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Abstract

The improvement of the inverse estimation of approximation theory by
trigonometric polynomials in the weighted Lebesgue spaces was obtained and
its application in the weighted Smirnov spaces was considered.

1 Introduction and the main results

Let T be the interval [−π, π] or the unit circle |z| = 1 of the complex plane C.
A measurable 2π−periodic function ω : T → [0,∞] is said to be a weight func-
tion if ω−1 ({0,∞}) has measure zero. With any given weight ω, we associate the
ω−weighted Lebesgue space Lp (T, ω) , 1 ≤ p < ∞, consisting of all measurable
2π−periodic functions f on T such that

‖f‖Lp(T,ω) :=

∫
T

|f (x)|p ω (x) dx

1/p

<∞.

Let 1 < p <∞. A weight function ω belongs to the Muckenhoupt class Ap (T) if 1

|J |

∫
J

ω (x) dx

 1

|J |

∫
J

[ω (x)]−1/(p−1) dx

p−1

≤ C

with a finite constant C independent of J, where J is any subinterval of [−π, π] and
|J | denotes the length of J .
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The detailed information about the classes Ap (T)can be found in [22] and [9].
Let 1 < p < ∞ and ω ∈ Ap (T) . Since Lp (T, ω) is noninvariant with respect

to the usual shift, for the definition of the modulus of smoothness we consider the
following mean value function as a shift for g ∈ Lp (T, ω):

σh (g) (x) :=
1

2h

h∫
−h

g (x+ t) dt, 0 < h < π, x ∈ T.

It is known (see, [23]) that the operator σh is a bounded linear operator on Lp (T, ω) ,
1 < p <∞, i. e.,

‖σh (g)‖Lp(T,ω) ≤ c ‖g‖Lp(T,ω) , g ∈ Lp (T, ω) ,

holds with a constant c > 0 independent of g and h. The kth modulus of smoothness
Ωk (g, ·)p,ω of the function g ∈ Lp (T, ω) is defined by

Ωk (g, δ)p,ω = sup
0<h≤δ

∥∥∥T k
h g
∥∥∥

Lp(T,ω)
, δ > 0 (1)

where
Thg = T 1

hg := g − σh (g) , T k
h g := Th

(
T k−1

h g
)
, k = 1, 2, ... .

The modulus of smoothness Ωk (g, ·)p,ω is nondecreasing, nonnegative, continuous
function and

lim
δ→0

Ωk (g, δ)p,ω = 0, Ωk (g1 + g2, ·)p,ω ≤ Ωk (g1, ·)p,ω + Ω (g2, ·)p,ω .

Let Tn (n = 0, 1, 2, ...) be the set of trigonometric polynomials of order at most
n. The best approximation to g ∈ Lp (T, ω) in the class Tn is defined by

En (g)p,ω = inf
Tn∈Tn

‖g − Tn‖Lp(T,ω)

for n = 0, 1, 2, ... .
The problems of the approximation theory by trigonometric polynomials in the

space Lp (T, ω), when the weight function satisfies the Muckenhoupt condition, were
investigated by E. A. Haciyeva in [11]. Haciyeva obtained the direct and inverse
estimates in terms of the modulus of smoothness (1). N. X. Ky, using a relevant
modulus of smoothness, investigated the approximation problems in the weighted
Lebesgue spaces with Muckenhoupt weights (see [19], [20]). For more general class
of weights, namely for doubling weights, similar problems were investigated by G.
Mastroianni and V. Totik in [21]. Also, M. C. De Bonis, G. Mastroianni and M. G.
Russo gave results for some special weight functions in [6].

The following inverse theorem was proved in [11].

Theorem A. Let 1 < p <∞ and ω ∈ Ap (T) . Then, for g ∈ Lp (T, ω) the inequality

Ωk

(
g,

1

n

)
p,ω

≤ c

n2k

{
E0 (g)p,ω +

n∑
ν=1

ν2k−1Eν (g)p,ω

}
, n = 1, 2, ..., (2)

holds with a constant c > 0 independent of n.



Improved Inverse Theorems in Weighted Lebesgue and Smirnov Spaces 683

In this work we improve the estimate (2). We shall denote by c, the constants
(in general, different in different relations) depending only on numbers that are not
important for the questions of interest.

Our main result is the following.

Theorem 1. Let 1 < p <∞ and ω ∈ Ap (T) . Then, for g ∈ Lp (T, ω) the estimate

Ωk

(
g,

1

n

)
p,ω

≤ c

n2k

{
n∑

ν=1

ν2βk−1Eβ
ν (g)p,ω

}1/β

, n = 1, 2, ..., (3)

holds with a constant c > 0 independent of n, where β = min (p, 2) .

The estimate (3) is better than (2). Indeed, let

x : =
1

2

 ν∑
µ=1

µ2k−1Eµ (g)p,ω + (ν − 1) ν2k−1Eν (g)p,ω


=

1

2

ν−1∑
µ=1

µ2k−1Eµ (g)p,ω + νν2k−1Eν (g)p,ω


and

x− h : = (ν − 1) ν2k−1Eν (g)p,ω , x+ h :=
ν∑

µ=1

µ2k−1Eµ (g)p,ω

x− δ : = νν2k−1Eν (g)p,ω , x+ δ :=
ν−1∑
µ=1

µ2k−1Eµ (g)p,ω

for ν = 1, 2, ... . Since the function xβ is convex for β = min (p, 2), we obtain

[
νν2k−1Eν (g)p,ω

]β
−
[
(ν − 1) ν2k−1Eν (g)p,ω

]β
≤

 ν∑
µ=1

µ2k−1Eµ (g)p,ω

β

−

ν−1∑
µ=1

µ2k−1Eµ (g)p,ω

β

.

After summation with respect to ν we have

n∑
ν=1

{[
νν2k−1Eν (g)p,ω

]β
−
[
(ν − 1) ν2k−1Eν (g)p,ω

]β}

≤
n∑

ν=1


 ν∑

µ=1

µ2k−1Eµ (g)p,ω

β

−

ν−1∑
µ=1

µ2k−1Eµ (g)p,ω

β
 ,

and after simple computations we obtain

{
n∑

ν=1

ν2βk−1Eβ
ν (g)p,ω

}1/β

≤ 2
n∑

ν=1

ν2k−1Eν (g)p,ω .
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Consequently the estimate (3) is never worse than (2). In addition, in some cases,
it leads to a more precise result. For example, if

En (g)p,ω = O
(

1

n2k

)
, n = 1, 2, ...,

then we obtain from (2)

Ωk (g, δ)p,ω = O
(
δ2k

(
log

1

δ

))
(4)

and from (3)

Ωk (g, δ)p,ω = O
(
δ2k

(
log

1

δ

)1/β
)
,

which is better than (4).
The analogue of Theorem 1 in nonweighted Lebesgue spaces, in terms of the

usual modulus of smoothness, was proved by M. F. Timan in [26] (see also [25, p.
338]).

We also give an improvement of the appropriate inverse theorem in the weighted
Smirnov spaces, obtained in [16]. For its formulation we have to give some auxiliary
definitions and notations.

Let G be a finite domain in the complex plane, bounded by a rectifiable Jordan
curve Γ, and let G− := ExtΓ be the exterior of Γ. Further let

D := {z ∈ C : |z| < 1} , D− := C\D.

We denote by ϕ the conformal mapping of G− onto D− normalized by

ϕ (∞) = ∞, lim
z→∞

ϕ (z)

z
> 0.

Let ψ be the inverse of ϕ. The functions ϕ and ψ have continuous extensions to Γ
and T, their derivatives ϕ

′
(z) and ψ

′
(w) have definite nontangential limit values on

Γ and T a. e., and they are integrable with respect to Lebesgue measure on Γ and
T, respectively [10, pp. 419-438].

We denote by Ep (G) , 1 ≤ p <∞, the Smirnov class of analytic functions in G.
Each function f ∈ Ep (G) has a nontangential limit almost everywhere (a. e.) on Γ,
and the nontangential limit of f , belongs to the Lebesgue space Lp (Γ) . The general
information about Ep (G) can be found in [8, pp. 168-185] and [10, pp. 438-453].

Let ω be a weight function on Γ and let Lp (Γ, ω) be the ω−weighted Lebesgue
space on Γ. The ω−weighted Smirnov space Ep (G,ω) defined as

Ep (G,ω) := {f ∈ E1 (G) : f ∈ Lp (Γ, ω)} .

The approximation problems in Ep (G,ω) and Lp (Γ, ω) , 1 < p <∞, was studied
in [14] , [15] and [16]. The nonweighted case was considered in [1], [17], [2], [13] and
[4].

Definition 1. A rectifiable Jordan curve Γ is called a Carleson curve if the condition

sup
z∈Γ

sup
ε>0

1

ε
|Γ (z, ε)| <∞
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holds, where Γ (z, ε) is the portion of Γ in the open disk of radius ε centered at z,
and |Γ (z, ε)| its length.

The Muckenhoupt class on the rectifiable Jordan curve Γ seems as follows:

Definition 2. Let 1 < p < ∞. A weight function ω belongs to the Muckenhoupt
class Ap (Γ) if the condition

sup
z∈Γ

sup
ε>0

1

ε

∫
Γ(z,ε)

ω (τ) |dτ |


1

ε

∫
Γ(z,ε)

[ω (τ)]−1/(p−1) |dτ |


p−1

<∞

holds.

The Carleson curves and Muckenhoupt classes Ap (Γ) were studied in details in
[3].

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ). Then the function f+ defined
by

f+ (z) :=
1

2πi

∫
Γ

f (ς)

ς − z
dς, z ∈ G (5)

is analytic in G. Furthermore, if Γ is a Carleson curve and ω ∈ Ap (Γ) , then f+ ∈
Ep (G,ω) for f ∈ Lp (Γ, ω) , 1 < p <∞ (see [14, Lemma 3]).

With every weight function ω on the rectifiable Jordan curve Γ, we associate
another weight ω0 on T defined by ω0 := ω ◦ ψ.

Let ω ∈ Ap (Γ) and ω0 ∈ Ap (T) , where 1 < p <∞. If f ∈ Lp (Γ, ω) , then

f0 := (f ◦ ψ)
(
ψ

′)1/p
∈ Lp (T, ω0) .

We define the kth modulus of smoothness of the function f ∈ Lp (Γ, ω) by

Ωk (f, δ)Γ,p,ω := Ωk

(
f+

0 , δ
)

p,ω0

, δ > 0. (6)

The following theorem was proved in [16].

Theorem B. Let Γ be a Carleson curve, 1 < p <∞, ω ∈ Ap (Γ) and ω0 ∈ Ap (T) .
Then, for f ∈ Ep (G,ω) the estimate

Ωk

(
f,

1

n

)
Γ,p,ω

≤ c

n2k

{
E0 (f)Γ,p,ω +

n∑
ν=1

ν2k−1Eν (f)Γ,p,ω

}
, n = 1, 2, ..., (7)

holds with a constant c > 0 independent of n.

This theorem can be improved by the aim of Theorem 1 as follows:

Theorem 2. Let Γ be a Carleson curve, 1 < p <∞, ω ∈ Ap (Γ) and ω0 ∈ Ap (T) .
Then, for f ∈ Ep (G,ω) the estimate

Ωk

(
f,

1

n

)
Γ,p,ω

≤ c

n2k

{
n∑

ν=1

ν2βk−1Eβ
ν (f)Γ,p,ω

}1/β

, n = 1, 2, ..., (8)

holds with a constant c > 0 independent of n, where β = min (p, 2) .
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2 Auxiliary results

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ) . Then the limit

SΓ (f) (z) := lim
ε→0

1

2πi

∫
Γ\Γ(z,ε)

f (ς)

ς − z
dς (9)

is exists and is finite for almost all z ∈ Γ (see [3, pp. 117-144]). SΓ (f) (z) is called
the Cauchy singular integral of f at z ∈ Γ.

For f ∈ L1 (Γ) the function f+ (defined in (5)) has nontangential limits and the
formula

f+ (z) = SΓ (f) (z) +
1

2
f (z) (10)

holds a. e. on Γ [10, p. 431].
For f ∈ L1 (Γ), we associate the function SΓ (f) taking the value SΓ (f) (z) a.

e. on Γ. The linear operator SΓ defined in such way is called the Cauchy singular
operator. The following theorem, which is analogously deduced from David’s theo-
rem (see [5]), states the necessary and sufficient condition for boundedness of SΓ in
Lp (Γ, ω) (see also [3, pp. 117-144]).

Theorem 3. Let Γ be a Carleson curve, 1 < p <∞, and let ω be a weight function
on Γ. The inequality

‖SΓ (f)‖Lp(Γ,ω) ≤ c ‖f‖Lp(Γ,ω)

holds for every f ∈ Lp (Γ, ω) if and only if ω ∈ Ap (Γ) .

For k = 0, 1, 2, ..., and R > 1 let

Fk,p (z) :=
1

2πi

∫
|t|=R

tk
(
ψ

′
(t)
)1−1/p

ψ (t)− z
dt, z ∈ G.

Obviously, Fk,p is a polynomial of degree k. The polynomials Fk,p are called the
p−Faber polynomials for G (see [17] and [2]).

For detailed information about Faber polynomials and Faber series see [24, pp.
33-116].

Let Pn (n = 0, 1, 2, ...) be the set of the complex polynomials of degree at most
n, P be the set of all polynomials (with no restrictions on degrees), and let P (D) be
the set of restrictions of the polynomials to D. If we define an operator Tp on P (D)
as

Tp (P ) (z) :=
1

2πi

∫
T

P (t)
(
ψ

′
(t)
)1−1/p

ψ (t)− z
dt, z ∈ G,

then it is clear that

Tp

(
n∑

k=0

akt
k

)
=

n∑
k=0

akFk,p (z) .

From (5), we have

Tp (P )
(
z
′)

=
1

2πi

∫
Γ

P (ϕ (ς))
(
ϕ
′
(ς)
)1/p

ς − z′
dς =

[
(P ◦ ϕ)

(
ϕ
′)1/p

]+ (
z
′)
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for z
′ ∈ G. Taking the limit z

′ → z ∈ Γ, over all nontangential paths inside Γ, we
obtain by (10)

Tp (P ) (z) = SΓ

[
(P ◦ ϕ)

(
ϕ
′)1/p

]
(z) +

1

2

[
(P ◦ ϕ)

(
ϕ
′)1/p

]
(z)

for almost all z ∈ Γ.
We can state the following theorem as a corollary of Theorem 3.

Theorem 4. Let Γ be a Carleson curve, 1 < p <∞, and let w be a weight function
on Γ. If ω ∈ Ap (Γ) and ω0 ∈ Ap (T) , then the linear operator Tp : P (D) →
Ep (G,ω) is bounded.

Hence if ω ∈ Ap (Γ) and ω0 ∈ Ap (T) , then the operator Tp can be extended to
the whole of Ep (D, ω0) as a bounded linear operator and we have the representation

Tp (g) (z) =
1

2πi

∫
T

g (t)
(
ψ

′
(t)
)1−1/p

ψ (t)− z
dt, z ∈ G,

for all g ∈ Ep (D, ω0) .

Theorem 5 ([16]). Let Γ be a Carleson curve, 1 < p < ∞, and let ω be a weight
function on Γ such that ω ∈ Ap (Γ) and ω0 ∈ Ap (T) . Then the operator Tp :

Ep (D, ω0) → Ep (G,ω) is one-to-one and onto. In fact, we have Tp

(
f+

0

)
= f for

f ∈ Ep (G,ω) .

3 Proofs of the main results

Let g ∈ Lp (T, ω) has the Fourier series

g (x) ∼ a0

2
+

∞∑
ν=1

(aν cos νx+ bν sin νx) .

We denote the nth partial sum of this series by Sn (g, x) . Let also

Aν (g, x) := aν cos νx+ bν sin νx, ν = 1, 2, ...,

and

∆µ (g, x) :=
2µ−1∑

ν=2µ−1

Aν (g, x) .

By a simple calculation, one can show that the kth difference T k
h has the Fourier

series

T k
h g (x) ∼

∞∑
ν=1

(
1− sin νh

νh

)k

Aν (g, x) .

It is also known that (see [12]) the partial sums of the Fourier series are bounded in
the space Lp (T, ω) and hence

‖g − Sn (g, ·)‖p,ω ≤ c En (g)p,ω , n = 1, 2, ... . (11)
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Proof of Theorem 1. Let h > 0 and let m be any natural number. It is clear that

T k
h (g) (x) = T k

h (g) (x)− T k
h (S2m−1 (g, ·)) (x) + T k

h (S2m−1 (g, ·)) (x)

= T k
h (g − S2m−1 (g, ·)) (x) + T k

h (S2m−1 (g, ·)) (x) .

Using (11) yields∥∥∥T k
h (g − S2m−1 (g, ·))

∥∥∥
p,ω

≤ c ‖g − S2m−1 (g, ·)‖p,ω ≤ c E2m−1 (g)p,ω .

On the other hand, by Theorem 1 of [18],

∥∥∥T k
h (S2m−1 (g, ·))

∥∥∥
p,w

=

∥∥∥∥∥∥
2m−1∑
ν=1

(
1− sin νh

νh

)k

Aν (g, ·)

∥∥∥∥∥∥
p,ω

≤ c

∥∥∥∥∥∥∥
 m∑

µ=1

∆2
µ (g, ·; k, h)

2
∥∥∥∥∥∥∥

p,ω

,

where

∆µ (g, x; k, h) :=
2µ−1∑

ν=2µ−1

(
1− sin νh

νh

)k

Aν (g, x) .

By simple calculations, we obtain∥∥∥∥∥∥∥
 m∑

µ=1

∆2
µ (g, ·; k, h)

2
∥∥∥∥∥∥∥

p,ω

≤


m∑

µ=1

‖∆µ (g, ·; k, h)‖2
p,ω


1/2

if p > 2, and ∥∥∥∥∥∥∥
 m∑

µ=1

∆2
µ (g, ·; k, h)

2
∥∥∥∥∥∥∥

p,ω

≤


m∑

µ=1

‖∆µ (g, ·; k, h)‖p
p,ω


1/p

if p ≤ 2. Hence we have to estimate ‖∆µ (g, ·; k, h)‖p,ω .
Let’s assume that k = 1. By Abel’s transformation, we get

∆µ (g, x; 1, h) =
2µ−1∑

ν=2µ−1

(
1− sin νh

νh

)
Aν (g, x)

=
2µ−2∑

ν=2µ−1


[(

1− sin νh

νh

)
−
(

1− sin (ν + 1)h

(ν + 1)h

)]
ν∑

j=2µ−1

Aj (g, x)


+

(
1− sin (2µ − 1)h

(2µ − 1)h

) 2µ−1∑
ν=2µ−1

Aν (g, x)


=

2µ−2∑
ν=2µ−1

(
sin (ν + 1)h

(ν + 1)h
− sin νh

νh

) ν∑
j=2µ−1

Aj (g, x)


+

(
1− sin (2µ − 1)h

(2µ − 1)h

) 2µ−1∑
ν=2µ−1

Aν (g, x)

 .
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If we take the norm, we obtain

‖∆µ (g, ·; 1, h)‖p,ω ≤
2µ−2∑

ν=2µ−1

(
sin νh

νh
− sin (ν + 1)h

(ν + 1)h

)∥∥∥∥∥∥
ν∑

j=2µ−1

Aj (g, ·)

∥∥∥∥∥∥
p,ω

+

∣∣∣∣∣1− sin (2µ − 1)h

(2µ − 1)h

∣∣∣∣∣
∥∥∥∥∥∥

2µ−1∑
ν=2µ−1

Aν (g, ·)

∥∥∥∥∥∥
p,ω

.

Using (11) we get∥∥∥∥∥∥
ν∑

j=2µ−1

Aj (g, ·)

∥∥∥∥∥∥
p,ω

=

∥∥∥∥∥∥
∞∑

j=2µ−1

Aj (g, ·)−
∞∑

j=ν+1

Aj (g, ·)

∥∥∥∥∥∥
p,ω

≤

∥∥∥∥∥∥
∞∑

j=2µ−1

Aj (g, ·)

∥∥∥∥∥∥
p,ω

+

∥∥∥∥∥∥
∞∑

j=ν+1

Aj (g, ·)

∥∥∥∥∥∥
p,ω

= ‖g − S2µ−1−1 (g, ·)‖p,ω + ‖g − Sν (g, ·)‖p,ω

≤ c E2µ−1−1 (g)p,ω ,

and similarly ∥∥∥∥∥∥
2µ−1∑

ν=2µ−1

Aν (g, ·)

∥∥∥∥∥∥
p,ω

≤ c E2µ−1−1 (g)p,ω .

Hence we have

‖∆µ (g, ·; 1, h)‖p,ω ≤ c E2µ−1−1 (g)p,ω

2µ−2∑
ν=2µ−1

(
sin νh

νh
− sin (ν + 1)h

(ν + 1)h

)

+c E2µ−1−1 (g)p,ω

∣∣∣∣∣1− sin (2µ − 1)h

(2µ − 1)h

∣∣∣∣∣
≤ c E2µ−1−1 (g)p,ω 22µh2.

By the same way, for k > 1 we can obtain

‖∆µ (g, ·; k, h)‖p,ω ≤ c E2µ−1−1 (g)p,ω 22kµh2k.

Thus we have

∥∥∥T k
h (S2m−1 (g, ·))

∥∥∥
p,ω

≤ c


m∑

µ=1

‖∆µ (g, ·; k, h)‖β
p,ω


1/β

≤ c


m∑

µ=1

Eβ
2µ−1−1 (g)p,ω 22kµβh2βk


1/β

,

and hence

∥∥∥T k
h (g)

∥∥∥
p,ω

≤ c

E2m−1 (g)p,ω + h2k

 m∑
µ=1

22kµβEβ
2µ−1−1 (g)p,ω

1/β
 .
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Choosing h = 1/n for a given n, by the definition of the modulus of smoothness we
have

Ωk

(
g,

1

n

)
p,ω

≤ c

E2m−1 (g)p,ω +
1

n2k

 m∑
µ=1

22kµβEβ
2µ−1−1 (g)p,ω

1/β
 .

If we use the inequality

E2m−1 (g)p,ω ≤
24βk

22mβk

2m−1∑
ν=2m−2+1

ν2βk−1Eβ
ν (g)p,ω

and select m such that 2m ≤ n < 2m+1, we obtain

Ωk

(
g,

1

n

)
p,ω

≤ c

 26k

n2k

 2m−1∑
ν=2m−2+1

ν2βk−1Eβ
ν (g)p,ω

1/β

+
26k

n2k

2m−2∑
ν=1

ν2βk−1Eβ
ν (g)p,ω

1/β


≤ c

n2k

[
n∑

ν=1

ν2βk−1Eβ
ν (g)p,ω

]1/β

,

and the theorem is proved.

Proof of Theorem 2. Let f ∈ Ep (G,ω) . Then by Theorem 5 we have Tp

(
f+

0

)
= f ,

where

f0 (t) = f (ψ (t))
(
ψ

′
(t)
)1/p

, t ∈ T.

Since Tp : Ep (D, ω0) → Ep (G,ω) is bounded, one to one and onto, the linear
operator T−1

p : Ep (G,ω) → Ep (D, ω0) is also bounded.
Let P ∗

n ∈ Pn (n = 0, 1, 2, ...) be the polynomials of best approximation to f in
Ep (G,ω) , that is,

En (f)Γ,p,ω = ‖f − P ∗
n‖Lp(Γ,ω) .

The existence of such polynomials follows, for example, from Theorem 1.1 in [7, p.
59]. Since T−1

p (P ∗
n) is a polynomial of degree n, by the boundedness of T−1

p we get

En

(
f+

0

)
p,ω0

≤
∥∥∥f+

0 − T−1
p (P ∗

n)
∥∥∥

Lp(T,w0)

=
∥∥∥T−1

p (f)− T−1
p (P ∗

n)
∥∥∥

Lp(T,w0)

≤
∥∥∥T−1

p

∥∥∥ ‖f − P ∗
n‖Lp(Γ,ω) ,

and hence
En

(
f+

0

)
p,ω0

≤
∥∥∥T−1

p

∥∥∥En (f)Γ,p,ω . (12)

By (6), Theorem 1 and (12) we obtain

Ωk

(
f,

1

n

)
Γ,p,ω

= Ωk

(
f+

0 ,
1

n

)
p,ω0

≤ c

n2k

{
n∑

ν=1

ν2βk−1Eβ
ν

(
f+

0

)
p,ω0

}1/β

≤
c
∥∥∥T−1

p

∥∥∥
n2k

{
n∑

ν=1

ν2βk−1Eβ
ν (f)Γ,p,ω

}1/β

,

which prove the theorem.
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