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ABSTRACT

Lifting scheme based integer transforms are very power-
ful tools to construct lossless coding schemes. These trans-
forms such as the Integer Fast Fourier Transform (IntFFT)
and the Integer Modified Discrete Cosine Transform (Int-
MDCT) are integer approximations of the original floating-
point transforms, and hence there is an approximation error
in the transform domain. This paper will propose structures
for improved integer transforms in terms of improved ap-
proximation accuracy and computational efficiency. Exper-
imental results will show that clear improvements in these
two points are achieved in lossless audio coding.

1. INTRODUCTION AND GOAL

Integer transforms are used for lossless coding applications
such as in audio [1] and image coding [2]. Integer transforms
can map integers to integers and are reversible. Hence, they
are a lossless process over the forward and inverse trans-
forms. In addition, they inherit the properties of the orig-
inal transforms. Thus, in general, a lossless codec can be
realized by simply cascading the integer transform with an
entropy coding scheme.

Integer transforms can be obtained by using a struc-
ture of lifting steps with constant lifting coefficients and
rounding after coefficient multiplication, as seen in Fig. 2.
The lifting scheme [3] has been applied to construct a num-
ber of integer transforms such as the Integer Fast Fourier
Transform (IntFFT) [4], the Integer Discrete Cosine Trans-
form (IntDCT) [2], and the Integer Modified Discrete Co-
sine Transform (IntMDCT) [1, 5].

The main application for the IntMDCT is the area of
lossless audio coding. In [6] and [7], scalable lossless en-
hancements of MDCT-based perceptual lossless audio codecs
are proposed. Figure 1 shows the basic structure of such a
codec.

Here the IntMDCT is useful because the MDCT is the
mainly used transform or filter bank in perceptual audio
coders, like MPEG-1 Layer 3 (MP3), or MPEG-4 AAC,
its successor. Currently MPEG is working on an extension
towards lossless coding, and IntMDCT based solutions are
proposed. Here the obtained compression ratio is especially
important and previously used IntMDCT structures have
come to a limit. This shows that a new structure is needed.

Integer transforms have two measures of quality for cod-
ing. The first is the approximation accuracy. Since integer
transforms have integer values in the frequency domain,
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Figure 1: Perceptual audio coding scheme (solid lines) and
scalable lossless enhancement (dashed lines)

they can only be approximations of the original floating
point transforms. The approximation error results from
an accumulation of the rounding errors of the lifting steps.
The coding efficiency, and hence the compression ratio, is
limited by this approximation error, because especially at
higher frequencies, where the audio signal usually has very
low energy, it shows up as “noise floor” which has to be
coded.

The second measure is the computational complexity.
This is important because in audio coding large size trans-
forms are necessary, and in general the complexity of inte-
ger transforms is higher than for the original floating point
transforms.

2. PRESENT STATE

Transforms like the DFT, DCT, or the MDCT can be for-
mulated in terms of so-called Givens rotations. The lifting
scheme can be applied to get an invertible integer approxi-
mation of each Givens rotation:„

cos α −sin α
sin α cos α

«
=

„
1 cos α−1

sin α
0 1

«„
1 0

sin α 1

«„
1 cos α−1

sin α
0 1
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The integer approximation is achieved by applying a round-
ing function after each addition. This 3 step lifting struc-
ture is illustrated in Fig. 2.
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Figure 2: 3 step lifting scheme to implement an integer
approximation of a Givens rotation. [ ] symbolize rounding.

Transforms like the FFT contain many trivial rotations
with only factors +1/-1. For integer transforms these trivial
rotations have to be modified because they imply a scaling
of the signal, resulting in increase of energy. Hence these
simple rotations are implemented using the 3 step lifting
structure with non-trivial coefficients. The consequence is
that the computational complexity of the integer transforms
is higher than for the original floating point transform. An
important factor for the approximation error of the 3 step
lifting scheme is the total number of lifting steps needed for
the integer transform.

For the IntMDCT, the lifting scheme is first applied to
the steps of windowing and time-domain aliasing. This con-
cept can also be generalized and applied to low-delay filter
banks, as shown in [8]. The remaining block transform is
the DCT type 4 (DCTIV ). Figure 3 illustrates this decom-
position.
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Figure 3: Decomposition of MDCT and inverse MDCT into
Givens rotations and DCTIV

The DCTIV can be implemented using the FFT, see [9].
For an integer approximation, the lifting scheme is applied
in all the stages. With this connection between the MDCT
and the FFT, an improvement of the IntFFT also improves
the IntMDCT.

To improve the IntMDCT according to the two quality
measures we will describe two techniques. The first one,
providing refinements of the lifting scheme, can improve
the computational efficiency, and to some extent the ap-
proximation accuracy as well. The second approach, the
multi-dimensional lifting, is more focused on improved ap-
proximation accuracy.
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Figure 4: Combined rounding in two succeeding lifting steps

3. REFINEMENTS OF THE LIFTING SCHEME

3.1. Combined Rounding

Whenever two succeeding lifting steps occur in a way that
two rounded values are added to the same third value, sub-
sequently, the rounding operations can be combined. This
can reduce the overall rounding error. Figure 4 illustrates
this procedure.

3.2. 2 Step Lifting

The technique described in the following is based on the
combination of the conventional 3 step lifting scheme and 2
step lifting scheme [2]. When the IntFFT is used to imple-
ment the IntMDCT [10], this technique is useful, since, as
mentioned earlier, the FFT has trivial rotations and each
consecutive two of them can be implemented with 4 lift-
ing steps with only 2 rounding operations as depicted in
Fig. 5. Because of reduction of the rounding operations,
the approximation error due to the trivial rotations can
be reduced. Also, it can be seen that the lifting coeffi-
cients simply become 0.5 and the multiplication with the
coefficient is done by a shift operation. As a result, this
contributes to a significant improvement of computational
efficiency. Moreover, it is possible to combine two round-
ing operations in some part of the implementation so that
the approximation error could be further reduced. Here, it
should be noted that the 3 step lifting scheme is applied to
all of the other Givens rotations.
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Figure 5: 2 step lifting scheme to implement 2 successive
trivial butterflies.

4. MULTI-DIMENSIONAL LIFTING

Apart from Givens roatations, the lifting scheme can also be
used for an invertible integer approximation of certain scal-



ing operations. In [11] the following lifting decomposition
of a 2× 2 scaling matrix with determinant 1 is presented:

„
d 0
0 d−1

«
=

„
−1 0
d−1 1

«„
1 −d
0 1

«„
0 1
1 d−1

«
This decomposition provides the basic idea for the new

approach. The equation still holds when all the values are
replaced by n × n matrices. So, for any invertible n × n
matrix T and for the n×n identity matrix In the following
decomposition of 2n× 2n block matrices is possible:

„
T 0
0 T−1

«
=

„
−In 0
T−1 In

«„
In −T
0 In

«„
0 In

In T−1

«
(1)

Apart from some simple operations like permutations or
multiplication with −1 all the three blocks of this decom-
position have the following general structure:„

In 0
A In

«
with an n× n matrix A.

For this 2n×2n block matrix a generalized lifting scheme
can be applied, called “multi-dimensional lifting” in the fol-
lowing. Similar to the conventional lifting scheme, these
2n× 2n matrices can be used for invertible integer approx-
imations of the transform T in the following way: The first
half of the integer input values is processed by the matrix
A and then rounded to integer values before adding them
to the second half of the values.

The inverse of the block matrix is given by„
In 0
A In

«−1

=

„
In 0
−A In

«
So this process can be inverted without any error by simply
applying the same matrix A and the same rounding, and
subtracting the resulting values instead of adding them. As
the first half of the values is not modified in the forward
step, they are still available for the inverse step. No spe-
cial restrictions apply to the matrix A, e.g. it does not
necessarily have to be invertible.

4.1. The Stereo IntMDCT

The most straight-forward way of using the multi-dimensional
lifting approach for the IntMDCT is to apply the DCTIV to
two blocks of signals simultaneously. These blocks can ei-
ther be from two succeeding blocks or from the left and the
right channel of a stereo audio signal. The decomposition in
equation (1) is applied to the DCTIV matrix. Since the in-
verse of the DCTIV is again the DCTIV , the decomposition
in equation (1) becomes:„

DCTIV 0
0 DCTIV

«
=„

−IN 0
DCTIV IN

«„
IN −DCTIV

0 IN

«„
0 IN

IN DCTIV

«
(2)

So, apart from permutations and multiplications with
−1, the application of the DCTIV to two blocks of signals
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Figure 6: Invertible integer approximation of two blocks of
DCTIV by three multi-dimensional lifting steps

can be performed with three multi-dimensional lifting steps.
This process is illustrated in figure 6, including the rounding
operations for the integer approximation.

With this approach two DCTIV transforms of length N
can be implemented in an invertible integer fashion with
only 3N rounding steps, i.e. 3N/2 rounding steps per trans-
form.

The DCTIV in the three multi-dimensional lifting steps
can have an arbitrary implementation, e.g. floating-point
or fixed-point based. It does not need to be invertible. It
just has to be performed in the same way in the forward and
inverse IntMDCT. This makes this approach also suitable
for high transform lengths of e.g. 1024, as used in audio
coding applications. The overall computational complex-
ity is about 1.5 times the computational complexity of the
non-integer implementation of the two DCTIV transforms.
This is still lower than for the conventional lifting-based in-
teger implementations, which are about twice as complex
as the conventional DCTIV , as these implementations have
to implement the trivial +/− butterflies based on lifting to
achieve an energy conservation, see [12].

4.2. The Mono IntMDCT

The approach presented so far always needs to calculate
two DCTIV transforms simultaneously. This can e.g. be
achieved by calculating the DCTIV of two succeeding blocks
of the audio signal. In the case of a two-channel stereo signal
this can also be achieved by calculating the DCTIV of the
left and the right channel simultaneously. The first version
introduces an additional delay of one block into the system,
the second version is only possible for stereo signals.

If both the delay and the stereo version is not desired,
this approach is still possible, but some additional stages of
Givens rotations are necessary.

The DCTIV of length N

DCT
(N)
IV =

 r
2

N
cos

(2k + 1)(2l + 1)π

4N

!
k,l=0,...,N−1



can be decomposed into two DCTIV of length N/2 and cer-
tain pre- and post-modulation stages. In the following this
decomposition is described.

Define the N ×N matrices L and M by„
Lk,k Lk,N−1−k

LN−1−k,k LN−1−k,N−1−k

«
=„

cos( 2k+1
4N

π) − sin( 2k+1
4N

π)
− sin( 2k+1

4N
π) − cos( 2k+1

4N
π)

«
k = 0, . . . , N/2− 1

Lk,l = 0 else

M =
1√
2

„
IN/2 IN/2

−IN/2 IN/2

«
and the N ×N permutation matrices P and Q by

P4k,4k = P4k+1,4k+1 = P4k+2,4k+3 = P4k+3,4k+2 = 1

k = 0, . . . , N/4− 1

Pk,l = 0 else

i.e. every second pair of values is swapped, and

Qk,2k = QN/2+k,2k+1 = 1 k = 0, . . . , N/2− 1

Qk,l = 0 else

i.e. the even indices are arranged in the first half, the odd
indices are arranged in the second half.

With these matrices the DCTIV of length N can be de-
composed into

DCT
(N)
IV = L

 
DCT

(N/2)
IV 0

0 DCT
(N/2)
IV

!
MQP

Figure 7 illustrates this decomposition.
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Figure 7: DCTIV of length N by two DCTIV of length N/2
and two stages of Givens rotations

Now the two DCTIV of length N/2 can be decomposed
into three multi-dimensional lifting steps of length N/2 us-
ing equation (2). The matrices L and M can both be consid-
ered as N/2 Givens rotations. The lifting implementation of
the matrices L and M can be adopted to the DCTIV stage
to further reduce the overall number of rounding opera-
tions. The matrix M can be implemented using the multi-
dimensional lifting steps„

IN/2 0
− 1

2
IN/2 IN/2

«„
IN/2 IN/2

0 IN/2

«

The remaining scaling factors
√

2 and 1/
√

2 can be han-
dled by the DCTIV stage. Furthermore, the remaining N/2
rounding operations for M and N/2 of the 3N/2 round-
ing operations for L can be combined with the rounding
operations in the DCTIV stage, as described in the previ-
ous section. So, overall only 5N/2 rounding operations are
necessary for this invertible integer approximation of the
DCTIV of length N .

Including the windowing stage, the total number of round-
ing operations for this IntMDCT is 4N , i.e. 4 rounding
operations per sample.

5. RESULTS

The approximation accuracy of the combined 2-step lifting
based and the multi-dimensional lifting based IntMDCT are
evaluated by applying the transforms to the audio material
used for the lossless coding activities of the ISO MPEG
group [13]. The audio material consists of recordings of the
New York Symphonic Ensemble and Jazz recordings. The
evaluation is done for 48 kHz / 16 bit and 96 kHz / 24 bit.
The performance of the different transforms is evaluated
by mean squared error (MSE) maximum error and an en-
tropy estimation, calculated by

P
k log2(2|yk| + 1). The

number of instructions reflects the number of additions and
multiplications.

The size of the IntMDCT is set to be 1024. Table 2
shows the results for the conventional lifting based Int-
MDCT, the combined 2-step lifting based, the multi-dimensional
lifting based IntMDCT in the mono case, and, as a refer-
ence, the rounded MDCT, which does not allow lossless
operation. The resulting MSE and maximum error values
are similar for both input format, so only the overall values
are displayed.

It can be observed that the computational efficiency is
significantly improved by the combined 2-step lifting ap-
proach and to some extent the entropy of the resulting Int-
MDCT coefficients is reduced. More importantly, the ap-
proximation error is largely reduced by the multi-dimensional
lifting approach, and the estimated entropy comes close to
the theoretical limit given by the rounded MDCT.

The multi-dimensional lifting based IntMDCT was also
evaluated in a codec for scalable lossless enhancement of
MPEG-4 AAC, see [7] for a detailed structure of this codec.
Table 2 summarizes the compression results in bits per sam-
ple for the AAC-based lossless enhancement, the lossless-
only mode, and, as a comparison, the prediction-based loss-
less coder Monkey’s Audio [14]. It can be observed that the
compression performance in the lossless-only mode comes
very close to the performance of Monkey’s Audio. Ad-
ditionally the codec provides a scalable mode, where the
enhancement can clearly benefit from the perceptual core
codec, compared to a simulcast solution.

6. CONCLUSIONS

In this paper we have presented two possible improvements
for lifting based integer transforms, especially focusing loss-
less audio coding applications. The first approach of com-
bined 2-step lifting allows for a low computational complex-
ity of the integer transform, and to some extent also im-



Lifting Combined Multi-dim. Rounded
based 2-step lifting lifting MDCT

IntMDCT IntMDCT IntMDCT (not lossless)
Rounding operations per sample 22.5 8.65 4 1
Instructions per sample 45 27 32 20
MSE 1.97 1.49 0.48 0
max. Error 8 10 4 0
Entropy estimation 48 kHz 16 bit 1.180 · 108 1.177 · 108 1.166 · 108 1.160 · 108

Entropy estimation 96 kHz 24 bit 4.145 · 108 4.143 · 108 4.125 · 108 4.113 · 108

Table 1: Comparison of convention lifting based IntMDCT, combined 2-step lifting based IntMDCT, multi-dimension lifting
(MDL) based IntMDCT and rounded MDCT (not lossless)

48 kHz 48 kHz 96 kHz 192 kHz
16 bit 24 bit 24 bit 24 bit

AAC 1.3 1.3 0.8 0.5
Enhancement 6.5 14.4 11.0 9.2
AAC + Enhancement 7.8 15.7 11.8 9.7
Lossless-only 7.5 15.3 11.6 9.5
Monkey’s Audio 3.97 7.2 15.2 11.5 9.4
Simulcast 8.5 16.5 12.3 9.9
(AAC + Monkey’s Audio)

Table 2: Compression results (in bits per sample) for AAC-based lossless enhancement, lossless-only mode, Monkey’s Audio,
and a simulcast solution

proves the approximation accuracy. The second approach
of multi-dimensional lifting achieves a very high approxi-
mation accuracy, especially for long transforms, typical for
audio coding applications. It is also evaluated in the con-
text of a scalable lossless enhancement of MPEG-4 AAC,
providing a flexible perceptual and lossless codec with high
compression efficiency.
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