
256 in [6], the authors wrote: “Finally, for every remaining pair of plaintexts we
can get the first bytes of their intermediate values just after Round 2.” Byte
1,3,4,6,7,8 of K2 should be known for calculating the first byte just after round
2. However, only byte 1,2,3,5,8 are guessed in the attack, whereas byte 4,6,7 are
unknown. There are similar mistakes in the other attacks in [6].

This paper is organized as follows. In Section 2, we give a brief description
of Camellia. In Section 3, we describe the 8-round impossible differential and
some properties of Camellia which are used in our attacks. Then in Section 4,
we present our impossible differential attacks on 12-round Camellia-128 and 16-
round Camellia-256 respectively. Finally, in Section 5 we summarize this paper.
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Table 1. Summary of known cryptanalytic results on Camellia

Cipher # of FL/FL−1 Attack Type Data Time Source
Rounds Complexity Complexity

Camellia-128 8 × Truncated DC 283.6 255.6 [2]
9 × Collision Attack 2113.6 2121 [12]
9 × Square Attack 266 284.8 [11]
11 × Impossible DC 2120 283.4 [6]†
12 × Impossible DC 265 2111.5 Sec. 4.1

Camellia-192/256 11
√

Higher Order DC 293 2256 [4]
12 × Linear Attack 2119 2247 [14]
12 × Impossible DC 2120 2181 [5]
12 × Square Attack 266 2249.6 [11]
13 × Impossible DC 2120 2211.7 [6]†
16 × Impossible DC 289 2222.1 Sec. 4.2

2 Description of Camellia

The overall structure of Camellia is a variant of Feistel structure, with the
FL/FL−1 functions inserted at every 6 rounds. Before the first round and after
the last round, there are pre- and post- whitening layers which employ bitwise
exclusive-OR operations with 128-bit whitening subkeys respectively. In this pa-
per, we will only consider Camellia without FL/FL−1 functions and whitening
layers, namely the simplified variant of Camellia.

Let Lr−1 and Rr−1 be the left and the right halves of the r-th round input,
and Kr be the r-th round subkey respectively. Then the r-th round of Camellia
can be expressed as follows.

Lr = Rr−1 ⊕ F (Lr−1 ⊕ Kr),
Rr = Lr−1.

Here the round function of Camellia is F = P ◦ S, and the transformations S
and P are defined as follows.

S : (F 8
2 )8 −→ (F 8

2 )8

x1 |x2 |x3 |x4 |x5 |x6 |x7 |x8 −→ y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8

y1 = s1(x1), y2 = s2(x2), y3 = s3(x3), y4 = s4(x4),
y5 = s2(x5), y6 = s3(x6), y7 = s4(x7), y8 = s1(x8).

where s1, s2, s3 and s4 are four 8 × 8 S-boxes.

P : (F 8
2 )8 −→ (F 8

2 )8

y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 −→ z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8,
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8, z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8,
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8, z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8,
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7, z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7.
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Key Scheduling Algorithm of Camellia. First of all, two 128-bit variables
KL and KR are generated from the master key K. For Camellia-128, the 128-bit
key K is used as KL, and KR is 0. For Camellia-192, the left 128 bits of the key
K is used as KL, and concatenation of the right 64-bit of K and the complement
of the right 64-bit of K is used as KR. For Camellia-256, the left 128-bit of the
key K is used as KL and the right 128-bit of K is used as KR. Then two 128-bit
variables KA and KB are generated from KL and KR, but note that KB is used
only if the length of the master key is 192 or 256 bits. Finally, the 64-bit round
subkeys Kr are generated by rotating (KL, KR, KA, KB) and then taking the left
half or the right half of them. More details are shown in [1], and in the following
we only present some observations which are useful for our later attacks.

For Camellia-128, the round subkeys Kr(1 ≤ r ≤ 18) are generated by rotating
(KL, KA), and we can get the following expressions:

K1 = (KA ≪ 0)L (64), K2 = (KA ≪ 0)R (64),
K11 = (KA ≪ 60)L (64), K12 = (KA ≪ 60)R (64).

For Camellia-192/256, the round subkeys Kr(1 ≤ r ≤ 24) are generated by
rotating (KL, KR, KA, KB), and we can get the following expressions:

K1 = (KB ≪ 0)L (64), K2 = (KB ≪ 0)R (64),
K3 = (KR ≪ 15)L (64), K4 = (KR ≪ 15)R (64),

K13 = (KR ≪ 60)L (64), K14 = (KR ≪ 60)R (64),
K15 = (KB ≪ 60)L (64), K16 = (KB ≪ 60)R (64).

3 Preliminaries

3.1 Notations

Camellia is a byte-oriented block cipher, in which the 128-bit intermediate
variables are represented as 16 bytes and the 64-bit round subkeys are rep-
resented as 8 bytes. The subkey of the r-th round is represented as Kr =
(kr,1, kr,2, kr,3, kr,4, kr,5, kr,6, kr,7, kr,8). Furthermore, kr,1[i ∼ j](i, j = 1, 2, . . . ,
8, i ≤ j) denotes the i-th to the j-th bits of kr,1.

For a pair of plaintexts (L0, R0) and (L∗
0, R

∗
0), we denote the plaintext differ-

ence as (ΔL0, ΔR0), where ΔL0 = L0⊕L∗
0, ΔR0 = R0⊕R∗

0. (ΔLr, ΔRr) denotes
the output difference of the r-th round. ΔLr and ΔRr can be represented as 8
bytes, such as ΔLr = (a, 0, 0, 0, 0, 0, 0, 0) and ΔRr = (?, ?, ?, 0, ?, 0, 0, ?), where
0 denotes a zero byte difference, a denotes a nonzero byte difference and the
question mark ? denotes an unknown byte difference(two bytes marked with ?
may be different).

3.2 The 8-Round Impossible Differential of Camellia

In [5] Wu et al presented an impossible differential attack on 12-round Camellia-
192/256, which was based on the following 8-round impossible differential.

(0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) �→ (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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where a and h are arbitrary nonzero bytes. Refer to [5] for more details, and
the 8-round impossible differential is also illustrated in Fig. 1. In this paper,
we will exploit this 8-round impossible differential and improve the impossible
differential cryptanalysis of Camellia up to 12-round Camellia-128 and 16-round
Camellia-256.

�KS � P � �ΔR0 = (a, 0, 0, 0, 0, 0, 0, 0)ΔL0 = (0, 0, 0, 0, 0, 0, 0, 0)
⊕

������������

������������
ΔL1 = (a, 0, 0, 0, 0, 0, 0, 0)

�KS � P � �⊕
������������

������������

(b, 0, 0, 0, 0, 0, 0, 0)

(b, b, b, 0, b, 0, 0, b)

ΔL2 = (b, b, b, 0, b, 0, 0, b)
�KS � P � �⊕

������������

������������

(b1, b2, b3, 0, b5, 0, 0, b8)

(c1, c2, c3, c4, c5, c6, c7, c8)

ΔL3 = (a ⊕ c1, c2, c3,

c4, c5, c6, c7, c8) �KS � P � �⊕
������������

������������
ΔL4 = (h ⊕ d1, d2, d3,

d4, d5, d6, d7, d8) �KS � P � �⊕
������������

������������

P−1(X) = (b1 ⊕ a, b2 ⊕ a,

b3 ⊕ a, a, b5 ⊕ a, 0, 0, b8 ⊕ a)

X = (c1 ⊕ a ⊕ f, c2 ⊕ f,

c3 ⊕ f, c4, c5 ⊕ f, c6, c7, c8 ⊕ f)

d6 = d7 = 0, hence e2 = 0

� Contradiction !

e2 �= 0
ΔL5 = (f, f, f, 0, f, 0, 0, f)

�KS � P � �⊕
������������

������������
(e1, e2, e3, e4, e5, e6, e7, e8)

(d1, d2, d3, d4, d5, d6, d7, d8)

ΔL6 = (h, 0, 0, 0, 0, 0, 0, 0)

�KS � P � �⊕
������������

������������
(f, 0, 0, 0, 0, 0, 0, 0)

(f, f, f, 0, f, 0, 0, f)

ΔL7 = (0, 0, 0, 0, 0, 0, 0, 0)

�KS � P � �⊕
������������

������������
ΔL8 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR8 = (0, 0, 0, 0, 0, 0, 0, 0)

Fig. 1. 8-Round Impossible Differential of Camellia

3.3 Some Properties of Camellia

In this subsection, we exploit some properties of the key scheduling algorithm
of Camellia-128 and Camellia-192/256, and present the following observations
of the relations between round subkeys.
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For Camellia-128, according to its key scheduling algorithm, we know that:

K1 = (KA ≪ 0)L, K11 = (KA ≪ 60)L,
K2 = (KA ≪ 0)R, K12 = (KA ≪ 60)R.

Therefore, the five bytes of K1 and K12 at positions (1, 2, 3, 5, 8) can be expressed
as follows, respectively.

k1, 1 = KA [1 ∼ 8], k12, 1 = KA [125 ∼ 128, 1 ∼ 4],
k1, 2 = KA [9 ∼ 16], k12, 2 = KA [5 ∼ 12],
k1, 3 = KA [17 ∼ 24], k12, 3 = KA [13 ∼ 20],
k1, 5 = KA [33 ∼ 40], k12, 5 = KA [29 ∼ 36],
k1, 8 = KA [57 ∼ 64], k12, 8 = KA [53 ∼ 60].

Furthermore, the first bytes of K2 and K11 are expressed as follows, respectively.

k2, 1 = KA [65 ∼ 72], k11, 1 = KA [61 ∼ 68].

According to the above expressions, we can obtain the following property of
Camellia-128:

Property 1. For the round subkeys of Camellia-128:

1) (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8) have 28 com-
mon bits.
2) If (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8) are known,
there remains only 16 unknown bits of K1, namely (k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4]).
3) If K1 and (k12,1, k12,2, k12,3, k12,5, k12,8) are known, the value of K12 is de-
termined.
4) k2,1[1 ∼ 4] = k11,1[5 ∼ 8], k11,1[1 ∼ 4] = k1,8[5 ∼ 8].

For Camellia-192/256, according to the key scheduling algorithm, we notice that
the round subkeys of Rounds 1, 2, 15 and 16 are all determined by the interme-
diate variable KB, and the expressions are as follows.

K1 = (KB ≪ 0)L, K15 = (KB ≪ 60)L,
K2 = (KB ≪ 0)R, K16 = (KB ≪ 60)R.

Similarly, we can obtain the following properties of Camellia-192/256.

Property 2. For the round subkeys of Camellia-192/256:

1) If the value of K1 is known, then there remains only 4 unknown bits of K16.
2) If the value of K1 and K16 are known, there remains 60 unknown bits of K2.
3) If the value of K1 and K2 are known, then the value of K15 is determined.

Furthermore, according to the key scheduling algorithm of Camellia-192/256, the
round subkeys of Rounds 3, 4, 13 and 14 are all determined by the intermediate
variable KR, and the expressions are as follows.

K3 = (KR ≪ 15)L, K13 = (KR ≪ 60)L,
K4 = (KR ≪ 15)R, K14 = (KR ≪ 60)R.
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Based on these expressions, we can get the following relations between subkey
bytes.

k14,1 = k 4,6[ 6 ∼ 8 ] || k 4,7[ 1 ∼ 5 ],
k14,2 = k 4,7[ 6 ∼ 8 ] || k 4,8[ 1 ∼ 5 ],
k14,3 = k 4,8[ 6 ∼ 8 ] || k 3,1[ 1 ∼ 5 ],
k14,5 = k 3,2[ 6 ∼ 8 ] || k 3,3[ 1 ∼ 5 ],
k14,8 = k 3,5[ 6 ∼ 8 ] || k 3,6[ 1 ∼ 5 ],
k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

Therefore, we can obtain another property of Camellia-192/256.

Property 3. For the round subkeys of Camellia-192/256:

1) (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8) have 16 com-
mon bits.
2) If (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8) are known,
there remains only 19 unknown bits of K3, namely (k 3,4, k 3,6[ 6 ∼ 8 ], k 3,7).
3) If K3 and (k14,1, k14,2, k14,3, k14,5, k14,8) are known, the value of K14 is de-
termined.
4) k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

Finally, according to the analysis in [6], the linear diffusion function P of Camel-
lia satisfies the following property.

Property 4. [6] For X, X∗ ∈ (F 8
2 )8, if there exists an h such that P−1(X ⊕

X∗ ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has the form of (?, ?, ?, 0, ?, 0, 0, ?), then there is only
one possible value of h.

4 Impossible Differential Cryptanalysis of
Reduced-Round Camellia

4.1 Impossible Differential Attack on 12-Round Camellia-128

We set the 8-round impossible differential at Rounds 3 to 10, and present an
impossible differential attack on 12-round Camellia-128, which is illustrated in
Fig. 2. The first step of the attack is data collection, and we only choose the pairs
whose output differences of Round 2 satisfy the above impossible differential
distinguisher. According to the round function of Camellia, we can know that
the required plaintext difference must have the following form:

ΔL0 = (u, u, u, 0, u, 0, 0, u),
ΔR0 = P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0).

Then by constructing appropriate plaintext structures, we can obtain plaintext
pairs with the required difference, and this technique helps us reduce the data
complexity.

The second step of the attack is data filtering. Based on certain property of
ciphertext difference, we can filter out part of the wrong pairs and this may help
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� K1S � P � �ΔR0 = P (?, ?, ?, 0, ?, 0, 0, ?)

⊕(?, 0, 0, 0, 0, 0, 0, 0)

ΔL0 = (u, u, u, 0, u, 0, 0, u)
⊕

������������

������������
ΔL1 = (a, 0, 0, 0, 0, 0, 0, 0)

� K2S � P � �⊕
������������

������������
ΔL2 = (0, 0, 0, 0, 0, 0, 0, 0) ΔR2 = (a, 0, 0, 0, 0, 0, 0, 0)

8-round impossible differential

ΔL10 = (h, 0, 0, 0, 0, 0, 0, 0) ΔR10 = (0, 0, 0, 0, 0, 0, 0, 0)�K11S � P � �⊕
������������

������������
ΔL11 = (g, g, g, 0, g, 0, 0, g) �K12S � P � �⊕

������������

������������
� �

ΔL12 ΔR12 = (g, g, g, 0, g, 0, 0, g)

Fig. 2. Impossible Differential Attack on 12-Round Camellia-128

us reduce the time complexity of the following computation. Note that all the
useful ciphertext pairs must satisfy the following condition:

ΔL10 = (h, 0, 0, 0, 0, 0, 0, 0), ΔR10 = (0, 0, 0, 0, 0, 0, 0, 0).

where h denotes a nonzero byte, namely h has 255 possible values. Moreover,
for every S-box of Camellia, when the input difference of S-box is nonzero, there
are at most 27 possible output differences. Therefore, there are at most 255× 27

possible output differences (ΔL11, ΔR11) after Round 11. Considering that there
are 5 nonzero bytes of ΔL11, namely bytes at positions (1,2,3,5,8), then there
are at most 255×27×(27)5 ≈ 250 possible output differences (ΔL12, ΔR12) after
Round 12. Therefore, in the data filtering step, the probability that a random
pair remains after the test is about 2−78 = 250 × 2−128.

The third step of the attack is key recovery. According to Property 4, we can
compute the output differences of S-boxes used in Round 1 and Round 12. Then
by utilizing the difference distribution tables of S-boxes, we can recover 5 bytes
(k1,1, k1,2, k1,3, k1,5, k1,8) of K1 and 5 bytes (k12,1, k12,2, k12,3, k12,5, k12,8) of K12.
Furthermore, the corresponding pairs must be discarded if the relations between
the subkeys contradict with Property 1-1. Lastly, we recover the correct key by
discarding all the wrong subkeys using the impossible differential. In this step,
we employ the divide-and-conquer technique when decrypting with the subkey
guesses value and this also helps us reduce the time complexity of the attack.
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In the following, we describe the attack procedure in detail.

1. Data Collection: Choose 2m structures and each structure is as follows:

L0 = (x, x, x, a4, x, a6, a7, x),
R0 = P (y1, y2, y3, b4, y5, b6, b7, y8) ⊕ (y, c2, c3, c4, c5, c6, c7, c8).

where (ai, bj , cl) are fixed constants, and the 7 bytes (x, y1, y2, y3, y5, y8, y)
take all possible values. Therefore, each structure contains 256 plaintexts,
which can generate about 256 × 256/2 = 2111 plaintext pairs. Hence 2m

structures can generate about 2111+m plaintext pairs.
2. Data Filtering: According to the above analysis of the ciphertext differences,

there are 250 possible ciphertext differences. Therefore, after this test the
expected number of remaining pairs is about 2111+m × 250 × 2−128 = 233+m.

3. For each remaining pair (L0||R0, L12||R12) and (L∗
0||R∗

0, L∗
12||R∗

12), do as
follows:
(a) Compute P−1(L12 ⊕ L∗

12 ⊕ (h, 0, ..., 0)) for all the 255 possible values
of h. According to Property 4, we can obtain only one value of h such
that it has the form (?, ?, ?, 0, ?, 0, 0, ?). Similarly, we can compute the
only one value of a such that P−1(R0 ⊕ R∗

0 ⊕ (a, 0, ..., 0)) has the form
(?, ?, ?, 0, ?, 0, 0, ?).

(b) Using the obtained input and output differences of the S-box in Round
1 and Round 12, together with the value of L0 and R12, we can calculate
subkey bytes (k1,1, k1,2, k1,3, k1,5, k1,8) and (k12,1, k12,2, k12,3, k12,5, k12,8)
by searching the difference distribution tables of S-boxes. Check if the
deduced subkey bytes satisfy the 28-bit condition suggested by Property
1-1, and if this is not the case, discard the pair and return to Step 3 to try
another pair. After this test, there remains about 233+m × 2−28 = 25+m

pairs.
(c) For every guess of the 16 unknown bits (k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4]), do

as follows. Note that according to Property 1-3, we can determine the
value of K12 now.
i. For every remaining pairs, encrypt the first round to get (L1, L∗

1)
using K1, and decrypt the last round to get (R11, R∗

11) using K12.
ii. Utilizing the difference distribution tables of S-boxes, we can cal-

culate the value of k2,1 using (L1, L
∗
1), a and P−1(L0 ⊕ L∗

0); Sim-
ilarly we can calculate the value of k11,1 using (R11, R

∗
11), h and

P−1(R12 ⊕ R∗
12).

iii. Check if the subkey bytes satisfy the following equation suggested
by Property 1-4.

k11,1 = k 1,8[5 ∼ 8]||k 2,1[1 ∼ 4].

If there exists a plaintext pair that passes this test, then discard the
76-bit subkey guess value (k1,1, k1,2, k1,3, k1,5, k1,8, k12,1, k12,2, k12,3,
k12,5, k12,8, k1,4[1 ∼ 4], k1,6, k1,7[1 ∼ 4], k2,1, k11,1), as this is an im-
possible differential and the subkey guess satisfying it must be wrong.
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Furthermore, the probability that a subkey guess may remain after
this test is about 1 − 2−8. We choose m = 9, hence the number of
remaining wrong subkey is about 276(1−2−8)2

5+m ≈ 276×e−26
< 1.

The data complexity of the attack is about 256×29 = 265 CP, and the time com-
plexity of the attack is estimated as follows. The time complexity of
Step 1 is 265 encryptions, and the memory spaces needed to store the plain-
texts and ciphertexts are about 266 blocks, where one block means 128 bits. In
Step 2, choosing the qualified pairs requires about 265×250 = 2115 MA (Memory
Access), and the memory spaces needed to store the possible ciphertext differ-
ences are about 250 blocks. In Step 3, the time complexity of Step (a) is about
242 × 2/12 < 240 encryptions; the time complexity of Step (b) is less than 239

encryptions, since the calculation of key using difference distribution table of
S-box is only about one F computation; and the time complexity of Step (c) is
about 214 × 216 × 2/12 < 228 encryptions.

As a rule, one MA is equivalent to about one-round encryption of Camellia.
Therefore, the total data complexity of the attack is 265 CP, and the time com-
plexity of the attack is less than 2111.5 encryptions, and the memory complexity
of the attack is about 266 blocks.

4.2 Impossible Differential Attack on 16-Round Camellia-256

We set the 8-round impossible differential at Rounds 5 to 12, and present an
impossible differential attack on 16-round Camellia-256, which is illustrated in
Fig. 3. The first step of the attack is data collection, and we also exploit the
plaintext structure to reduce data complexity.

The second step of the attack is data filtering. In this step we try to filter out
part of the wrong pairs whose plaintext and ciphertext differences can not satisfy
the impossible differential, so as to reduce the computation workload for later
analysis. According to the 8-round impossible differential, the output differences
of a useful pair after Round 4 and Round 12 must be as follows, respectively.

ΔL4 = (0, 0, 0, 0, 0, 0, 0, 0), ΔR4 = (a, 0, 0, 0, 0, 0, 0, 0),

ΔL12 = (h, 0, 0, 0, 0, 0, 0, 0), ΔR12 = (0, 0, 0, 0, 0, 0, 0, 0).

where a and h are nonzero bytes. Therefore, for a useful pair, the left half
of output difference after Round 1 must have the form P (?, ?, ?, 0, ?, 0, 0, ?) ⊕
(?, 0, 0, 0, 0, 0, 0, 0), and the left half of the output difference after Round 2 must
have the form (u, u, u, 0, u, 0, 0, u). Similarly, the right half of the input difference
before Round 16 must have the form P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0),
and the right half of the input difference before Round 15 must have the form
(u, u, u, 0, u, 0, 0, u). Hereafter, we denote the set of differences with the form
P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0) as Π1, and the set of differences with
the form (u, u, u, 0, u, 0, 0, u) as Π2. Obviously, there are 248 elements in the set
Π1 and 28 elements in the set Π2, namely #{Π1} = 248 and #{Π2} = 28.
Therefore, the probability that a random plaintext pair is a useful pair for our
analysis is about 2−144 = 248

264 × 248

264 × 28

264 × 28

264 .
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Fig. 3. Impossible Differential Attack on 16-Round Camellia-256

The third step of the attack is subkey guessing and sieving, and the divide-
and-conquer technique is also used to reduce the time complexity. First of all, we
need to guess part of the round subkeys to encrypt and decrypt the first and last
two rounds, respectively. Then based on Property 4, we can compute the output
differences of S-boxes used in Round 3 and Round 14. Utilizing the difference
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distribution tables of the S-boxes, we can calculate 5 bytes (k3,1, k3,2, k3,3, k3,5,
k3,8) of K3 and 5 bytes (k14,1, k14,2, k14,3, k14,5, k14,8) of K14 , respectively. Then
we use Property 2 and Property 3 to filter out the wrong pairs. Lastly, using
the remaining pairs we can discard all the wrong subkey guesses based on the
impossible differential, and thereby recover the correct key.

In the following, we describe the attack procedure in detail.

1. Data Collection: Choose 289 plaintexts as follows:

L0 = (x1, ..., x8), R0 = (y1, ..., y8)

where xi(1 ≤ i ≤ 8) and y1 all take 64 arbitrary values chosen from F 8
2 , and

yj(1 < j ≤ 8) all take 32 arbitrary values chosen from F 8
2 . This way we can

get about 289 ·289/2 ≈ 2177 plaintext pairs, and these pairs need to be stored
for later analysis which requires about 2178 blocks memory.

2. For every guess of K1, do the followings:
(a) Encrypt the first round for each of the 289 plaintexts, and check if the

output difference F (L0, K1)⊕F (L∗
0, K1)⊕R0 ⊕R∗

0 satisfies the form of
P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0). If this is not the case, discard
the corresponding plaintext pair. After this test, there remains about
2177 × 248

264 = 2161 pairs.
(b) According to Property 2-1, K16 has 60 common bits with K1, and thus

there are only 24 possible values of K16. For every possible value of K16,
decrypt the last round for each of the 289 plaintexts. Check if the input
difference F (R16, K16) ⊕ F (R∗

16, K16) ⊕ L16 ⊕ L∗
16 of Round 16 satisfies

the form of P (?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0). If this is not the
case, discard the corresponding pair. After this test, there remains about
2161 × 248

264 = 2145 pairs.
(c) For every guess of K2, encrypt the second round for the 289 plaintexts.

Note that there are only 60 unknown bits of K2 after guessing the val-
ues of K1 and K16 according to Property 2-2. Check if F (L1, K2) ⊕
F (L∗

1, K2)⊕R1⊕R∗
1 has the form of (u, u, u, 0, u, 0, 0, u). If this is not the

case, discard the pair. After this test there remains about 2145× 28

264 = 289

pairs.
(d) Decrypt Round 15 for each of the 289 pairs using K15 which can be de-

duced by K1 and K2. Check if the difference F (R15, K15)⊕F (R∗
15, K15)⊕

L15 ⊕ L∗
15 satisfies the form (u, u, u, 0, u, 0, 0, u). Discard the unsatisfied

pairs, and after this step there remains about 289 × 28

264 = 233 pairs.
3. For each of the 2128 possible candidates of (K1, K2, K15, K16), and for each

of the 233 remained pairs (L0||R0, L16||R16) and (L∗
0||R∗

0, L
∗
16||R∗

16), do as
follows:
(a) Encrypt the first two rounds and decrypt the last two rounds to get

(L2||R2, L14||R14) and (L∗
2||R∗

2, L
∗
14||R∗

14).
(b) Compute P−1(L14 ⊕ L∗

14 ⊕ (h, 0, ..., 0)) for all the 255 possible values
of h. According to Property 4, we can obtain only one value of h such
that it has the form (?, ?, ?, 0, ?, 0, 0, ?). Similarly, we can compute the



454 W. Wu, L. Zhang, and W. Zhang

only one value of a such that P−1(R2 ⊕ R∗
2 ⊕ (a, 0, ..., 0)) has the form

(?, ?, ?, 0, ?, 0, 0, ?).
(c) Using the obtained input and output differences of the S-box in Round

2 and Round 14, together with the value of L2 and R14, we can calculate
subkey bytes (k3,1, k3,2, k3,3, k3,5, k3,8) and (k14,1, k14,2, k14,3, k14,5, k14,8)
by searching the difference distribution tables of S-boxes. Check if the
deduced subkey bytes satisfy the 16-bit condition suggested by Property
3-1, and if this is not the case, discard the pair and return to Step 3 to
try another pair. After this test, there remains about 233 × 2−16 = 217

pairs.
(d) For each possible value of the 19 unknown bits (k3,4, k3,6[6 ∼ 8], k3,7) of

K3, do as follows. Note that according to Property 3-3, we can know the
value of K14 now.
i. For every remaining pairs, encrypt Round 3 using K3 and decrypt

Round 14 using K14 to get (L3, L12) and (L∗
3, L

∗
12).

ii. Utilizing the difference distribution tables of S-boxes, calculate the
value of k4,1 using (L3, L

∗
3), a and P−1(L2 ⊕L∗

2); calculate the value
of k13,1 using (L12, L

∗
12), h and P−1(L13 ⊕ L∗

13).
iii. Check if the subkey bytes satisfy the following equation suggested

by Property 3-4.

k13,1 = k 3,6[ 6 ∼ 8 ] || k 3,7[ 1 ∼ 5 ].

If there exists a plaintext pair that passes this test, then discard
the 221(= 128 + 64 + 19) bits subkey guess(KB, K3, K14), as this is
an impossible differential and the subkey guess satisfies it must be
wrong. Furthermore, the probability that a subkey guess may remain
is about 1−2−8, and the number of remaining wrong subkey is about
2221(1 − 2−8)2

17 ≈ 2221 × e−29
< 1.

The data complexity of the attack is about 289 CP, and the time complexity
of the attack can be estimated as follows. Step 2(a) has a time complexity of
about 264 × 289 × 2−4 = 2149, and needs about 248 × 64 bits memory spaces
to store the elements in the set Π1, and then requires about 264 × 289 × 248 =
2201MA(Memory Access) for testing the qualified pairs. Step 2(b) has a time
complexity of about 264 × 24 × 289 × 2−4 = 2153, and requires about 264 × 24 ×
289 × 248 = 2205MA(Memory Access) for testing the qualified pairs. Step 2(c)
has a time complexity of about 264 × 264 × 289 × 2−4 = 2213, and needs about
264×264×289×28 = 2225MA for testing the qualified pairs. Step 2(d) has a time
complexity of about 264 × 264 × 289 × 2−4 = 2213 encryptions and 2225MA. In
Step 3, the time complexity of Step 3(a) is about 2128×233×2/4 = 2160; the time
complexity of Step 3(b) is about 2128×233×2/16 = 2158; the time complexity of
Step 3(c) is less than 2158 encryptions, since the time to calculate subkey using
difference distribution table of S-box is only about one F computation; and the
time complexity of Step 3(d) is about 2128×219×217×2/16 < 2151 encryptions.

Therefore, the total data complexity of the attack is 289 CP, and the time com-
plexity of the attack is less than 2222.1 encryptions, and the memory complexity
of the attack is about 2178 blocks.
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5 Conclusion

In [5] Wu et al constructed some 8-round impossible differentials of Camellia,
and based on it they successfully attacked Camellia reduced up to 12 rounds
using impossible differential cryptanalysis. Then in [6] Lu et al observed some
new properties of the linear diffusion function P , and by using the same 8-round
impossible differential they improved the impossible differential cryptanalysis of
Camellia. However, all of these impossible differential attacks on Camellia have
not taken the key scheduling algorithm into account. In this paper, we present
some observations of the relations between round subkeys of Camellia, and by
taking advantage of these relations and some novel techniques (such as differen-
tial cryptanalysis, divide-and-conquer etc.), we improve the impossible differen-
tial attack on Camellia up to 12-round Camellia-128 and 16-round Camellia-256.
These results are better than any previously published cryptanalytic results on
Camellia without the FL/FL−1 functions and whitening layers. Note that our
method used in this paper does not apply to Camellia-192 effectively, since the
relations between round subkeys of Camellia-192 are difficult to exploit in the
attack process.
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