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Improved imputation of low-frequency and
rare variants using the UK10K haplotype
reference panel
Jie Huang1,*, Bryan Howie2,*, Shane McCarthy1, Yasin Memari1, Klaudia Walter1, Josine L. Min3,

Petr Danecek1, Giovanni Malerba4, Elisabetta Trabetti4, Hou-Feng Zheng5,6,7, UK10K Consortiumw,

Giovanni Gambaro8, J. Brent Richards5,6,7,9, Richard Durbin1, Nicholas J. Timpson3,

Jonathan Marchini10,11,# & Nicole Soranzo1,12,#

Imputing genotypes from reference panels created by whole-genome sequencing (WGS)

provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP)

content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781

whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize

genetic variation down to 0.1% minor allele frequency in the British population. Here we

demonstrate the value of this resource for improving imputation accuracy at rare and

low-frequency variants in both a UK and an Italian population. We show that large increases

in imputation accuracy can be achieved by re-phasing WGS reference panels after initial

genotype calling. We also present a method for combining WGS panels to improve variant

coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS

haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project.

Finally, we introduce a novel approximation that maintains speed without sacrificing impu-

tation accuracy for rare variants.
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S
tatistical inference of missing genotypes (imputation),
where genotyped markers from SNP arrays are used to
impute unobserved genotypes from haplotype panels such

as the HapMap data, has been instrumental to the discovery of
thousands of complex trait loci in meta-analyses of genome-wide
association studies (GWAS)1,2. Whole-genome sequencing
(WGS) provides near-complete characterization of genetic
variation, but it is still prohibitive for researchers to conduct
WGS on the large number of samples that are needed to study
phenotypic associations of low-frequency and rare genetic
variants (minor allele frequency (MAF) o1–5% and o1%
respectively). Recently, the 1000 Genomes Project (1000GP) has
provided phased haplotypes for more than a thousand samples
from diverse worldwide populations, thereby boosting variant
coverage and imputation quality, particularly for variants with
MAFs of 1–5% (ref. 3). Imputation using this large reference
panel has been made computationally efficient by pre-phasing of
GWAS samples4 and approximations that select a subset of
reference haplotypes5.

Here we describe a novel WGS imputation panel comprising
3,781 samples from the UK10K Cohorts project6. We show that
this reference panel greatly increases accuracy and coverage of
low-frequency variants relative to a panel of 1,092 individuals
from the 1000GP. In addition, we show that imputation accuracy
can improve substantially when reference haplotypes are re-
phased after initial WGS genotype calling. We present a practical
solution for combining imputation reference panels to increase
variant coverage, and we introduce a new approximation that
maintains the speed of existing approximations while achieving
higher accuracy.

Results
The UK10K imputation panel. The UK10K Cohorts Project6

includes two population samples from the UK (http://
www.uk10k.org/studies/cohorts.html). The TwinsUK registry
comprises unselected, mostly female volunteers ascertained
from the general population through national media campaigns
in the UK7. The Avon Longitudinal Study of Parents and
Children (ALSPAC) is a population-based birth cohort study that
recruited 413,000 pregnant women resident in Bristol (formerly
Avon), UK8. A total of 1,990 individuals from TwinsUK and
2,040 individuals from ALSPAC were consented for sequencing.
Variant sites and genotype likelihoods were called using
SAMtools9, and genotypes were refined and phased using
Beagle10, following similar procedures to the 1000GP
(Methods)3. After QC, 45,492,035 variant sites (42,001,210
single-nucleotide variants and 3,490,825 insertion/deletions
(INDELs)) were retained (Table 1) in 1,854 and 1,927
individuals in the TwinsUK and ALSPAC panels, respectively.
We downloaded phased haplotypes from 1000GP (Phase 1
integrated v3), which include a total of 39,527,072 sites. We

developed new software functionality for merging haplotype
reference panels (Supplementary Note 1 and Supplementary
Fig. 1). For imputation using the merged panel, here we removed
multi-allelic sites and further excluded variants seen only in
1000GP or seen only once in the combined 1000GPþUK10K
data set (singletons, see footnote of Table 1 for details). The
choice of removing 1000GP-only and singleton sites was designed
to specifically evaluate the impact of the increased European-
ancestry panel in UK10K vis-à-vis the smaller 1000GP EUR
panel. A total of 26,032,603 sites were retained for the imputation
reference panel of UK10K panel, and 32,449,428 sites for the
imputation reference panel of 1000GP. Given that 16,122,337
sites exist in both panels, combining the two reference panels
results in a total of 42,359,694 sites. Overall, 5,775,752 (35.8%) of
the overlapping sites had frequencies 45% and another 2,451,738
(15.2%) had frequencies between 1 and 5% in the UK10K sample.

Imputation evaluation of UK10K versus 1000GP. As a first
assessment of the UK10K reference panel, we performed a leave-
one-out cross-validation on a pseudo-GWAS of UK ancestry, cor-
responding to a sub-sample of 1,000 individuals from the UK10K
WGS data set (500 from TwinsUK and 500 from ALSPAC). For this
experiment, we removed each sample from the reference panel in
turn, selected 13,413 sites on chromosome 20 from the Illumina
610 k bead chip (pseudo-GWAS panel), and imputed all other sites
on this chromosome from a given reference panel. We conducted
the imputation with three haplotype reference panels: the 1000GP
Phase 1 panel, the ‘original’ UK10K panel produced by initial gen-
otype refinement and haplotyping with BEAGLE, and a ‘re-phased’
UK10K panel that was generated by using SHAPEIT v2 (ref. 11) to
estimate haplotypes from the BEAGLE genotypes (Supplementary
Fig. 2). The accuracy of imputed variants was calculated as the
squared Pearson correlation coefficient (r2) between imputed geno-
type dosages in (0–2) and masked sequence genotypes in (0,1,2). The
results were stratified into non-overlapping MAF bins for plotting.

The results of this experiment are shown in Fig. 1a, which
focuses on variants with MAFo5%. The corresponding plot for
all MAF is shown in Supplementary Fig. 3. Both UK10K reference
panels (blue dotted and solid lines) produced higher accuracy
than the 1000GP panel (black line), with greater gains at lower
frequencies. These trends were expected due to the larger sample
size and better ancestry matching of the UK10K reference panel
to the pseudo-GWAS data. Notably, the UK10K reference panel
yielded much higher imputation accuracy after re-phasing with
SHAPEIT v2 (solid versus dotted blue lines): the mean r2 at low
frequencies increased by 40.1 (20%) after re-phasing, which
implies a substantial boost in the power to detect associations. A
large imputation panel is a resource that can inform a variety of
association studies, so these results suggest that taking the time to
improve a WGS panel’s haplotype quality could have substantial
downstream benefits.

Table 1 | Descriptives for the UK10K and 1000GP reference panels used for imputation.

UK10K 1000GP(Phase 1 v3) Combined Overlap

N samples (% European) 3,781 (100%) 1,092 (34.7%) 4,873 —
N total sites in final release 45,492,035 39,527,072 —
N total sites after filtering* 26,032,603 32,449,428 42,359,694 16,122,337

Autosome SNPs 23,411,635 29,797,220 38,238,102 14,970,753
Autosome INDELs 1,698,262 1,370,819 2,407,858 661,223
Chr X SNPs 858,380 1,223,328 1,612,230 469,478
Chr X INDELs 64,326 58,061 101,504 20,883

*For UK10K, the following sites were excluded: 18,180,633 singletons that do not exist in 1000GP, 1,064,168 multi-allelic sites and 214,631 mis-matched alleles sites. For 1000GP, the following sites were
excluded: 7,053,246 singletons that do not exist in UK10K, 23,932 sites with a SNP and an INDEL at the same position and 443 within large structural deletions. The bold indicates that these four
categories of variants are subsets of the N total sites after filtering.
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Evaluation of combining two reference panels. It is becoming
increasingly common for investigators to conduct their own WGS
of particular study populations, and a natural goal is to combine
these data sets with publicly available reference panels (such as
1000GP) to increase sample size and variant coverage for impu-
tation of GWAS cohorts. This is already a ubiquitous problem,
and there are multiple ways to integrate WGS data sets that
require different levels of data sharing and computing power. In
this work, we suggest a simple approach that should be feasible
for most groups that have sufficient computational resources for
GWAS imputation. Our approach is to take two-phased reference
panels and reciprocally impute them up to the union set of
variants, then use this combined panel for GWAS imputation; we
have implemented this functionality in IMPUTE2 (ref. 1) (details
are shown in Supplementary Table 1 and Supplementary Note 1).

To evaluate this new functionality, we used a combined
1000GPþUK10K panel to perform imputation with pseudo-
GWAS data sets drawn from the UK and Italy (details below). In
each of these comparisons, we imputed all available reference
variants and stratified them by expected r2, which is a confidence
metric produced by IMPUTE2 (also known as ‘info’ in the
software output). Unlike the true r2 metric, which is usually
calculated by masking and imputing ‘truth’ genotypes, the
expected r2 metric allows direct comparisons of reference panel
performance across study populations that have substantially

different sets of genotyped truth variants. We have found that
predicted r2 values tend to be larger than true r2 values for low-
frequency variants (for example, only B2/3 of variants with
expected r2

Z0.4 and MAFo5% have true r2
Z0.4), so the

absolute numbers of high-confidence imputed variants reported
in this section should be treated as upper bounds; the emphasis is
on qualitative patterns between reference panels and between
study populations.

Figure 1b shows how a combined 1000GPþUK10K panel
(red) produced by this method performed against each panel
separately (1000GP, black; UK10K, blue) when imputing a
pseudo-GWAS of UK ancestry. For these evaluations, we used
UK10K and 1000GP haplotype panels rephased using SHAPEIT
v2, which were previously shown to yield more accurate
imputation compared with the corresponding ‘original’ haplo-
types. The combined and UK10K panels produced very similar
numbers of high-confidence (expected r240.8) variants at MAFs
of 0.5% and higher, implying that the combined panel is neither
helpful nor harmful for imputing common and low-frequency
variants when a large, population-specific panel is available. On
chromosome 20, the combined panel added 2,356 high-
confidence rare variants that were not captured by the UK10K
panel (MAFo0.5%; 4% increase), which could reflect mutations
that have drifted to very low frequencies in the UK but persist on
the same haplotype background elsewhere in Europe5,12.
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Figure 1 | Imputation performance for different imputation strategies and reference panels. (a) Imputation accuracy in the UK10K pseudo-GWAS

test panel using reference panels from 1000GP (black) and UK10K (blue). The ‘original’ UK10K reference panel (dotted blue line) was produced by

standard genotype refinement of low-coverage sequencing data, whereas the ‘rephased’ reference panel (solid blue line) was produced by running

SHAPEIT v2 on the genotypes called by BEAGLE to improve haplotype accuracy. (b) Number of imputed variants in UK10K pseudo-GWAS panel as a

function of predicted minor allele frequency in the study cohort (x-axis), expected imputation r2 (density of shading), and reference panel: 1000GP (black),

UK10K (blue), or combined UK10K and 1000GP (red). Confidently imputed variants are shown in the bottom segment of each bar for easy comparison.

Note that expected r2 tends to be larger than true r2. (c) As in b, but using the INCIPE cohort (representative of the general Italian population) as a

pseudo-GWAS panel. (d) Imputation accuracy in the INCIPE pseudo-GWAS panel using the UK10K reference panel and different imputation

approximations. Results are provided for a run that used all reference haplotypes with no approximation (blue solid line), a run that used an

established Hamming distance approximation (orange solid line), and a run that used a new tract sharing approximation (orange dashed line).
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Figure 1c provides the results of a similar evaluation carried out
in a population in northern Italy (INCIPE cohort), also based on
chromosome 20. The INCIPE cohort was newly genotyped in this
study, using Illumina HumanCoreExome-12v1-1 arrays. After
stringent QC (Online Supplementary Methods), chromosome 20
genotypes from 6,300 SNPs in 2,145 participants were used to
drive imputation with each reference panel. In this data set the
UK10K reference panel outperformed the 1000GP panel in all
frequency bins, despite the fact that the 1000GP includes a panel
(TSI, or ‘Toscani in Italia’) that is genetically more similar to
the study population. This confirms previous findings13 that
reference sample size is often more important than population
matching. As before, the combined 1000GPþUK10K panel
yielded a larger number of high-confidence imputed variants than
the UK10K panel alone—here, the combined panel added 7,466
well-imputed variants with MAFo0.5%, for a 40% increase in
rare variants over the UK10K panel (Fig. 1b). These results
suggest that it can be especially useful to combine the strengths of
multiple panels when a large, population-specific reference set is
not available for a particular GWAS population.

Imputation metrics for choosing reference haplotypes. In the
course of our analyses, we noticed that some rare variants were
imputed well when using the entire UK10K reference panel to
drive imputation, yet poorly when using IMPUTE2’s khap

approximation (all of the results described above are based on
using the full reference panel). This approximation reduces the
computational cost of imputation by using a region-wide (for
example, across a 3MB imputation chunk) Hamming distance
metric to reduce the number of reference haplotypes used by a
given GWAS haplotype (see also Supplementary Fig. 4).
Our investigation of these variants led us to develop a new
approximation that uses local (rather than region-wide) haplo-
type sharing to choose a subset of reference haplotypes (see
Supplementary Note 2 for details). This approximation delivers a
speed boost similar to that of the existing khap approximation,
but it does not sacrifice imputation accuracy at rare and
low-frequency variants. For example, Fig. 1d shows the results of
imputing the INCIPE pseudo-GWAS data with the UK10K
reference panel (see also Supplementary Fig. 5). The full UK10K
panel produced the highest accuracy (solid blue line), whereas the
khap approximation based on Hamming distance (solid orange
line) was less accurate for SNPs with MAFo5%. By contrast, our
new approximation based on haplotype tract sharing (dashed
orange line) was nearly as accurate as the full reference panel, at
B10% of the computing time (see also Supplementary Fig. 6). All
of these strategies for choosing reference haplotypes improved
slightly (1–5% increase in mean r2) when the 1000GP haplotypes
were added to the UK10K panel, but their relative accuracies
remained similar to those shown in Fig. 1d. Further speed
improvements are possible for a modest price in accuracy (see
Supplementary Note 2).

Discussion
As WGS becomes a standard tool for population and disease
genetics, there will be many questions about how to design
sequencing studies, how to process the data, how to combine data
across studies, and how to limit the computational costs of
downstream analysis. With data from one of the most ambitious
population sequencing studies to date, we have demonstrated the
value of a large, UK-specific reference panel for imputation in
British cohorts and in other European populations. Our results
show that state-of-the-art phasing methods like SHAPEIT v2 are
essential for creating high-quality haplotype panels. Combining
WGS data across studies is a desirable goal, and we have
implemented an approach in IMPUTE2 that can integrate sets of

phased haplotypes to produce a unified reference panel; other
strategies for combining WGS data may improve haplotype
quality, but our approach has the advantage of being relatively
simple and fast. Finally, we have proposed a new approximation
that will help reduce the trade-off between imputation speed and
accuracy as reference panels continue to grow. The novel
strategies we have presented will inform other investigators who
wish to use WGS reference panels for imputation, and they will
spur additional methods development as population sequencing
resources proliferate.

Future efforts to combine multiple large low-coverage sequen-
cing datasets into a substantially larger haplotype resource will
likely increase imputation performance, especially at variants with
frequencies below 0.1%. We generated a combined reference
panel with 42.4 million imputable sites, which is much larger than
the 26.6 million imputable sites in the UK10K panel or 32.5
million imputable sites in the 1000GP panel. The UK10K WGS
haplotypes for 3,781 samples are available for download from the
European Genome-phenome Archive (https://www.ebi.ac.uk/ega/)
under managed access conditions (http://www.uk10k.org/
data_access). The functionality described in this work is available
from the IMPUTE2 website (http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html) and the SHAPEIT v2 website (https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html).

Methods
Sample collections. The ALSPAC is a long-term health research project. More
than 14,000 mothers enrolled during pregnancy in 1991 and 1992, and the health
and development of their children has been followed in great detail ever since8.
A random sample of 2,040 study participants was selected for WGS. The ALSPAC
Genetics Advisory Committee approved the study and all participants gave signed
consent to the study.

The Department of Twin Research and Genetic Epidemiology, is the UK’s only
twin registry of 11,000 identical and non-identical twins between the ages of 16 and
85 years (ref. 14). The database used to study the genetic and environmental
aetiology of age-related complex traits and diseases. The St Thomas’s Hospital
Ethics Committee approved the study and all participants gave signed consent to
the study.

Sequence data production. Low-read depth WGS was performed in the TwinsUK
and ALSPAC as part of the UK10K project. Methods for the generation of these
data are described in detail as follows6:

Low coverage WGS was performed at both the Wellcome Trust Sanger Institute
and the Beijing Genomics Institute (BGI). DNA (1–3 mg) was sheared to
100–1,000 bp using a Covaris E210 or LE220 (Covaris, Woburn, MA, USA).
Sheared DNA was size subjected to Illumina paired-end DNA library preparation.
Following size selection (300–500 bp insert size), DNA libraries were sequenced
using the Illumina HiSeq platform as paired-end 100 base reads according to
manufacturer’s protocol.

Data generated at the Sanger Institute and BGI were aligned to the human
reference separately by the respective centres. The BAM files3 produced from these
alignments were submitted to the European Genome-phenome Archive. The
Vertebrate Resequencing Group at the Sanger Institute then performed further
processing.

Sequencing reads that failed QC were removed using the Illumina GA Pipeline,
and the rest were aligned to the GRCh37 human reference, specifically the
reference used in Phase 1 of the 1000GP (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/reference/human_g1k_v37.fasta.gz). Reads were aligned using BWA
(v0.5.9-r16) (ref. 4). This involved the following steps:

1. Index the reference fasta file:
bwa index -a bwtsw oreference_fasta4
2. For each fastq file:
bwa aln -q 15 -f osai_file4 oreference_fasta4 ofastq_file4
3. Create SAM files [sam] using bwa sampe for paired-end reads:
bwa sampe -f osam_file4 oreference_fasta4 osai_files4 ofastq_files4
4. Create sorted BAM from SAM. For alignments created at the Sanger this was

done using Picard (v1.36; http://picard.sourceforge.net/)
SamFormatConverter and samtools (v0.1.11) sort. For alignments created at
the BGI, this was done using samtools (v0.1.8) view and samtools sort.

5. PCR duplicates reads in the Sanger alignments were marked as duplicate
using the Picard MarkDuplicates, whereas in the BGI alignments they were
removed using samtools rmdup.

Further processing to improve SNP and INDEL calling, including realignment
around known INDELs, base quality score recalibration, addition of BAQ tags,
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merging and duplicate marking follows that used for Illumina low coverage data in
Phase 1 of the 1000GP5. Software versions used for UK10K for the steps described
in that section were GATK version 1.1-5-g6f43284, Picard version 1.64 and
samtools version 0.1.16.

SNP and INDEL calls were made using samtools/bcftools
(version 0.1.18-r579: https://github.com/samtools/samtools/commit/
70c740facc966321754c6bfcc6d61ea056480638)6 by pooling the alignments from
3,910 individual low coverage BAM files. All-samples and all-sites genotype
likelihood files (bcf) were created with the samtools mpileup command

samtools mpileup -EDVSp -C50 -m3 -F0.2 -d 8000 -P ILLUMINA -g
with the flags:
C¼Coefficient for downgrading mapping quality for reads containing excessive

mismatches.
d¼At a position, read maximally d reads per input BAM
Variants were then called using the following bcftools command to produce a

VCF file7

bcftools view -m 0.9 -vcgN.
For calling on chromosome X and Y, the following settings were applied. The

pseudo-autosomal region (PAR) was masked on chromosome Y in the reference
fasta file. Male samples were called as diploid in the PAR on chromosome X, and
haploid otherwise. No calls were made on chromosome Y for female samples.
Diploid/haploid calls were made using the -s option in bcftools view. The PAR
regions were: X-PAR1 (60,001-2,699,520); X-PAR2 (154,931,044-155,260,560);
Y-PAR1 (10,001-2,649,520); Y-PAR2 (59,034,050-59,363,566). The pipeline
(run-mpileup) used to create the calls is available from https://github.com/
VertebrateResequencing/vr-codebase/tree/develop.

The observation of spikes in the insertion/deletion ratio in sequencing cycles of
a subset of the sequencing runs were linked to the appearance of bubbles in the
flow cell during sequencing. To counteract this, the following post-calling filtering
was applied. The bamcheck utility from the samtools package was used to create a
distribution of INDELs per sequencing cycle. Lanes with INDELs predominantly
clustered at certain read cycles were marked as problematic, specifically where the
highest peak was 5x bigger than the median of the distribution. The list of
problematic lanes included 159 samples. In the next step we checked mapped
positions of the affected reads to see if they overlapped with called INDELs, which
they did for 1,694,630 called sites. The genotypes and genotype likelihoods of
affected samples were then set to the reference genotype unless there was a support
for the indel also in a different, unaffected lane from the same sample. In total,
140,163 genotypes were set back to reference and 135,647 sites were excluded by
this procedure. Note that this step was carried out on raw, unfiltered calls prior to
Variant Quality Score Recalibration (VQSR) filtering.

VQSR8 was used to filter sites. For SNPs, the GATK (version 1.3-21)
UnifiedGenotyper was used to recall the sites/alleles discovered by samtools in
order to generate annotations to be used for recalibration. Recalibration for the
INDELs used annotations derived from the built-in samtools annotations. The
GATK VariantRecalibrator was then used to model the variants, followed by
GATK ApplyRecalibration, which assigns VQSLOD (variant quality score log odds
ratio) values to the variants. For more detailed information on VQSR, see http://
www.broadinstitute.org/gsa/wiki/index.php/Variant_quality_score_recalibration.
SNPs and INDELs were modeled separately, with parameters given below:

1. Annotations
a. SNPs: QD, DP, FS, MQ, HaplotypeScore, MQRankSum, ReadPosRankSum,

InbreedingCoeff
b. INDELSs: MSD, MDV, MSQ, ICF, DP, SB, VDB

2. Training set

a. SNPs: HapMap 3.3: hapmap_3.3.b37.sites.vcf, Omni 2.5M chip:
1000G_omni2.5.b37.sites.vcf

b. INDELs: Mills-Devine, 1000 Genomes Phase I

3. Truth Set

a. SNPs: HapMap 3.3: hapmap_3.3.b37.sites.vcf
b. INDELS: Mills-Devine

4. Known Set

a. SNPs: dbSNP build 132: dbsnp_132.b37.vcf
b. INDELs: Mills-Devine

The truth-set sites are defined as truly showing variation from the reference.
VQSLOD scores are calibrated by how many of the truth sites are retained when
sites with a VQSLOD score below a given threshold are filtered out. For single-
nucleotide variants sites a truth sensitivity of 99.5%, which corresponded to a
minimum VQSLOD score of � 0.6804 was selected, that is, for this threshold
99.5% of truth sites were retained. For INDEL sites a truth sensitivity of 97%, which
corresponded to a minimum VQSLOD score of 0.5939 was chosen. Finally, we also
introduced the filter Po10� 6 to remove sites that failed the Hardy–Weinberg
equilibrium.

The VQSLOD score and other annotations from GATK (BaseQRankSum,
Dels, FS, HRun, HaplotypeScore, InbreedingCoeff, MQ0, MQRankSum, QD,

ReadPosRankSum, culprit) were copied back to the original samtools calls,
excluding annotations which already existed in or did not apply to the samtools
VCFs (DP and MQ, AC, AN). Each VCF further contained the filters LowQual
(a low-quality variant according to GATK) and MinVQSLOD (Variant’s VQSLOD
score is less than the cutoff). All sites that did not fail these filters were marked as
PASS and brought forward to the genotype refinement stage.

Of the 4,030 samples (1,990 TwinsUK and 2,040 ALSPAC) that were submitted
for sequencing, 3,910 samples (1,934 TwinsUK and 1,976 ALSPAC) were
sequenced and went through the variant calling procedure. Low-quality samples
were identified before the genotype refinement by comparing the samples to their
GWAS genotypes using about 20,000 sites on chromosome 20. Comparing the raw
genotype calls to existing GWAS data, we removed a total of 112 samples (64
TwinsUK and 48 ALSPAC) because of one or more of the following causes: (i) high
overall discordance to SNP array data (43%; 55 TwinsUK and 36 ALSPAC),
(ii) heterozygosity rate43SD from population mean (1 TwinsUK and 1 ALSPAC),
suggesting contamination (iii) no SNP array data available for that sample
(7 TwinsUK and 0 ALSPAC) and (iv) sample below 4x mean coverage (1 TwinsUK
and 11 ALSPAC). Overall, 3,798 samples (1,870 TwinsUK and 1,928 ALSPAC)
were brought forward to the genotype refinement step.

The missing- and low-confidence genotypes in the filtered VCFs were filled out
through an imputation procedure with BEAGLE 4 (rev909) (ref. 9).

Additional sample-level QC steps were carried out on refined genotypes, leading
to the exclusion of additional 17 samples (16 TwinsUK and 1 ALSPAC) because of
one or more of the following causes: (i) non-reference discordance (NRD) with
GWAS SNP data45% (12 TwinsUK and 1 ALSPAC), (ii) contamination identified
by multiple relations to other samples (13 TwinsUK and 1 ALSPAC), (iii) failed sex
check (3 TwinsUK and 0 ALSPAC). To identify contamination we pruned the
WGS data to a set of independent SNPs and calculated genome-wide average
identity by state between each pair of samples across the two cohorts. Samples were
removed if they had 425 relations with IBS40.125 (a high number of
relationships may indicate contamination). The resulting set of contaminated
samples corresponded almost completely to the set of samples with NRD45%.
This left a final set of 3,781 samples (1,854 TwinsUK and 1,927 ALSPAC).
These VCF files were submitted to the EGA.

Evaluation of imputation accuracy in the UK10K project. The UK10K final
release WGS data of 3,781 samples and 45,492,035 sites was used for creation of
haplotype reference WGS data sets. For each chromosome, a summary file was first
generated and merged with that of the 1000GP WGS data to identify multi-allelic
sites, sites with inconsistent alleles with that of the 1000GP data, and singletons not
existing in 1000GP. These sites were excluded to create a new set of VCF files,
leaving 26,032,603 sites. The VCF-QUERY tool was used to convert the new VCF
files into phased haplotypes and legend files for IMPUTE2. VCF files were con-
verted to binary ped (bed) format and multi-allelic sites excluded, and files were
then split into 3MB chunks with ±250 kb flanking regions. SHAPEIT v2 was used
to re-phrase the haplotypes. Phasing information from the SHAPEIT output was
copied back to the original VCF files, with the phase removed for sites missing due
to the MAF cutoff. The phased chunks were then recombined with vcf-phased-join
from the vcftools package15.

The 1000GP Phase I integrated variant set release (v3) for low-coverage whole-
genomes in NCBI build 37 (hg19) coordinates was downloaded from 1000GP FTP
site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/, 23 November
2010 data freezes). This callset includes phased haplotypes for 1,092 individuals
and 39,527,072 variants (22 autosome and chromosome X). The haplotypes were
inferred from a combination of low-coverage genome sequence data, and they
contain SNPs, short INDELs, and large deletions. For each chromosome, a
summary file was first generated and merged with that of the UK10K WGS data to
identify multi-allelic sites and singletons not polymorphic in UK10K. These sites
were excluded to create a new set of VCF files. The final reference panel included
all 1,092 samples and 32,449,428 sites. The VCF-QUERY tool was used to convert
the new VCF files into phased haplotypes and legend files for IMPUTE2.

A random set of 500 samples passing QC filters was chosen from the TwinsUK
(N¼ 1,854) and ALSPAC (N¼ 1,927) WGS data sets. Genotypes for a total of
13,413 sites (corresponding to the content of the Illumina HumanHap610
SNP-array) on chromosome 20 were extracted from the UK10K WGS data in
these 1,000 samples.

For the INCIPE study, 6,200 Caucasian participants were randomly chosen
from the lists of registered patients of 62 randomly selected general practitioners
based in four geographical areas in the Veneto region, North-eastern Italy16. A total
of 2,258 samples were genotyped with the HumanCoreExome-12v1-1 platform.
A total of 542,585 variants were called using Illumina GENCALL algorithm,
244,594 of which are exonic variants. We conducted further QC evaluation as
follows to determine sample and SNP quality. At sample level, we applied the
following criteria (i) sample identity was validated through genotyping with an
independent typing platform (Sequenom). No samples failed this step. (ii) Twelve
pairs of duplicate samples, defined as pairs of individuals with Z98% concordance
genome-wide, were identified. The sample with the lowest call rate of the pair was
excluded. (iii) Supplied gender was compared with the genotype-inferred gender
(heterozygosity on sample chrX, or is the proportion of chrX SNPs called AB). A
Gaussian mixture model was used to find adaptive thresholds Mmax and Fmin
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(respectively, the maximum male and minimum female heterozygosity on chrX).
Overall, 55 samples had chrX heterozygosities that were between Mmax and Fmin,
and were excluded from analysis. (iv) Call rate: 90 samples with call rates below
95% were excluded from analysis. (v) 88 samples with autosomal heterozygosity
(that is, the proportion of all SNPs with an heterozygous call) scoreZ3 standard
deviations away from the mean were excluded. (vi) Finally, five samples were
recommended for exclusion where the normalised magnitude of intensity signal in
both channels falls below 0.9. Overall, of the total of 2,258 samples genotyped,
2,145 passed QC filters while 113 samples failed QC filters as indicated above, with
some samples failing multiple QC filters. At SNP level, we excluded variants with
missingness rate Z3% or Hardy-Weinberg disequilibrium Po1� 10� 5. We also
checked all alleles to confirm that they are on the positive strand of the human
genome by comparing alleles against the 1000G and UK10K data. At the end, there
were a total of 346,941 polymorphic variants on autosomes, and 8,822 of those on
chromosome 20 were retained for analysis.

Pseudo-GWAS panel: for our imputation evaluation, we used 6,300 SNPs on
chromosome 20 to mimic a SNP chip in a pseudo-GWAS data set. Before
imputation, the two pseudo-GWAS data sets were pre-phased using SHAPEIT v2
(ref. 11) to increase phasing accuracy. The UK10K panel was phased jointly with
the entire WGS data set. The INCIPE pseudo-GWAS of 2,145 participants was pre-
phased separately.

SHAPEIT v2 was also used for re-phasing the reference haplotypes provided
1000GP and UK10K projects. Per the recommendation of the software, the mean
size of the windows in which conditioning haplotypes are defined is set to 0.5MB,
instead of 2MB used for pre-phasing GWAS. Owing to the significantly higher
number of variants in the WGS data, the re-phasing was conducted by 3MB chunk
with 250 kb buffering regions, rather than by whole chromosomes as for the
pseudo-GWAS. Imputation was carried out on the same chunks with the same
flanking regions.

The following three steps were used to merge two WGS reference panels using
IMPUTE2 (version 2.3 and later):

1. Impute the variants that are specific to panel 1 (1000GP) into panel 2 (UK10K).
2. Impute the variants that are specific to panel 2 (UK10K) into panel 1 (1000GP).
3. Treat the imputed haplotypes in both panels (with the union of variants from

both) as known (that is, take the best-guess haplotypes) and impute the GWAS
cohort in the usual way.

The commands for combining haplotypes with the 1000GP are given in
Supplementary Note 3.

Imputation of genotypes from the three phased reference panels (UK10K,
1000GP and UK10Kþ 1000GP) into the two test panels was carried out on
chromosome 20 split in 3MB chunks with 250 kb buffer regions. Imputation was
performed using standard parameters with IMPUTE2, for example:

./impute2 \

-m genetic_map_chr20_combined_b37.txt \
-h chr20.uk10k.hap.gz \

-l chr20.uk10k.legend.gz \

-known_haps_g chr20.incipe2gwas.known_haps.gz \

-k_hap 10000 \

-int 3e6 6e6 \

-Ne 20000 \

-buffer 250 \

-use_prephased_g \

-o_gz \

-o chr20.01.incipe2gwas.uk10kRef.impute2
In Fig. 1a,d, the accuracy of imputed variants was calculated as the Pearson

correlation coefficient (r2) between imputed genotype dosages in (0–2) and masked
sequence genotypes in (0,1,2). The results were stratified into non-overlapping
MAF bins for plotting. In Fig. 1b,c, the numbers of variants in different imputation
accuracy bins were estimated via the expected r2 (‘info’) metric produced by
IMPUTE2 (ref. 13). As discussed in the main text, this metric is biased upward
relative to the true r2, so the numbers of high-confidence variants in these figures
should be interpreted as upper bounds.
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