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Abstract. This paper improves an infra-chromatic bound which is used by the exact branch-and-
bound maximum clique solver BBMCX (San Segundo et al., 2015) as an upper bound on the
clique number for every subproblem. The infra-chromatic bound looks for triplets of colour subsets
which cannot contain a 3-clique. As a result, it is tighter than the bound obtained by widely used
approximate-colouring algorithms because it can be lower than the chromatic number. The reported
results show that our algorithm with the new bound significantly outperforms the state-of-the-art
algorithms in a number of structured and uniform random graphs.
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1. Introduction

Given a simple undirected graph G= (V ,E), a complete subgraph (or clique) is an in-
duced subgraph such that all its vertices are pairwise adjacent. Determining whether a
clique of a fixed size k exists, is a well known NP-complete problem referred to as k-clique

(Karp, 1972). The maximum clique problem (MCP) is concerned with finding the largest
possible clique in a graph, and the size of the solution is known as the clique number of
the graph ω(G). Besides its theoretical relevance as an NP-hard problem, the MCP has
many applications in different fields, such as bioinformatics (Konc and Janezic, 2010;
Eblen et al., 2012; Butenko et al., 2009), coding theory,1 network analysis,2 com-
puter vision (San Segundo and Artieda, 2015), robotics (San Segundo et al., 2010;
San Segundo and Rodriguez-Losada, 2013) and others. In the rest of this section we

*Corresponding author.
1http://neilsloane.com/doc/graphs.html.
2http://www.networkrepository.com/.
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present some definitions and a brief survey on efficient exact algorithms for the MCP
related to this work.

1.1. Definitions and Notation

A simple undirected graph G = (V ,E) of order n consists of a set of vertices V =

{1,2, . . . , n} and a set of edges E ⊆ V × V that pair distinct vertices. A pair of ver-
tices are said to be adjacent (or neighbours) if they are connected by an edge and N(v)

denotes the neighbour set of vertex v in G. Any subset of vertices U ⊆ V induces a new
subgraph G[U ] = (U,E[U ]) such that both endpoints of any edge in the new edge set
E[U ] are in U .

A vertex k-colouring of G, C(G), is an assignment of numbers (also colours or labels)
from {1,2, . . . , k} to every vertex of G, such that the endpoints of any edge take different
colours. Any feasible k-colouring (or just k-colouring for simplicity) partitions the vertex
set V in k disjoint subsets C1,C2, . . . ,Ck such that

⋃n
i=1 Ci = V and each subset Ci

is an independent set (a set of pairwise non-adjacent vertices). The number of different
colours employed in a vertex colouring |C(G)|, is referred to as its size, and the size of
a minimum colouring is also the chromatic number of the graph χ(G). An important
property, which relates vertex colouring and maximum clique, is ω(G) 6 χ(G) (Balas
and Yu, 1986). It follows that the size of any vertex colouring is also an upper bound
for ω(G).

We also consider the following definitions as necessary background in this work:

– Degree of a vertex v (deg(v)): the number of vertices adjacent to v, alternatively
|N(v)|;

– Maximum graph degree (1(G)): the maximum degree of any of the vertices of the
graph (maxv∈V {deg(v)});

– Maximal clique: a clique that cannot be enlarged by any other vertex in the graph;
– Greedy sequential vertex colouring (SEQ): an approximate colouring procedure that

iteratively assigns to a new vertex the smallest possible colour consistent with the
numbers of previous vertices. SEQ requires a predefined vertex ordering and runs in
O(|V |2);

– Greedy-independent-set sequential vertex colouring (ISEQ): an implementation of
SEQ which computes colour sets (also called colour classes) sequentially. Conse-
quently, it will not assign colour number k to any vertex unless all vertices with
colour numbers below k have been numbered. Worth noting is that, for a given ver-
tex ordering, ISEQ produces the same output as standard SEQ;

– Width of a vertex (w(v)): the number of preceding vertices adjacent to v. More for-
mally, w(vi)= |N(vi)\{vi+1, vi+2, . . . , vn}|;

– Width of a vertex ordering: the maximum width of any of its vertices;
– Minimum-degree-last ordering of vertices: a minimum-width ordering of vertices

which results from iteratively removing vertices with minimum degree from V and
placing them in reverse order in the new ordering.
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1.2. Branch-and-Bound Algorithms for the MCP

In literature, there are many different approaches to the solving of the MCP, such as con-
straint programming, integer 0-1 programming,binary quadratic programming, copositive
checking and programming (Žilinskas, 2011; Žilinskas and Dür, 2011) and others. How-
ever, the current more efficient exact maximum clique algorithms are branch-and-bound,
that is, they combine maximal clique enumeration with pruning based on an upper bound
on the clique number of every subproblem. In the last decade, greedy sequential vertex
colouring SEQ has proved to be a very successful bound. In the comparison survey by
Prosser (2012), MCS (Tomita et al., 2010) and the bit-parallel algorithm BBMC by San
Segundo et al. (2011a, 2011b) were reported as the state-of-the-art solvers. Of the two,
BBMC performed best over some well-known public data sets of small and middle-size
dense graphs.

Better bounds on the clique number than the size of the SEQ colouring (but never
below χ(G)) may be obtained by a technique called recolouring (Re-NUMBER was the
name given to the original procedure in MCS). Recolouring is a procedure which attempts
to lower the colour number k of a vertex v1 ∈ Ck by a swap movement with two already
coloured vertices (v2 ∈ Ci , v3 ∈ Cj ) where i < j < k. BBMCR (San Segundo et al.,
2011b) is the BBMC recolouring variant, and its bounding procedure runs in O(|V |3);
BBMCR makes effective use of a bit string encoding for both ISEQ and recolouring.

Very recently, a way to reduce the maximum clique problem of a coloured graph to a
partial maximum satisfiability problem (PMAX-SAT) has been described. The algorithms
MaxCLQ (Li and Quan, 2010), and later IncMaxCLQ (Li et al., 2013), apply this reduction
to each coloured subproblem during the MCP search, and use logical inferences to find k

colour subsets which cannot possibly make part of a k-clique (referred to as inconsistent

subsets). As a result, the upper bound k on the clique number for each inconsistent set is
reduced by one, and the final bound for the whole subproblem can possibly fall below its
chromatic number. Algorithm BBMCX (San Segundo et al., 2015) was the first time that
the term infra-chromatic was used to describe a bound. Specifically, the infra-chromatic
bound in BBMCX looks for groups of k = 3 inconsistent colour classes that do not contain
triangles.

Also deserving attention (and very much related to this work) is selective colouring,
another recent idea which was first described in BBMCL (San Segundo and Tapia, 2014).
The intuition behind selective colouring is to relax SEQ to a partial colouring up to a cer-
tain pruning threshold. It has less overhead than computing the full colouring but prunes
the search space somewhat less effectively. Branching on maximum colour has been taken
up by the most effective algorithms since MCQ (Tomita and Seki, 2003), but in selective
colouring all candidate vertices remain uncoloured – coloured vertices are all pruned –
and selected according to their index, that is, the initial order fixed at the beginning of the
search. In this paper we take the view of selective colouring and standard (full) colouring
as two different frameworks, and all algorithms presented in this work are designed for
one of the two, but not both.

This work contributes to the research on infra-chromatic bounds for the maximum
clique problem in two ways. A first contribution is to describe BBMCX in the selective
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colouring framework. A second contribution is a new bounding scheme which merges
recolouring with the BBMCX infra-chromatic bound. The remaining contents of this work
are divided as follows: Sections 2 and 3 cover prior related algorithms and the selective
(colouring) framework. The new algorithms for exact maximum clique are described in
Section 4 and validated empirically in Section 5. Finally, Section 6 presents conclusions
and ongoing research.

2. Prior Related Algorithms

This section covers the necessary background required to understand contribution. It in-
cludes a state-of-the-art algorithm, which roughly corresponds to BBMC, and a brief ex-
planation of the different pruning strategies: recolouring (Section 2.1), infra-chromatic
bound (Section 2.2) and selective colouring (Section 2.3). Moreover, the amount of differ-
ent recent improvements concerning this paper has led us to be particularly careful about
algorithmic design. We consider the notion of an algorithmic framework as a family of
algorithms related to a specific property. We also design procedures as templates so that
different instantiations lead to different variants. Specifically, we classify exact maximum
clique algorithms concerning this paper by the following two criteria:

– The pruning framework: standard – all vertices of a subproblem are assigned
colour numbers through greedy-independent-set colouring, or selective – the selec-
tive colouring scheme;

– The secondary pruning strategy: recolouring, infra-chromatic or a combination of
both.

From here onwards, the terms standard or selective will be used to refer to the two frame-
works respectively.

As mentioned in the Introduction, most of the recent successful exact branch-and-
bound maximum clique algorithms combine exhaustive enumeration of maximal cliques
with a pruning strategy based on approximate vertex colouring. At each step of the search
(typically a recursive call to the algorithm) a vertex selected for branching enlarges a
clique, and each branch of the search tree contains a maximal clique. A solution to the
problem is any clique in a leaf node with maximum cardinality. Before going into specific
details, we list some useful definitions that which appear in the different algorithm listings
described in this work:

– S: the clique to be enlarged at any point during search;
– Smax: the incumbent (best) clique found at any point during search;
– U : the set of vertices of the current subproblem;
– Uv : the set of vertices of the child subproblem resulting from branching on vertex v;
– L⊆U : the set of candidate vertices for branching. L is sorted by colour in the stan-

dard framework, whereas in selective colouring vertices are sorted according to their
index;

– Lv ⊆ Uv : the set of candidate vertices of the child subproblem which results from
branching on vertex v;
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Algorithm 1. A state-of-the-art exact maximum clique algorithm (standard framework).

Input: A simple graph G= (V ,E) sorted according to minimum-degree-last

Output: A maximum clique in Smax

Initial values: U← V , S←∅, Smax←∅, c(vi ) :=min{i,1(G)+ 1} ∀vi ∈ V , L← V

REFCLQ(U,S,Smax,C,L)

1. repeat until L= ∅

2. select a vertex v from L in reverse order //maximum colour branching

3. if (|S| + c(v) 6 |Smax|) then return //pruning step

4. U←U\{v}

5. S← S ∪ {v}

6. Uv←U ∩N(v) //Uv preserves initial relative order of vertices

7. if Uv 6= ∅ then //checks for a maximal clique

8. kmin←max(|Smax| − |S|,1)]]
9. {Cv,Lv}←UPPERBOUND(Uv, kmin)

10. REFCLQ(Uv, S,Smax,Cv,Lv)

11. elseif |S|> |Smax| then Smax← S

12. endif

13. S← S\{v}

14. endrepeat

– c(v): the colour number assigned to vertex v;
– kmin: a pruning (colour) threshold; vertices assigned a lower colour number will be

pruned;
– Cv : the resulting colouring of the child subproblem Uv , ISEQ(G[Uv]). Depending

on the framework, it may be relaxed to the partial colouring {C1, . . . ,Ckmin−1};
– F : a set of forbidden colour numbers employed in the infra-chromatic pruning

scheme.

Algorithm 1 shows a pseudocode for REFCLQ, a state-of-the-art exact maximum
clique algorithm representative of the standard framework. At each step (a recursive call
to the algorithm) the clique determined by S is enlarged with a new vertex v from the
set of candidate vertices L (step 5), until it becomes maximal. Smax stores the incum-
bent solution and is updated in step 11, if the maximal clique in S has greater cardinality.
Pruning occurs in step 3 if the subproblem in the current step cannot improve Smax, that
is, |S|+ c(v) 6 |Smax|. This expression takes the form of c(v) < kmin in any derived child
subproblem, for kmin =max(|Smax| − |S|,1). The pruning step 3 is only valid combined
with branchingon maximum colour, an important idea first described in MCQ (Tomita and
Seki, 2003) and taken up by most successful solvers since then. This is so because the algo-
rithm reacts by backtracking – the return statement. Consider vj ∈ V to be the vertex that
meets the pruning condition |S| + c(vj ) 6 |Smax|, then not only is the induced subprob-
lem G[{v1, . . . , vj }] pruned, but also subproblems G[{v1, . . . , vj−1}], G[{v1, . . . , vj−2}]

and so on. In practice, branching on maximum colour is implemented by ordering the
candidate vertices in L according to non-decreasing colour number, and selecting them in
reverse order (see step 2).

Algorithm 2 describes the bounding procedure UPPERBOUND called by REFCLQ.
Compared to similar procedures that may be found elsewhere, UPPERBOUND is the first
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Algorithm 2. Pruning template UPPERBOUND called by REFCLQ.

Input: 1) An induced subproblem G[Uv]

2) A colour number threshold kmin

Output: 1) A (partial) vertex colouring C(G[Uv])

2) A set L of candidate vertices sorted according to increasing colour number

UPPERBOUND(Uv, kmin)

Initial step: U←Uv , L← ϕ, k← 1 , C← ϕ, F ← ϕ //F is a set of forbidden colours

1. repeat until U = ϕ

2. Ck←U

3. repeat until all vertices in Ck have been selected
4. choose the first vertex v from Ck not previously selected
5. result← FAIL
6. if k > kmin then //check if v can be pruned from branching list L

7. result←DO(v, kmin,C1,C2, . . . ,Ckmin−1,Ck,F )

8. endif //v ∈Ck , so its neighbours are removed from Ck

9. if result = FAIL then Ck←Ck\N(v)

10. U←U\{v} //updates uncoloured vertices

11. endrepeat

12. C← C ∪Ck

13. k← k+ 1

14. endrepeat

15. for i = kmin to k − 1

16. L← L∪Ci //L is always sorted by colour number

17. endfor

18. return ({Ckmin
,Ckmin+1, . . . ,Ck−1},L)

example of the template algorithm design in this work. It calls a DO procedure (step 7)
whose signature allows for different secondary pruning schemes (in this paper, recolour-
ing, infra-chromatic or a combination of both). UPPERBOUND takes as input parameters
the set of vertices of the child subproblem (to be bounded), and a colour number thresh-
old kmin. It outputs a (partial) colouring of the subproblem Cv = C(G[Uv]) and a set of
candidate vertices Lv sorted according to non-decreasing colour number.

At the core of UPPERBOUND is greedy-independent-set colouring ISEQ imple-
mented in two nested loops (steps 1 to 14). The inner loop (steps 3 to 11) is responsible
for building each new colour set. The outer loop upkeeps the set of remaining uncoloured
vertices, together with the number k of current colour set. Note that vertices with colour
number below kmin are pruned and do not make part of the new candidate set Lv (steps 15
to 17).

Moreover, once the colour subset Ckmin−1 is built, all remaining uncoloured vertices
are passed to the concrete instantiation of DO in subsequent calls in an attempt to reduce
their colour number k. In its most general form, DO receives as input the current colour
class being built Ck , the vertex v ∈ Ck object of study, the pruning threshold kmin, the
partial colouring up to the pruning threshold {C1,C2, . . . ,Ckmin−1} and a list of forbidden
colours F . If v is reassigned a lower colour number than k in DO, both the partial coloura-
tion Ck and the set F are updated accordingly (the particular details will be explained for
each specific instantiation of DO). Note that F is only used in the case of infra-chromatic
bounds.
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Algorithm 3. A procedure that implements recolouring in the standard framework. It instantiates

DO in UPPERBOUND (Algorithm 2).

DO_RECOL(v, kmin,C1,C2, . . . ,Ckmin−1,Ck) //v ∈Ck

1. for k1 := 1 to kmin − 2

2. if |Ck1
∩N(v)| = 1 then w← Ck1

∩N(v)

3. for k2 := k1 + 1 to kmin− 1

4. if Ck2
∩N(w)=∅ then

5. Ck1
← Ck1

∪ {v} //standard recolouring

6. Ck2
← Ck2

∪ {w}

7. Ck←Ck\{v}

8. return SUCCESS
9. endif

10. endfor

11. elseif |Ck1
∩N(v)| = ∅ then

12. Ck1
←Ck1

∪ {v} //one-move recolouring

13. Ck← Ck\{v}

14. return SUCCESS
15. endif

16. endfor

17. return FAIL

Regarding initial vertex ordering, it is well known that branching on vertices with
minimum degree at the root node significantly reduces the size of the search tree in exact
maximum clique search. In practice, vertices are ordered at the start of the search using a
minimum-degree-last strategy and selected at the root node in reverse order (see Prosser,
2012; Matula and Beck, 1983; Carraghan and Pardalos, 1990, amongst others, for a de-
tailed explanation).

Another important idea described both in MCS and BBMC (and denoted as an im-

plicit branching strategy, San Segundo and Tapia, 2010), is to keep the initial vertex
ordering fixed in all subproblems. This achieves a better compromise between over-
head and quality of bounds than in earlier approaches (such as Tomita and Seki, 2003;
Konc and Janezic, 2007). We note this is especially well suited for bit-parallel algorithms,
like BBMC, because bitstring representations of vertex sets have a fixed order.

2.1. Recolouring

Recolouring is a repair mechanism for colour numbers that was first described in MCS
(Tomita et al., 2010). Later, an improvement was proposed in San Segundo et al. (2011b)
for the BBMC bit-parallel family of algorithms. Algorithm 3 outlines DO_RECOL, our
algorithm for recolouring conceived as an instantiation of DO in UPPERBOUND (Algo-
rithm 2). Note that signature F has been removed because it does not take part in recolour-
ing and can be assumed empty without loss of generality.

The repair mechanism for SEQ described in DO_RECOL attempts to reassign input
vertex v ∈ Ck , k > kmin, a colour number lower than kmin. It does so when there is a pair
of colour sets (Ck1

,Ck2
) such that the following conditions hold:
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Fig. 1. A graph with coloured vertices.

I. k1 6 kmin − 2 and there is a single vertex w in Ck1
adjacent to v;

II. k1 < k2 6 kmin − 1 and no vertex in Ck2
is adjacent to w.

If both colour sets (Ck1
,Ck2

) exist, a new colouring is obtained by assigning colour num-
bers k1 and k2 to vertices v and w respectively (steps 5 to 7). Noteworthy is that, because
of the way SEQ works, colour number k1 must strictly be lower than k2 (see Proposition 1
in San Segundo et al., 2015). However, UPPERBOUND calls DO_RECOL for every can-
didate vertex, so it is perfectly possible that a colour subset Ck1

becomes open for v, that
is, Ck1

∩N(v) = ∅, after a prior successful recolouring. Step 11 in Algorithm 3 checks
for that case. For additional details concerning this pruning scheme we refer the reader to
Tomita et al. (2010), San Segundo et al. (2011b).

2.2. Infra-Chromatic Upper Bound for Maximum Clique

Let us consider the simple graph G, with chromatic number χ(G)= 4, depicted in Fig. 1,
in which vertex {8} has been assigned colour number 4 by SEQ (colours are shown in
parenthesis for each vertex). Thus, 4 is the upper bound for the clique number and vertex
{8} can at most belong to a clique of size 4, in a branching-on-maximum-colour strategy.
Moreover, since 4 is also the size of the colouring, it also bounds the size of any clique
hidden in the graph.

The infra-chromatic bound described in San Segundo et al. (2015) is based on the
following observation: any three vertices of a clique always belong to a different colour

class in any colouring, and always form a 3-clique. If, for vertex {8}, we can find two
colour subsets with colour numbers less than 4 in which there are no vertices which form
a 3-clique with vertex 8, then vertex 8 cannot belong to a clique of size 4 and thus the
infra-chromatic bound for it is 3. In the example, two such colour classes are the third
colour set C3 = {7} and the first colour set C1 = {1,3,5}. The three sets C4 = {8}, C1 and
C3 cannot form a 3-clique and are referred to as inconsistent sets, or an inconsistent triplet
of sets.

The following proposition explains the infra-chromatic bound for the general case:

Proposition. If vertex v has colour k in a graph coloured with k colours and there exist

two colour classes with colour numbers below k in which there are no vertices forming a

3-clique with vertex v, then vertex v cannot belong to a clique of size k or bigger.
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Algorithm 4. The reference algorithm for selective colouring.

Input: A graph G= (V ,E) with vertices sorted according to minimum-degree-last

Output: A maximum clique in vertex set Smax

Initial values: U← V , S←∅, Smax←∅, L← V

REFCLQS(U,S,Smax,L)

1. repeat until L= ϕ

2. select a vertex v from L in reverse order
3. U←U\{v}

5. S← S ∪ {v}

6. Uv←U ∩N(v)

7. if Uv 6= ∅ then

8. kmin←max(|Smax| − |S|,1)

9. Lv←UPPERBOUNDS(Uv, kmin)

10. REFCLQS(Uv, S,Smax,Lv)

11. elseif |S|> |Smax| then Smax← S

12. endif

13. S← S\{v}

14. endrepeat

Proof. Vertex v cannot belong to a clique of size bigger than k because otherwise the
graph cannot be coloured in k colours. Assume that vertex v belongs to a clique of size k.
Since all vertices of this clique have to be coloured in different colours, as all are pairwise
adjacent, then each colour class from 1 to k will have exactly one vertex from this clique.
So any two colour classes will contain two vertices which form a 3-clique with vertex v.
This contradicts the conditions of the proposition, so our assumption is wrong and vertex
v cannot belong to a clique of size k. �

With the help of this proposition it is easy to reduce by one the colour bound k = 4 for
the graph in Fig. 1. We call this reduced bound infra-chromatic, and the vertex v = {8},
together with the two colour sets (C1, C3), constitute the inconsistent triplet. In practice,
to reduce the overhead when searching for two such colour sets, we require that one of
them has only one vertex adjacent to vertex v (as in the example). In BBMCX (San Se-
gundo et al., 2015), an instantiation of DO – DO_INFRA-CHROMATIC, Algorithm 4 –
is presented for such infra-chromatic bound. Reported results showed good pruning ability
and improved efficiency for a number of graphs from public data sets. A first contribution
of this paper is to enhance BBMCX with selective colouring. This is equivalent to adapt
it to our proposed selective framework.

2.3. Selective Colouring

Selective colouring is a recent idea described in BBMCL (San Segundo and Tapia, 2014)
in which only a partial SEQ colouring of size kmin− 1 is computed for every subproblem.
The coloured vertices are those in the child subproblem that cannot improve the incumbent
solution in Smax. In its default version, the algorithm no longer branches by maximum
colour – it is not possible now, since candidate vertices remain uncoloured – but selects
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Algorithm 5. Outline of the pruning template in selective colouring.

Input: An induced subgraph G[Uv] and a colour number threshold kmin

Output: A set of candidate vertices L

UPPERBOUNDS(Uν, kmin)

Initial step: U←Uν , L←∅, k← 1

1. repeat until k = kmin

2. Ck←U

3. repeat until all vertices in Ck have been selected
4. choose the first vertex v from Ck not previously selected
5. Ck← Ck\N(v)

6. U←U\{v}

7. endrepeat

8. C← C ∪Ck

9. k← k+ 1

10. endrepeat

11. L←U //stores vertices v such that c(v) > kmin

12. DOS(L,C = {C1,C2, . . . ,Ckmin−1}) //additional pruning (recolouring, infra-chromatic, etc.)

13. return L

vertices in reverse order of their index instead. Consequently, selective colouring is less
informed than standard (full) colouring, but has less overhead: no explicit pruning step,
no explicit storage of colour numbers and less colours to compute.

The next section describes the selective colouring framework. We continue with the
same design of prior algorithms, and use a template function to represent an abstract sec-
ondary pruning scheme which can either be infra-chromatic, recolouring or a combination
of both. The subscript S (for Selective) will be added to the names of procedures to dis-
ambiguate from the standard framework.

3. The Selective Colouring Framework

We conceive the selective colouring framework as the family REFCLQS of algorithms
outlined in Algorithm 4. The description is similar to Algorithm 1, but now pruning is
reduced to the call to UPPERBOUNDS and there is no initial colouring at the root node,
no explicit pruning step and no colouring information returned by UPPERBOUNDS .

Algorithm 5 presents a pseudocode for UPPERBOUNDS . It prunes the search space
by storing in L, ordered by index, only those vertices from U which do not belong to
the partial colouring {C1,C2, . . . ,Ckmin−1}. The latter is computed in two nested loops
(steps 1 to 10).

In step 12, UPPERBOUNDS calls template procedure DOS which represents the sec-
ondary pruning scheme. Note that its signature is simpler than in the standard framework,
that is, just the partial colouring {C1,C2, . . . ,Ckmin−1} and the branching set of vertices
L. If DOS succeeds, it will remove the pruned vertices from L. We also note that DOS is
called after the partial colouring is computed, which was not the case in DO.
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Algorithm 6. Outline of the infra-chromatic pruning procedure in the selective colouring

framework.
DO_ITER(L,C = {C1,C2, . . . ,Ckmin−1})
Variables: A set of forbidden colour numbers F (initially F ←∅)

1. repeat until all vertices in L have been examined
2. select a new vertex v from L in order
3. result← FILTER(v,C,F)

4. if result = SUCCESS then

5. L← L\{v} //filters vertex

6. endif

7. endrepeat

This paper contributes to the infra-chromatic bound with different instantiations of
DOS : infra-chromatic alone and the combination recolouring + infra-chromatic. They
are described in the next section.

4. Infra-Chromatic Bounds in the Selective Colouring Framework

The infra-chromatic procedure, described in Section 2.2, can now be integrated into the
selective colouring framework because of the careful design of REFCLQS (Algorithms 4
and 5). Specifically, we implement DOS in UPPERBOUNDS with the help of two new
procedures: DO_ITER and FILTER (Algorithm 6).

DO_ITER is the actual instantiation of DOS , and is conceived as an iterator over all ver-
tices in L. It also initializes the list F of forbidden colours to the empty set and calls FIL-
TER (the real pruning procedure) for every vertex in L (step 3). FILTER is also designed
as a template function to capture different infra-chromatic schemes. Its signature contains
the vertex v considered for pruning, the current partial colouring {C1,C2, . . . ,Ckmin−1}

of the selective framework and a list F of forbidden colour numbers. Depending on the
particular bounding scheme, F is updated as follows:

– Recolouring: here F has no impact and may be considered the empty set. A re-
colouring procedure, which may be instantiated directly in the proposed selective
framework because it has the same signature (excluding F ), may be found in list-
ing 7 of BBMCL (Balas and Yu, 1986). We also refer the reader to DO_RECOL in
Algorithm 3 for the description of recolouring in the standard framework.

– Infra-chromatic: once a colour subset has been proven inconsistent, it cannot take
part in further inferences, so its colour number is stored in F and filtered out from
other candidate inconsistent triplets in successive calls to DO_ITER.

If the pruning attempt succeeds, FILTER returns SUCCESS and signals DO_ITER to
remove the pruned vertex from L in step 5. This process continues until all candidate
vertices have been examined.



474 P. San Segundo et al.

Algorithm 7. The infra-chromatic filter for selective colouring.

FILTER_INFRACHROMS(v,C1,C2, . . . ,Ckmin−1,F ) //F is the list of forbidden colours

1. for k1 := 1 to kmin − 1

2. if k1 ∈ F then continue

3. if |Ck1
∩N(v)| = 1 then w← Ck1

∩N(v)

4. for k2 := 1, . . . , k1 − 1, k1 + 1, . . . , kmin− 1

5. if k2 ∈ F then continue

6. if Ck2
∩N(w) ∩N(v)= ∅ then //inconsistent triplet condition

7. F ← F ∪ {k1} ∪ {k2} //tags the colours as forbidden

8. return SUCCESS
9. endif

10. endfor

11. endif

12. endfor

13. return FAIL

4.1. The Basic Infra-Chromatic Bound

FILTER_INFRACHROMS (Algorithm 7) describes how to instantiate FILTER for infra-
chromatic pruning in the selective framework. Compared with procedure DO_INFRA-
CHROMATIC employed by BBMCX (listing 4 of San Segundo et al., 2015), in the se-
lective colouring framework the control flow changes because of DO_ITER. A brief ex-
planation now follows, necessary to understand the new combined recolouring + infra-

chromatic filter described in the next section.
FILTER_INFRACHROMS searches for inconsistent triplets of the form (Ck1

,Ck2
, {v}),

in which the last colour subset is a singleton containing the input vertex attempted to be
pruned. According to the explanation in Section 2.2, an inconsistent triplet requires that
the following two conditions are met:

{

I. Ck1
∩N(v)=w

II. Ck2
∩N(w) ∩N(v)= ∅

Condition I (implemented in step 3) indicates that vertex w is the only adjacent vertex to
v in the first colour subset Ck1

. We require this set to be a singleton in order to reduce
computational time to find inconsistent triplets. Condition II (implemented in step 6) es-
tablishes that there is no vertex adjacent to both v and w in the second colour subset Ck2

.
This implies that vertices v, w and any other vertex from Ck2

cannot form a 3-clique, and
therefore the triplet (Ck1

,Ck2
, {v}) is inconsistent. It is worth mentioning here that condi-

tion I is also required for recolouring. This is relevant to implement the efficient combined
recolouring + infra-chromatic filter, as will be shown in the next subsection.

Once an inconsistent triplet has been detected, colour numbers k1 and k2 are stored
in F (step 7) and steps 2 and 5 ensure that they will not make part of future inconsistent
triplets in later calls. It is important to take into account that pruning conditions I and
II are not symmetrical with respect to the colour pair (Ck1

,Ck2
), that is, it is possible

that the triplet (Ck1
,Ck2

, {v}) meets both conditions but (Ck2
,Ck1

, {v}) does not, or vice
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Algorithm 8. The new recolouring + infra-chromatic pruning procedure for selective colouring.

FILTER_RECOL_INFRACHROMS(v,C1,C2, . . . ,Ckmin−1,F )

1. for k1 := 1 to kmin − 1

2. if k1 ∈ F then continue

3. if |Ck1
∩N(v)| = 1 then w← Ck1

∩N(v)

4. for k2 := 1, . . . , k1 − 1, k1 + 1, . . ., kmin− 1

5. if k2 ∈ F then continue

6. if Ck2
∩N(w) 6= ∅ then

7. if Ck2
∩N(w) ∩N(v)= ∅ then

8. F ← F ∪ {k1} ∪ {k2} //infra-chromatic pruning

9. return SUCCESS
10. endif

11. else //standard recolouring

12. Ck1
← Ck1

∪ {v}\{w}

13. Ck2
← Ck2

∪ {w}

14. return SUCCESS
15. endif

16. endfor

17. elseif Ck1
∩N(v)= ϕ then

18. Ck1
← Ck1

∪ {v} //one-move recolouring

19. return SUCCESS
20. endif

21. endfor

22. return FAIL

versa. Also worth noting is that, compared with the standard framework, the signature
of FILTER_INFRACHROMS does not include the colour subset to which vertex v was
assigned prior to the call (since now vertex v has not been coloured) nor kmin (implicit in
the partial colouring of the signature).

4.2. A Combined Recolouring and Infra-Chromatic Bound

As pointed out in connection with FILTER_INFRACHROMS in Algorithm 7, recolouring
is related to our proposed infra-chromatic filter by condition I. In both cases, a colour
subset Ck1

is required to have only one vertex w ∈ Ck1
belonging to the neighbourhood

of v. Consequently, it is possible to define an efficient combined recolouring + infra-

chromatic filter that exploits this circumstance.
FILTER_RECOL_INFRACHROMS , in Algorithm 8, outlines one such combined

procedure. Its control flow, two nested loops to enumerate colour subset pairs, is now
combined with the possibility of recolouring. In previous FILTER_INFRACHROMS ,
once an inconsistent triplet has been found, the colours are tagged as forbidden
in F and removed from further inferences. It is therefore a good strategy to enlarge

colour subsets as much as possible before they make part of an inconsistent triplet.
FILTER_RECOL_INFRACHROMS follows this strategy: after condition I has been met
in step 3, vertex w is first checked for a possible colour reassignment to one of the
colour sets not yet tagged as forbidden (step 6). It is easy to see that the recolouring
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Fig. 2. A subgraph for algorithm demonstration.

condition Ck2
∩ N(w) = ∅ is stronger than the one required for the infra-chromatic fil-

ter Ck2
∩ N(w) ∩ N(v) = ∅, so recolouring should be attempted before condition II.

Step 6 discriminates between recolouring and infra-chromatic pruning. If the condition
Ck2
∩N(w) 6= ∅ holds, then recolouring is no longer possible and infra-chromatic pruning

is attempted in step 7. If the latter is successful, step 8 tags the colour numbers of the cor-
responding inconsistent colour subsets as forbidden. If, on the other hand, colour subset
Ck2

is open for vertex w according to step 6, then recolouring takes place and colour sets
Ck1

,Ck2
are updated appropriately (steps 12 to 13).

Finally, we note that colour subsets may become open for a particular vertex after
successive calls to FILTER_RECOL_INFRACHROMS , in a similar fashion as in normal
recolouring. This was not possible in FILTER_INFRACHROMS and is now checked in
step 17.

4.3. An Example for Algorithm Demonstration

We demonstrate the work of the algorithm on the graph shown in Fig. 2. We assume
it depicts the subgraph G[Uv] of a vertex v which has just been selected in step 2 of
REFCLQS (Algorithm 4). We also assume that the incumbent (largest) clique found so far
has size 3 and that |S| = 0. Consequently, Uv = {1, . . . ,12}, |Smax| = 3 and kmin = 3. We
now call UPPERBOUNDS (Algorithm 5) with these parameters. The main calculations
for this example are shown below. The colouring obtained by UPPERBOUNDS is shown
in Fig. 2 in brackets.

4.4. Discussion on the Different Algorithms

The previous subsections have shown how to extend infra-chromatic bounds to the se-
lective framework. Moreover, a new combined recolouring + infra-chromatic pruning
procedure FILTER_RECOL_INFRACHROMS has been proposed for selective colour-
ing. To summarize, Fig. 3 depicts the different algorithms which have been mentioned in
the paper.



Improved Infra-Chromatic Bound for Exact Maximum Clique Search 477

UPPERBOUNDS call for the subproblem G[Uv] shown in Fig. 2.
C1 = {1, . . . ,12}

v = 1, C1 = {1, . . . ,10,12}, U = {2, . . . ,12}

v = 2, C1 = {1,2,4,5,7,9,10,12}, U = {3, . . . ,12}

v = 4, C1 = {1,2,4,7,9,12}, U = {3,5, . . . ,12}

v = 7, C1 = {1,2,4,7,9}, U = {3,5,6,8, . . . ,12}

v = 9, C1 = {1,2,4,7,9}, U = {3,5,6,8,10,11,12}

C2 = {3,5,6,8,11,12}

v = 3, C2 = {3,5,6,8,10,11,12}, U = {5,6,8,10,11,12}

v = 5, C2 = {3,5,8,10,12}, U = {6,8,10,11,12}

v = 8, C2 = {3,5,8,10,12}, U = {6,10,11,12}

v = 10, C2 = {3,5,8,10}, U = {6,11,12}

We stop here because kmin = 3. So we have two colour subsets C1 = {1,2,4,7,9} and C2 = {3,

5,8,10}. Moreover, according to the selective colouring framework the set of uncoloured
vertices U = {6,11,12} is also the candidate set L of vertices for branching.

DO_ITER(L,C = {C1,C2})

v = 6, FILTER_RECOL_INFRACHROMS(v,C1,C2,F )

k1 = 1, Ck1
∩N(v)= {2,7}

k1 = 2, Ck1
∩N(v)= {5,10}

return FAIL
v = 11, FILTER_RECOL_INFRACHROMS(v,C1,C2,F )

k1 = 1, Ck1
∩N(v)= {1} , w = 1

k2 = 2, Ck2
∩N(w)= ∅ // standard recolouring

Ck1
= {1,2,4,7,9} ∪ {11}\{1} = {2,4,7,9,11}

Ck2
= {3,5,8,10} ∪ {1} = {1,3,5,8,10}

return SUCCESS
L= {6,11,12}\{11} = {6,12} //filters vertex

v = 12, FILTER_RECOL_INFRACHROMS(v,C1,C2,F )

k1 = 1, Ck1
∩N(v)= {7,9,11}

k1 = 2, Ck1
∩N(v)= {10}, w = 10

k2 = 1, Ck2
∩N(w)= {4}

Ck2
∩N(w) ∩N(v)= ∅ //infra-chromatic pruning

F = {1,2}

return SUCCESS
L= {6,12}\{12} = {6} //filters vertex

Before discussing performance, a brief comment on algorithm design. FILTER_
ECOL_INFRACHROMS (Algorithm 8) in its present form may only be used in the con-
text of selective colouring, that is, called by REFCLQS in Algorithm 4. It may nevertheless
be adapted to the standard framework, that is, called from REFCLQ in Algorithm 1, with
the following minor changes:

– Remove DO_ITER procedure (Algorithm 6): FILTER_RECOL_INFRACHROM
should map to template DO in UPPERBOUND (Algorithm 2). Consistency with
signatures indicates that kmin and Ck (the colour class containing the vertex to be
analysed) should be passed to any instantiation.
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TEMPLATES

UPPERBOUNDS

DOS

BBMCXS

UPPERBOUNDS

DO_ITER

FILTER_INFRACHROMS

BBMCXRS

UPPERBOUNDS

DO_ITER

FILTER_RECOL_

INFRACHROMS

 
A—Selective pruning framework  

TEMPLATE

UPPERBOUND

DO

BBMCR [18]

UPPERBOUND

DO_RECOL

BBMCX [17]

UPPERBOUND

DO_INFRACHROM

 
B—Standard pruning framework 

 
Fig. 3. Summary of the different algorithmic variants related to this work. The new algorithms described in the
paper correspond with the selective framework (A).

– Update Ck parameter appropriately when the pruning succeeds: in particu-
lar, vertex v should be removed from Ck just before steps 9, 14 and 19 of
FILTER_RECOL_INFRACHROMS .

This example shows that switching between frameworks is possible with little effort, and
we believe it validates the template design employed in this work.

We now present some general considerations in relation with the different frameworks
and secondary level pruning schemes considered. The standard framework is expected
to produce, on average, smaller search trees since it branches on vertices with maximum
colour number, whereas selective colouring is less informed. On the other hand, the for-
mer has greater overhead. This is extensible to the infra-chromatic scheme: smaller search
trees are to be expected in algorithms which employ it, but again with additional compu-
tational cost. The combined recolouring + infra-chromatic pruning scheme introduces
even greater overhead, but both filters paste well together due to condition I. This new
filter is therefore expected to produce the smallest search trees, and perform well in the
harder and denser graphs.

To end this discussion, we draw attention to the fact that greedy-independent-set
colouring ISEQ has been applied in both frameworks (specifically in UPPERBOUND and
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UPPERBOUNDS ). While this is not critical for recolouring, it is for the infra-chromatic
scheme which requires that the kmin − 1 colour sets, starting point of the bounding pro-
cedure, are not enlarged by new vertices as colouring proceeds. Tagging a colour subset
Ck as forbidden, and later having SEQ assign a colour number k to an unfiltered vertex,
results in incompleteness. While other alternatives to ISEQ are possible, it is a simple
strategy which guarantees that this will not occur. Moreover, ISEQ has been found to be
a good choice for bit-parallel exact maximum clique algorithms for other reasons as well
(San Segundo et al., 2011a).

5. Experiments

To validate the new infra-chromatic bound, and specifically the FILTER_RECOL_
INFRACHROMS filter, we have considered the following algorithms:

(a) BBMCX (San Segundo et al., 2015): the prior algorithm described in the standard
framework which employs an infra-chromatic bound.

(b) BBMCXRS: the combined recolouring + infra-chromatic pruning scheme de-
scribed in Algorithm 8.

(c) IncMaxCLQ (Li et al., 2013): the most recent PMAX-SAT-based algorithm, which
can also compute maximum clique bounds for subproblems below their chromatic
number.

The hardware used in the experiments was a 20 core XEON with 64 GB of RAM run-
ning a Linux OS. All algorithms considered were run on a single core of this machine. To
allow other researchers to compare with our hardware, we ran the DIMACS benchmark
program dfmax in a standard fashion (Johnson and Trick, 1996). The running times ob-
tained over DIMACS machine benchmark graphs r300.5, r400.5 and r500.5 were 0.167,
0.900 and 3.430 seconds, respectively.

We refer the reader to the BITSCAN and GRAPH libraries (BITSCAN C++ li-
brary, GRAPH C++ library) for implementation details concerning the bitstring encoding
of the BBMC family of algorithms. The source code for prior BBMC variants, i.e. BBMC,
BBMCR, BBMCL, is available in BBMC releases (2016), and so are Win32 64-bit bina-
ries for the new algorithms described in this work.3 Finally, we note that IncMaxCLQ was
provided to us by its main developer Chu-Min Li and run with default parameters.

BBMCXRS also incorporates the latest enhancements in preprocessing. Regarding
initial sorting of vertices, it uses the same procedure described for IncMaxCLQ, and se-
lects the best between the standard mininum-degree-last sorting, as in Algorithm 1, and
a colour-based ordering. The initial sorting procedure is similar to the one described in
Li et al. (2013) with minor changes: first, a greedy colouring is obtained using the con-
structive recursive-largest-first (RLF) colouring heuristic (Leighton, 1979). If the highest
colour classes of the colouring contain more than one colour class with a single vertex,
RLF is dismissed and standard mininum-degree-last sorting is applied. If this is not the

3http://venus.elai.upm.es/logs/results_infrachrom/.



480 P. San Segundo et al.

case, vertices are arranged according to the colour labels given by RLF in increasing order.
We also compute a good initial solution by running leading approximate heuristic ILS, as
recommended in Maslov et al. (2013).

With respect to the public data sets used for validation, we provide performance over
67 structured graphs and a number of uniform random graphs which may be found in
other maximum clique reports elsewhere. The majority of structured instances were pre-
sented at the Second DIMACS Implementation Challenge4 (Johnson and Trick, 1996).
The rest are taken from the BHOSHLIB benchmark5 (specifically, the frb30–15 collec-
tion). Concerning uniform random graphs Gn,p – where n is the number of vertices, and
p the probability that there exists an edge between any two vertices – reported times for
every (n,p) pair are averaged over 10 runs.

5.1. Results

Table 1 reports performance of the three algorithms considered over structured graphs.
Header column NEW refers to BBMCXRS . The last two columns show a time ratio of
prior BBMCX and IncMaxCLQ to BBMCXRS . Cells in bold report the best time for
each graph with precision of milliseconds.

Out of the 67 structured graphs reported, BBMCXRS performs better than IncMax-
CLQ in 60 of them, and better than BBMCX in 50. Moreover, it shows best times overall in
54 graphs. IncMaxCLQ performs significantly better than BBMCXR in the keller5 graph,
in the two graphs of the C family and in sanr200_0.9. In these 4 cases, the extra effort
spent to compute better bounds prunes the search space efficiently. As to BBMCX, it is
only significantly faster than the new algorithm in very easy instances.

Experiments with uniform random graphs are reported in Table 2. In contrast with the
previous case, here the differences between BBMCX and the new BBMCXRS algorithm
are much less acute, possibly because the more sophisticated bound of BBMCXRS prunes
better when there is structure to capture. Still, BBMCXRS performs best in 19 cases out of
the 27 graphs considered, and is more than 5 times faster than IncMaxCLQ in 5 graphs.
We note that IncMaxCLQ outperforms new BBMCXRS only in the very dense graphs
(p > 0.9).

6. Conclusions and Future Work

The encoding of maximum clique to a partial maximum satisfiability problem has opened
up an important line of research in exact maximum clique algorithms. One of the latest
ideas is to implement infra-chromatic pruning as described in the recently published bit-
parallel algorithm BBMCX.

This paper presents several improvements over BBMCX. We first describe a new
algorithm BBMCXS , which enhances prior BBMCX with selective colouring, a recent

4http://cs.hbg.psu.edu/txn131/clique.html.
5http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm.
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Table 1
Performance of the algorithms considered over structured instances. In bold, best times for each row. A step is a recursive call to the algorithm. The columns with header p

show average density, and header ω is the size of the solution. The time limit was fixed at 3h and is measured in seconds with millisecond precision.

IncMaxCLQ
(Li et al., 2013)

BBMCX
(San Segundo et al., 2015)

NEW CLQ/NEW BBMCX/NEW

p ω Steps Time Steps Time Steps Time Time Time

C125.9 0.90 34 48 0.017 2153 0.017 1891 0.026 0.7 0.7

C250.9 0.90 44 734186 228 74379132 912 50578323 638 0.4 1.4

MANN_a27 0.99 126 290 0.266 4679 0.236 4521 0.255 1.0 0.9

MANN_a45 0.99 345 21595 101 118384 39.8 98801 66.9 1.5 0.6

MANN_a9 0.93 16 0 0.002 16 < 0.001 14 < 0.001 1.5 1.0

brock200_1 0.75 21 2700 0.482 33445 0.241 28436 0.190 2.5 1.3

brock200_2 0.50 12 112 0.016 277 0.002 151 0.004 4.1 0.5

brock200_3 0.61 15 493 0.046 1519 0.019 1523 0.010 4.6 1.9

brock200_4 0.66 17 434 0.057 6358 0.040 2816 0.028 2.0 1.4

brock400_1 0.75 27 890529 182 17608242 195 13955624 149 1.2 1.3

brock400_2 0.75 29 711295 139 6929601 81.3 4053581 51.9 2.7 1.6

brock400_3 0.75 31 887764 170 14139535 145 891968 16.0 11 9.1

brock400_4 0.75 33 640279 129 6001694 67.8 365855 7.90 16 8.6

brock800_1 0.65 23 39290054 7846 159471348 2674 153555219 2419 3.2 1.1

brock800_2 0.65 24 49803966 10011 142768093 2406 123868106 2038 4.9 1.2

brock800_3 0.65 25 17522630 3759 91142593 1567 59703387 1120 3.4 1.4

brock800_4 0.65 26 24600360 4768 59354622 1092 52398010 937 5.1 1.2

dsjc1000.1 0.10 6 81 0.094 299 0.003 265 0.004 23 0.8

dsjc1000.5 0.50 15 1562003 197 6516009 95.7 5988617 82.2 2.4 1.2

dsjc500.1 0.10 5 0 0.021 18 < 0.001 13 < 0.001 21 1.0

dsjc500.5 0.50 13 19303 2.63 122680 0.936 107408 0.733 3.6 1.3

frb30-15-1 0.82 30 0 0.132 58372163 702 1 < 0.001 132 701928

frb30-15-2 0.82 30 8 0.125 47285091 562 1 < 0.001 125 561604

frb30-15-3 0.82 30 23 0.171 45231516 512 1 < 0.001 171 511694

frb30-15-4 0.82 30 22 0.213 136241566 1492 1 < 0.001 213 1491879

frb30-15-5 0.82 30 9 0.163 52198654 570 1 < 0.001 163 569641

(continued on next page)
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Table 1
(continued)

IncMaxCLQ
(Li et al., 2013)

BBMCX
(San Segundo et al., 2015)

NEW CLQ/NEW BBMCX/NEW

p ω Steps Time Steps Time Steps Time Time Time

gen200_p0.9_44 0.90 44 0 0.033 10789 0.134 156 0.004 8.3 34

gen200_p0.9_55 0.90 55 61 0.037 28616 0.294 49 0.004 9.2 74

gen400_p0.9_55 0.90 55 320 1.05 – >3 h 1 < 0.001 1052 ∞

gen400_p0.9_65 0.90 65 75 0.285 – >3 h 2 < 0.001 285 ∞

gen400_p0.9_75 0.90 75 160 0.238 – >3 h 1579 0.044 5.4 ∞

hamming10-2 0.99 512 0 25.0 1 0.015 1 < 0.001 24992 15

hamming8-2 0.97 128 0 0.013 1 0.001 1 < 0.001 13 1.0

hamming8-4 0.64 16 264 0.056 3025 0.022 2898 0.012 4.6 1.8

johnson16-2-4 0.77 8 3150 0.080 118237 0.081 114070 0.068 1.2 1.2

johnson8-2-4 0.55 4 0 < 0.001 13 < 0.001 12 < 0.001 1.0 1.0

johnson8-4-4 0.77 14 0 0.004 43 < 0.001 1 < 0.001 3.6 1.0

keller4 0.65 11 469 0.043 1477 0.006 1357 0.010 4.3 0.6

keller5 0.75 27 249409 127 – >3 h 128634297 1364 0.1 ∞

p_hat1000-1 0.25 10 1700 0.503 20306 0.165 19311 0.166 3.0 1.0

p_hat1000-2 0.49 46 51658 43.2 1987798 66.9 905774 29.6 1.5 2.3

p_hat1500-1 0.25 12 56404 4.64 95933 1.47 88109 1.16 4.0 1.3

p_hat1500-2 0.51 65 1517961 1982 108728522 6448 36361695 2237 0.9 2.9

p_hat300-1 0.24 8 15 0.011 247 0.001 177 0.002 5.7 0.5

p_hat300-2 0.49 25 21 0.032 413 0.012 212 0.008 4.0 1.5

p_hat300-3 0.74 36 506 0.313 55832 0.800 12175 0.242 1.3 3.3

p_hat500-1 0.25 9 366 0.066 694 0.015 617 0.010 6.6 1.5

p_hat500-2 0.51 36 254 0.165 8068 0.159 2257 0.058 2.8 2.7

p_hat500-3 0.75 50 28338 19.6 1420639 40.8 646861 18.2 1.1 2.2

p_hat700-1 0.25 11 559 0.121 2162 0.029 675 0.026 4.6 1.1

p_hat700-2 0.50 44 613 0.826 55703 1.57 18200 0.534 1.5 2.9

p_hat700-3 0.75 62 247906 241 15527523 725 5592597 262 0.9 2.8

san1000 0.50 15 646 0.421 15864 0.793 1 < 0.001 421 793

(continued on next page)
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Table 1
(continued)

IncMaxCLQ
(Li et al., 2013)

BBMCX
(San Segundo et al., 2015)

NEW CLQ/NEW BBMCX/NEW

p ω Steps Time Steps Time Steps Time Time Time

san200_0.7_1 0.70 30 6 0.016 357 0.003 1 < 0.001 16 3.0

san200_0.7_2 0.70 18 0 0.008 212 0.004 1 < 0.001 7.8 4.0

san200_0.9_1 0.90 70 0 0.032 436 0.015 1 < 0.001 32 15

san200_0.9_2 0.90 60 0 0.026 776 0.018 1 < 0.001 26 18

san200_0.9_3 0.90 44 93 0.044 1539 0.016 1 < 0.001 44 16

san400_0.5_1 0.50 13 55 0.032 482 0.011 1 < 0.001 32 11

san400_0.7_1 0.70 40 286 0.120 6890 0.155 1 < 0.001 120 155

san400_0.7_2 0.70 30 736 0.357 3624 0.092 1 < 0.001 357 92

san400_0.7_3 0.70 22 7364 2.12 35080 0.519 1 < 0.001 2121 519

san400_0.9_1 0.90 100 99 0.223 1259 0.041 2 < 0.001 223 41

sanr200_0.7 0.70 18 1366 0.193 15609 0.094 11792 0.069 2.8 1.4

sanr200_0.9 0.90 42 8029 2.28 759754 9.44 376883 4.62 0.5 2.0

sanr400_0.5 0.50 13 5041 0.491 26345 0.202 15826 0.138 3.6 1.5

sanr400_0.7 0.70 21 477635 90.2 5884650 53.9 5777785 45.6 2.0 1.2
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Table 2
Performance of the algorithms considered over a data set of uniform random graphs. In bold, best times for each row. A step is a recursive call to the algorithm. The time limit
was fixed at 3 h and is measured in seconds with millisecond precision. Times reported are averaged over 10 runs. The column with header p shows average density, header ω

refers to the clique number and wang to the average clique number of the 10 runs.

IncMaxCLQ
(Li et al., 2013)

BBMCX (San
Segundo et al., 2015)

NEW CLQ/NEW BBMCX/NEW

n p ω ωavg Steps Time Steps Time Steps Time Time Time

150 0.7 16–17 16.5 152 0.028 3176 0.018 2019 0.015 1.8 1.2
150 0.8 23 23 607 0.091 10570 0.068 7055 0.049 1.9 1.4
150 0.9 35–38 36.1 519 0.129 33793 0.278 25001 0.242 0.5 1.1
150 0.95 51–58 54.2 30 0.021 7003 0.092 2796 0.051 0.4 1.8
150 0.98 75–84 78.5 0 0.010 250 0.007 27 0.002 5.1 3.5

200 0.7 17–18 18 1560 0.210 18197 0.118 15001 0.098 2.1 1.2
200 0.8 25–26 25.2 6253 1.110 174890 1.141 121530 0.839 1.3 1.4
200 0.9 40–42 41.7 16201 4.486 1736303 18.21 929779 10.933 0.4 1.7
200 0.95 58–66 61.5 5008 2.021 1819358 30.927 1189164 23.269 0.1 1.3
200 0.98 90–103 93.2 2 0.022 2480 0.078 901 0.046 0.5 1.7

300 0.6 15–16 14.9 5090 0.661 42485 0.243 38571 0.217 3.0 1.1
300 0.7 20–21 20 34511 5.094 458336 3.124 354376 2.499 2.0 1.3
300 0.8 28–29 28.5 500066 101.964 12880189 113.196 8929109 81.787 1.2 1.4

500 0.4 10–11 10.4 3585 0.313 13676 0.099 12762 0.099 3.2 1.0
500 0.5 13 13.3 14800 1.974 90344 0.705 77226 0.617 3.2 1.1
500 0.6 17 17 172621 23.261 1293409 11.229 1001177 9.148 2.5 1.2
500 0.7 22–23 22.4 3514023 685.268 49894001 493.651 39122751 390.419 1.8 1.3

1000 0.2 7–8 7.3 752 0.195 1889 0.042 1446 0.043 4.5 1.0
1000 0.3 9–10 9.6 11844 1.006 33971 0.343 32586 0.304 3.3 1.1
1000 0.4 12 12 58408 9.232 309123 3.997 256411 3.612 2.6 1.1
1000 0.5 15 15 1729301 218.145 6492609 91.01 5921869 83.784 2.6 1.1

3000 0.1 6-7 6.4 98463 16.072 2551 0.231 2493 0.225 71.4 1.0
3000 0.2 9 9 823163 36.526 208690 4.707 199516 4.067 9.0 1.2

5000 0.1 7 7 438717 72.368 7340 1.44 4486 1.383 52.3 1.0
5000 0.2 9–10 9.1 16912464 613.796 1184296 82.851 1220961 80.559 7.6 1.0

10000 0.1 7–8 7.3 15117 46.069 409612 26.741 328864 25.351 1.8 1.1
15000 0.1 8 8 289917 186.520 1674351 158.769 1596434 152.025 1.2 1.0
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idea in which only a partial colouring is computed for each subproblem. Consequently,
BBMCXS computes bounds faster than BBMCX, but its pruning can be less effective.
We then describe a second algorithm BBMCXRS which efficiently enhances BBMCXs
with recolouring. The latter is a linear procedure which attempts to improve the sequen-
tial approximate-colour bound. Reported results show that BBMCXRS captures structure
better, on average, than previous infra-chromatic solvers.

We would also like to highlight the template design of the algorithms presented in this
work. We believe this will make it easier for other researchers to develop new variants,
either by switching between frameworks, or by adding a new pruning scheme in a hierar-
chical fashion. Ongoing work is the enhancement of the standard, full colour, bound with
a combined recolouring + infra-chromatic filter.
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Pagerintas infrachromatinis rėžis tiksliai didžiausios klikos paieškai

Pablo SAN SEGUNDO, Alexey NIKOLAEV, Mikhail BATSYN, Panos M.PARDALOS

Šiuo straipsniu pagerinamas infrachromatinis rėžis, naudojamas tiksliam šakų ir rėžių didžiausios
klikos sprendikliui BBMCX kaip viršutinis klikos dydžio rėžis kiekvienam daliniam uždaviniui.
Infra-chromatinis rėžis ieško spalvų poaibių trijulių, negalinčių turėti 3-klikų. Toks rėžis yra griež-
tesnis negu gaunamas dažnai naudojamų apytikslio spalvojimo algoritmų, nes gali būti mažesnis už
chromatinį skaičių. Pristatyti rezultatai rodo, kad mūsų algoritmas su naujuoju rėžiu gerokai lenkia
pranašius algoritmus struktūriniams ir atsitiktiniams grafams.


