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Abstract 

A major limitation of K - nearest neighbor based weather generators is that they do not produce new 

values but merely reshuffle the historical data to generate realistic weather sequences. In this paper, a 

modified approach is developed that allows nearest neighbor resampling with perturbation of the 

historic data. A strategy is introduced that resamples the historical data with perturbations while 

preserving the prominent statistical characteristics, including the interstation correlations. The approach 

is similar in spirit to traditional autoregressive models except that the new values are obtained by 

adding a random component to the individual re-sampled data points. An advantage of the approach is 

that unprecedented precipitation amounts are generated that are important for the simulation of extreme 

events. The approach is demonstrated through application to the Upper Thames River Basin in Ontario. 

Daily weather variables (maximum temperature, minimum temperature, and precipitation) were 

simulated at multiple stations in and around the basin. Analysis of the simulated data demonstrated the 

ability of the model to reproduce important statistical parameters of the observed data series while 

allowing perturbations to the observed data points. Additionally, no site-specific assumptions regarding 

the probability distribution of variables are required. 
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Introduction 

Development of stochastic weather models is an important task that has many practical applications in 

hydrology and water resources management. These models are often employed for impact assessment 

studies that require stochastically generated weather sequences as input. Traditionally, parametric 

weather generators (Nicks and Harp, 1980) have first focussed on independent generation of 

precipitation while the remaining variables are modelled conditionally on precipitation occurrence. 

Daily precipitation amounts are generated using a two-state first order Markov model from an assumed 

probability distribution fit to the observed values. Todorovic and Woolhiser (1975) combined the first 

order Markov model for daily precipitation occurrence with a statistical model for daily non-zero 

precipitation amounts described by an exponential distribution. Katz (1977), Buishand (1978) and Stern 

and Coe (1984) used the two-parameter gamma distribution to describe the occurrence of precipitation 

amount on wet days. Smith and Schreiber (1974), Woolhiser and Roldan (1982) and Wilks (1999) fit 

the three-parameter mixed exponential distribution to describe precipitation amounts on wet days. 

Richardson (1981) describes a Markov-chain exponential model for generating other meteorological 

variables in addition to precipitation. Stochastic weather generators of the type proposed by Richardson 

(1981) are commonly referred to as WGEN (for ‘weather generator’) as in Richardson and Wright 

(1984). Nicks et al. (1990) describe an extended version of WGEN, called WXGEN that takes into 

account the non-Normal distribution of wind speed and relative humidity. Wind speed and dewpoint 

(from which relative humidity can be derived) are included in the weather generator GEM (Generation 

of weather elements for Multiple Applications) developed by Hanson and Johnson (1998). Parlange and 

Katz (2000) further extended WGEN to include daily mean wind speed and dewpoint in the model. 

Wilks and Wilby (1999) present an excellent review of stochastic weather models. 
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A major drawback associated with the ‘Richardson type’ weather generators is that persistent events, 

such as drought or prolonged rainfall, are not well reproduced. To overcome this problem, the serial 

approach to weather generation has been presented by Rackso et al. (1991), Semenov and Barrow 

(1997) and Semenov et al. (1998), among others. An example of this approach is LARS-WG in which 

the sequence of dry and wet series of days is modelled first while the precipitation amounts and other 

variables are generated conditioned on the wet or dry status. Both WGEN and LARS-WG, however, 

have difficulty in reproducing the annual variability in monthly means of the variables. Further, they 

cannot simultaneously simulate weather data at multiple sites. Nevertheless, several applications of 

weather generators for multisite simulation of variables have been reported in the literature (e.g., Smith, 

1994; Wilby, 1994; Wilks, 1998). Parametric methods are indeed very useful but they have several 

inadequacies. First and most importantly, they do not adequately reproduce various aspects of the 

spatial and temporal dependence of variables. Second, an assumption has to be made regarding the 

form of probability distribution of the variables, which is often subjective. Third, non-Gaussian features 

in the data cannot be adequately captured as multivariate autoregressive models (MAR) implicitly 

assume a Normal distribution, which is difficult to satisfy. Fourth, a large number of parameters are 

separately fit to each time period and the number further increases if the simulations are to be 

conditioned. Fifth, the models are not easily transportable to other sites due to the site-specific 

assumptions made regarding the probability distributions of the variables. 

 

Non-parametric methods can circumvent many problems associated with the parametric methods. The 

most promising non-parametric technique for generating weather data is the K -nearest neighbor (K -

NN) resampling approach. Recently, interest has emerged in the application of these techniques for 

generating synthetic weather data.  The works of Young (1994), Lall and Sharma (1996), Lall et al. 
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(1996), Rajagopalan and Lall (1999), Buishand and Brandsma (2001) and Yates et al. (2003) describe 

applications of the K -NN resampling scheme for simulation of weather data. Young (1994) employed 

a K -NN model for simulation of weather data that preserves the correlation between the temperature 

and the precipitation, and the wet or dry spell statistics. Simulated sequences, however, showed reduced 

persistence and underestimation of the fraction of dry months. Lall et al. (1996) used a K -NN 

resampling scheme with kernel density estimators to represent the probability distributions of dry spell 

lengths, wet spell lengths and wet day precipitation amounts. Rajagopalan and Lall (1999) compared 

nearest neighbor resampling with a parametric time series model and demonstrated the superiority of 

the non-parametric approach. Sharma et al. (1997) describe a nonparametric method for the simulation 

of streamflow sequences. Their model was able to reproduce both linear and nonlinear dependence. 

Brandsma and Buishand (1998) describe the application of a nearest neighbor resampling procedure to 

single site simulation of daily precipitation and temperature for multiple stations in the Rhine Basin. 

Conditional simulation of weather variables on atmospheric flow was also considered. Buishand and 

Brandsma (2001) extended the nearest-neighbor resampling to simultaneous simulation of daily 

precipitation and temperature at multiple stations. Yates et al. (2003) describe a K-NN resampling 

strategy that can be used to generate desired climate change scenarios. 

 

It is often necessary to evaluate the response of hydrological models to extreme precipitation events that 

cause floods or droughts in a basin. A weather generator capable of simulating the occurrence of 

extreme precipitation events, while preserving the important temporal and spatial correlation of the 

observed data, is likely to be of immense help in formulating effective flood and drought management 

strategies at the catchment level. Earlier works of Yates et al. (2003), Buishand and Brandsma (2001) 

and Lall and Sharma (1996) describe successful applications of the basic K -NN approach to the 
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simulation of weather data. However, a limitation of these models is that they do not produce new 

values but merely reshuffle the historical data to generate new weather sequences. Application of such 

sequences, in conjunction with the hydrological models, to catchment response evaluation could lead to 

under-exploration of the possible effects of climatic variability, and to suboptimal policies for system 

management. The principal focus of this study is to develop and evaluate a weather generating model 

that allows nearest neighbor resampling with perturbation of the historical data. The proposed model is 

capable of extrapolating beyond the observed record to produce precipitation and temperature values 

that are different from the observed values. Particular emphasis is placed on the simulation of extreme 

unprecedented precipitation events that are likely to be beneficial in improving the prediction of 

hydrologic extremes, including both floods and droughts. Evaluation of the model is through 

application to data from the Upper Thames River Basin (UTRB) in the Canadian province of Ontario. 

 

The remainder of the paper is organized in the following manner. The next section describes model 

development and outlines the methodology used to adapt the K -NN algorithm for simulating daily 

weather sequences based upon the modified approach. The subsequent section describes the physical 

characteristics of the UTRB. Application of the algorithm to the basin along with a description of 

results is presented in the next section. The paper concludes with a summary of the results. 

 

Model Development 

Nearest neighbor methods have been intensively investigated in the field of statistics and in pattern 

recognition procedures. Despite their inherent simplicity, nearest neighbor algorithms are considered 

versatile and robust. Although more sophisticated alternative techniques have been developed since 

their inception, nearest neighbor methods remain very popular. A nearest neighbor algorithm typically 
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involves selecting a specified number of data vectors similar in characteristics to the vector of interest. 

One of these vectors is randomly resampled to represent the vector of the given time step in the 

simulation period. In the context of weather data simulation, the nearest neighbor approach involves 

simultaneous sampling, with replacement, weather variables, like precipitation and temperature, from 

the observed data. To generate weather variables for a new day, t+1, days with similar characteristics to 

those simulated for the previous day t are first selected from the historical record. One of these nearest 

neighbors is then selected according to a defined probability distribution or kernel and the observed 

values for the day subsequent to that nearest neighbor are adopted as the simulated values for day t+1. 

Models based on the K -NN approach can easily be extended to multisite simulation of weather data 

while keeping the spatial correlation structure virtually intact. The spatial dependencies are preserved 

because the same day’s weather is adopted as the weather for all stations. Apart from the spatial 

dependencies, temporal dependence is likely to be preserved as the simulated values for day t +1 are 

conditioned on the values for the previous day t. Further, the cross-correlation among the variables at 

any given site is automatically preserved as a block of variables, rather than a single variable, is 

resampled from the observed data. 

 

Consider that the daily historic weather vector consists of p variables. Suppose the number of stations 

considered in the model is qand data are available for N  years. Let j
tX denote the vector of weather 

variables for day t  and station j, where Tt ,...,1= , and qj ,...,1= ; T  being the total number of days in 

the observed time series. The feature vector for day t can be expressed, in expanded form, as 

],...,,[ ,,2,1
j
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j
t

j
t

j
t xxxX =  where j

tix , represents the value of the weather variable i  for station j . Suppose 

that the simulation begins on day t  corresponding to January 1. The algorithm cycles through various 

steps to obtain the weather for day t +1. The procedure continues for all 365 days of a given year and 
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the whole procedure is repeated to generate data for as many years as required. The steps of the 

algorithm are as follows. 

1. Compute regional means of the p  variables across the q  stations for each day of the historical 

record 

  ],...,,[ ,,2,1 tpttt xxxX =   (1) 

where ∑
=

=
q
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, pi ,...,1= , and Tt ,...,1=  (2) 

2. Determine the size, L , of data block that includes all potential neighbors to the current feature 

vector from which the resampling is to be done. A temporal window of width w  is chosen and all days 

within the window are considered as potential candidates to the current feature vector. Yates et al. 

(2003) used a temporal window of 14 days, which implied that if the current day is January 20 then the 

window of days consists of all days between 13 January and 27 January for all N years but excluding 

January 20 for the given year. Thus, the data block of potential neighbors from which to resample 

consists of 1)1( −×+= NwL  days.  

3. Compute mean vectors across q  stations for each day in the data block consisting of potential 

neighbors using the expressions given in step 1. 

4. Compute the covariance matrix, tC , for day t  using the data block of size pL× . 

5. The weather on the first day t (e.g., 1 January) comprising all p  variables at q  stations is 

randomly chosen from the set of all January 1 values in the historic record of N years. The algorithm 

cycles through the following steps to select one of the nearest neighbors to represent the weather for 

day t+1 of the simulation period. 

6. Compute Mahalanobis distances (Davis, 1986) between the mean vector of the current day’s 
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weather, tX  and the mean vector iX  for day i , where Li ,...,1= . The distance metric can be defined 

through 

  T
ittiti XXCXXd )()( 1 −−= −   (3) 

where T represents the transpose operation, and 1−
tC  is the inverse of the covariance matrix. Yates et al. 

(2003) used the Mahalanobis distance metric to determine the closeness of any given neighbor to the 

current vector as it does not require explicit weighting and standardization of the variables.  

7. Determine the number of first K  nearest neighbors to be retained for resampling out of the total 

of L  neighbors. Lall and Sharma (1996) suggested the use of the generalized cross validation score 

(GCV) for choosingK . Rajagoplan and Lall (1999) and Yates et al. (2003) recommended the use of a 

heuristic method for choosing K  according to which LK = .  

8. Sort the Mahalabonis distances in ascending order and retain the first K  nearest neighbors. A 

discrete probability distribution that gives higher weights to the closer neighbors was used for 

resampling from the K  nearest neigbors. Weights are assigned to each of these j neighbors according to 

the metric defined by 

  

∑
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The cumulative probabilities, jp , are given by 

  ∑
=

=
j

i
ij wp

1

  (5) 

 

The neighbor with the smallest distance is assigned the highest weight, while the neighbor with the 

largest distance (i.e. the K th neighbor) gets the least weight. Lall and Sharma (1996) developed this 
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function through a local Poisson approximation of the probability density function of state space 

neighbors. 

9. Determine the nearest neighbor of the current day by using the cumulative probability metric 

given by Eq. (5). Generate a random number, )1,0(⊂r and if Kprp <<1 , then the day j for which r is 

closest to jp  is selected. If 1pr ≤ , the day corresponding to 1d  is selected and if Kpr = , then the day 

corresponding to Kd  is selected. The observed values for the day subsequent to the selected nearest 

neighbor are adopted to represent the weather for day 1+t . In the modified approach presented here, 

the data points resampled using the basic K-NN approach are perturbed by adding a random component 

as described in step 10 below. 

10. For each station and each variable, a nonparametric distribution is fit to the K nearest neighbors 

identified in Step 8. This involves estimating the conditional standard deviation, σ  and the bandwidth, 

λ  (Sharma et al., 1997; Sharma and O’Neill, 2002).  Perturbation of the values of weather variables 

obtained using the basic K-NN approach is carried out in the following steps. 

(a) Let j
iσ  be the conditional standard deviation of variable i  for station j  computed 

from the K nearest neighbors. Let 1+tz  be a random variate for day 1+t  in the 

simulation period from a Normal distribution with zero mean and unit variance. The 

new value of weather variables i for day t+1 and station j is given by  

   11,1, +++ += t
j

i
j
ti

j
ti zxy λσ  (6) 

 where j
tix 1, +  is the value of the weather variable for day t+1 and station j obtained from 

the basic K-NN model, j
tiy 1, +  is the corresponding value obtained after perturbation and 

λ is the bandwidth (a function of the number of samples) determined following Sharma 

et al. (1997). The perturbed resampled value obtained at time step t is not used in the 
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neighbor calculation for day t+1, but rather the original resampled value is used. 

(b) Since the precipitation values are bounded, there is a possibility that Eq. (6) in the 

above step could lead to negative precipitation amounts. Setting these negative values 

to zero would lead to bias that might produce monthly totals higher than the observed 

values, which is unacceptable. To overcome this problem, the bandwidth is 

transformed if the probability of generating a negative value is too large. A threshold 

probability, α , for generating a negative value is selected. Sharma and O’Neill (2002) 

use 06.0=α  for which z = -1.55. The largest value of λ  corresponding to the 

probability of generating a negative value of exactly α  is therefore given by 

j

j
ta

x

3

1,3

55.1 σ
λ

×
= + , where subscript 3 refers to precipitation values and λa is the 

acceptable (largest) value of λ. If the calculated value of λ is larger than λa, then λa is 

used instead of λ. 

(c) If the precipitation computed in step 10(b) is still negative, a new value of the random 

variate is generated and the value of precipitation recomputed from Eq. (6). 

(d) Step 10(c) is repeated until the generated value of precipitation becomes non-negative.  

Steps 6 to 10 are repeated to generate as many years of synthetic data as required. If multiple sequences 

of data are required, then the algorithm starts at step 5. The modified approach presented here 

recognizes that the variability associated with low precipitation values is significantly smaller than that 

associated with higher precipitation values. A certain amount of bias is introduced due to the use of a 

new value of the random variate in case the computed value of precipitation is negative. However, the 

overestimation of precipitation amounts caused by this bias is insignificant as can be seen from the 

model results presented in the following sections of the paper.  
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The Upper Thames River Basin 

The Thames River Basin is located in the agricultural heartland of the southwestern region of the 

Canadian province of Ontario. The Thames River is the major river of the basin. It is 273 km long and 

has a catchment area of around 5,825 km2, making it the second largest watershed in southwestern 

Ontario. Southwestern Ontario is a highly developed region and as such, the basin faces pressures from 

urban and rural land uses. Most of the precipitation comes in the form of winter snow. Rainfall occurs 

mainly in spring, with some in fall. 

 

Daily maximum temperature (TMX), minimum temperature (TMN) and precipitation (PPT) data from 

15 stations in and around the basin were used for the period 1964-2001. Hence, for our model, p = 3. 

The geographical location of the stations is shown in Figure 1. The data set used in this study is 

Environment Canada corrected. The mean annual values of weather variables and the latitude and 

longitude of each meteorological station are presented in Table I. The meteorological stations in the 

basin are distributed across an area of approximate dimension 80 km (east – west) by 120 km (north-

south). The interstation distances range from approximately 10 km to 120 km. 

 

There were a large number of missing temperature records in the available data which were infilled 

using a two-step procedure. In the first step, missing records for London, Ilderton, Foldens, Stratford 

and Woodstock were infilled with the mean daily values. Once the data set for these five stations was 

complete, the missing records for Embro, Dorchester, Tavistock and Fullarton were infilled. At these 

four stations, the precipitation records were available but maximum temperature and minimum 

temperature records were missing for the entire period. The weighted average inverse distance square 
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method was used to estimate the missing temperature data for these four stations. The method has the 

advantage that the estimated values will always be less than the greatest and greater than the smallest 

value at the surrounding stations.  The calculation of distances between various stations was based on 

the latitude and longitude of the stations that are shown in Table I. It was not possible to use the 

weighted average inverse distance square method for London, Foldens, Stratford and Woodstock data 

as there were many days in the record for which the data are missing for either one or more of the 

remaining stations. The observed record for St. Thomas was also incomplete. Missing values for St. 

Thomas were computed from the available record of Ilderton, London and Dorchester. 

Model Application 

Model Parameters 

The performance of the K -NN model depends upon the proper setting of various parameters whose 

values must be determined before the evaluation of the model can be carried out. Two important model 

parameters in a K -NN based resampling approach are the width of the temporal window, w, and the 

number, K , of nearest neighbors. It is worth mentioning that although K  and w  are parameters the 

method itself is nevertheless non-parametric and does not require specifying model parameters from the 

observed data (Karlson and Yakowitz, 1987). In parametric models, the effect of seasonality is taken 

into account by fitting different model parameters to each season whereas it is through the moving 

window that the seasonal characteristics of the observed data are reproduced in a K -NN resampling 

technique. Because the search for nearest neighbors is restricted to days within a moving window, the 

effect of seasonal variation is greatly reduced. A subset of days within a moving window, centred on 

the Julian day of interest, is selected and all days within the temporal window are potential candidates 

for the weather on the given day in the simulation period. Therefore, the width of moving window must 

be sufficiently large such that the dependence between the observations outside the moving window can 
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be neglected. A fixed length 14-day temporal window was used in this study. For 14=w  and 38=N , 

the total number of potential candidates consists of L  days (L  = 569) as described in step 2.  

 

The choice of K  is vital for good performance of the model. The value of K  depends on the type of 

kernel used for resampling, the number, L , of days from which the nearest neighbors are selected and 

the dimension of the feature vector (Buishand and Brandsma, 2001). A simple approach to determining 

K  is to try many values and obtain a satisfactory value by trial and error but other approaches are also 

available. Lall and Sharma (1996) recommended a heuristic value of LK = . Buishand and Brandsma 

(2001) observed that for a decreasing kernel, the reproduction of autocorrelation coefficients gradually 

deteriorates with increasingK . On the other hand, resampling with a small number of nearest neighbors 

might lead to duplication of large parts of the historical record and to repeated sampling of the same 

historical values. Rajagoplan and Lall (1999) and Yates et al. (2003) found that the heuristic method of 

choosing K  led to good model performance. In our case 569=L  and hence a value of K  = 24 has 

been adopted. With the parameters of the model defined, it is possible to generate weather data based 

upon the modified approach and evaluate the performance of the model. 

 

Reproduction of Historical Statistics 

The performance of the proposed model was evaluated through application to data from the Upper 

Thames River Basin. A new subset of years that constitute the driving data for the model was obtained 

by using an integer function that returned integers between specified upper and lower bounds. To 

generate N  years of data, the integer function was called N  times. With this method, each year has an 

equal probability of being selected but some years may be selected more than once. A new data set was 

thus obtained and the K -NN algorithm was used to generate 800 years of synthetic data with this data 
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set. The goal of simulation was to produce a data series that preserved the statistical attributes of the 

historic data while perturbing the data points. The statistics of interest were computed from the 

simulated sequence and compared to the statistics of the observed record using box plots. Box plots are 

a preferred method of data analysis as they show the range of variation in the statistics of simulations 

and provide a straightforward method of comparing the statistics of simulations with the historical data. 

Results are presented below only for London since the results for other stations are similar. 

 

Figure 2 shows the box plots of 800 simulated values of mean TMX values for London. Although the 

model was applied on daily data, the statistics from the daily data have been aggregated to a monthly 

time scale to facilitate presentation of the results. The statistics of simulations are shown by box plots 

while the solid lines with dots represent the mean of the monthly values from the historical data. 

Comparison of historical monthly values with the simulated values clearly showed that the model was 

able to adequately reproduce the historical values. This is highly satisfactory given that monthly 

statistics were not explicitly specified in fitting the K -NN model. 

 

Figure 3 provides box plots of total monthly precipitation for London. It can be seen from the box plots 

that the historical mean of the total precipitation is close to the median of the simulated data for all the 

months. A number of values were found to lie beyond the whiskers but these outliers are indicative of 

the variability in the simulated data. The total annual precipitation simulated by the model (987 mm) 

matched very closely with the historical value (980 mm). The model slightly overestimated the monthly 

totals for February, August, September and November. For the rest of the months, model results are 

very close to the observed values. Among all weather variables, precipitation has the greatest variability 

in time and space and therefore the performance of the model in simulating the total monthly 
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precipitation may be considered to be very good. Since kernel based perturbation tends to increase the 

variance of the simulated values, the distribution of monthly standard deviations for TMX and PPT 

were investigated. The standard deviations of the simulated values of TMX were found to be larger 

than the historical values. Interestingly, for PPT the simulated standard deviations were in good 

agreement with the historical values. The simulations also adequately reproduced the probability 

distributions of historical values. 

 

Figure 4 shows box plots of total number of wet days for London. This statistic is important for 

sequences that are generated for use in crop production and flood management models. Box plots in 

Figure 4 indicate that the model adequately reproduced the total number of wet days in different 

months of the year. There was a slight overestimation for the months of April, June and August, but the 

overall results are satisfactory. 

 

Preservation of Correlation Structure 

Parametric models often fail to reproduce the correlation structure of the observed data. Due to the 

inherent structure of the basic K -NN model, there is a strong likelihood of the correlation structure 

being preserved. With the modified model presented here, the correlation structure of the observed data 

might be tempered. To keep the correlation structure intact, it was decided to use a constant value of the 

random Normal variate for all the variables and all the stations at any given time step. The extent to 

which correlation structure might change with the approach presented here was then investigated. Box 

plots for correlation between TMX and precipitation and autocorrelation of PPT are shown in Figure 5 

and Figure 6, respectively. It can be observed from the box plots shown in Figure 5 that the observed 

data has a positive correlation between TMX and PPT during the winter months while the correlation is 
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very close to zero during the summer months, thus indicating a statistically insignificant correlation for 

these months. These seasonal correlation characteristics are adequately reproduced by the K -NN 

model, as shown by the box plots.  

 

Simple resampling schemes tend to destroy prominent time correlations of the observed data but the 

K -NN scheme resamples from the observed data by conditioning on the weather for the previous day, 

and is therefore more likely to preserve important time correlations. The model proposed here involves 

perurbations of the observed data points and as such does not explicitly reproduce daily correlations. 

Clark et al. (2004) present a method to preserve daily correlations that involves reordering the ensemble 

members to reconstruct the spatial and temporal correlation statistics of the observed data. The 

performance of the proposed model in reproducing autocorrelation of precipitation data at monthly time 

scale was investigated, and is presented through boxplots of autocorrelation of precipitation shown in 

Figure 6.  It can be seen from the boxplots that the mean values of autocorrelation coefficients of the 

historical record for different months are close to zero, which implies a very weak lag-1 autocorrelation 

of PPT, and the model adequately captured these characteristic of the observed data. 

 

For agricultural models, weather data can be generated separately at different sites without taking into 

account spatial correlations because the interaction between processes at different sites is often weak. In 

hydrological models, especially those dealing with flood prediction, the spatial distribution of the 

generated precipitation amounts is crucial. Many studies have shown that the lack of spatially 

distributed precipitation amounts can have a serious impact on basin runoff generation (Shah et al. 

1996; Yang et al. 1998). The assumption of uniform spatial precipitation distribution is often invalid, 

even for small basins, because runoff simulation is significantly impacted by the distribution of 
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precipitation over the basin. Therefore, it was considered important to evaluate the performance of the 

model in reproducing the spatial dependencies of the observed data, especially since the proposed 

approach involves perturbing the observed data points. Scatter plots of interstation correlations for daily 

TMX and precipitation values are presented in Figure 7 and Figure 8, respectively. 

 

Figure 7 shows scatter plots of interstation correlation coefficients for daily TMX values in the 

simulated and the observed data. For 15 stations, there are 105 pairwise correlations coefficients for 

each day. The scatter plots have been shown for four representative days. As can be seen from Figure 7, 

there are pronounced interstation correlations between TMX values across the basin, mostly in the 

range of 0.8 to 1.0. Most data points lie in the close vicinity of the o45 sloping solid line shown in the 

scatter plots. However, the stronger correlations appear to be preserved better than the weaker 

correlations, which is a desirable outcome. Additionally, the simulated spatial correlations are higher 

than the observed ones possibly due to the same random number being used for all variables and all 

sites to perturb the resampled points. 

 

Given the structure of the basic K -NN model, the spatial characteristics of the observed data are bound 

to be preserved on a daily time scale. Small deviations of data points from the o45  line may be 

attributed to the perturbations made to the observed values. However, the overall performance of the 

K -NN model in reproducing the historical interstation correlation structure is satisfactory. 

 

The scatter plots of interstation correlations of daily PPT values between the observed and the 

simulated data are shown in Figure 8. Although the correlations in the observed data are not as strong 

as in the case of TMX, the model reproduced the historical structure very well. It was observed that the 
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standard and modified K-NN models give similar results in terms of the statistics reported in Figures 2 

through 8. Well known parametric models such as LARS-WG and WGEN can be effectively used to 

generate independent weather data for any number of stations but they cannot be expected to preserve 

important interstation correlations of the variables. However, some parametric models are available that 

are capable of preserving spatial correlations (e.g. Hughes and Guttorp, 1994, Wilks 1998). With the 

K -NN model, the spatial dependence is preserved by resampling simultaneously the same day's 

weather as the weather for all the stations. This feature of the K -NN model makes it an attractive 

option for use in conjunction with hydrological models where the spatial dependencies may be crucial 

for the accuracy of runoff predictions.  

Extreme Precipitation Events Simulation 

A major focus of this study was to evaluate the performance of the proposed model in simulating 

precipitation amounts larger than the observed amounts. In addition, the effect of perturbations on the 

reproduction of annual average precipitation needs to be investigated. Table 2 summarizes the results of 

simulation with respect to reproduction of long-term average annual precipitation. It can be seen from 

Table 2 that the model consistently overestimates the annual average precipitation but the amount of 

overestimation is negligibly small. The reason for this overestimation is the bias due to re-computation 

of the Normal random variate whenever the precipitation amounts become negative. Overall, the model 

yielded practically exact reproduction of the observed longterm average annual precipitation. A 

comparison of the largest daily precipitation amounts simulated by the model with the observed values 

is also presented in Table 2. It can be observed that the simulated amounts are significantly higher than 

the observed amounts. The model was able to generate a precipitation amount of 187 mm compared to 

the historical largest value of 166 mm. In addition, the model produced several storm depths greater 

than the observed values. The results presented in Table 2 clearly show that the model was able to 
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produce unprecedented, but realistic, precipitation amounts throughout the basin.  

 

The output from the K -NN model is intended for use in conjunction with a hydrological model of the 

basin with the objective of assessing the vulnerability of the basin to floods and droughts. Prolonged 

precipitation events during the winter season combined with heavy rainfall during summer are the most 

probable cause of flooding in the basin. Particular attention is therefore given to the simulation of 

extreme precipitation events that are responsible for floods.  Similarly, it is important to determine dry 

spell characteristics of the simulated data in order to gain insight into the possibility of drought in the 

basin. The ability of the model to simulate the occurrence of extreme events, both high precipitation 

and low precipitation, was therefore investigated with particular emphasis on generating realistic, but 

unprecedented, events for the basin. For each year of the historical and simulated record, the single 

most extreme multiday precipitation event was determined. Figure 9 shows the box plots of total 

precipitation that occurred during the most extreme precipitation event in each year of the historical and 

the simulated record. The results are shown for both the basic K-NN model (Simulation 1) and the 

modified model (Simulation 2). It can be seen from the box plots that in both the simulations the 

median of the simulated data matches very closely to the median of the historical data.  Due to the 

perturbations made to the observed data points, total precipitation of the order of 280 mm in the most 

extreme precipitation event was observed in simulation 1. The modified model simulated around five 

precipitation events that were more severe than the most extreme precipitation event in the observed 

record. The total precipitation amount of the simulated largest event in simulation 1 is around 40% 

higher than the corresponding amount in the extreme observed event while it is only 15% higher in 

simulation 2. The interannual variability in the simulated data is quite prominent with a highest total 

precipitation of about 280 mm compared to a corresponding value of around 200 mm in the historical 
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record.  The basic K-NN model simulated a most extreme precipitation event with a total precipitation 

of 230 mm.  

 

Figure 10 shows the duration of dry spells during extreme events in each year of the historical and the 

simulated record. As can be seen from the box plots, the median of dry spell durations for the observed 

data is 25 and the corresponding value in the simulated data is 30. The difference may be attributed to 

the nature of the modified model, which tends to produce events more severe than in the observed data.  

Again, the median of the simulated data matched well with the observed data although the median 

value for the simulated data was slightly higher.  This clearly indicates that the tendency of dry days to 

exhibit persistence is adequately represented by the model. The interannual variability in the simulated 

sequences is also quite evident with the model producing several severe low precipitation events other 

than those in the historical record. The longest dry spell in the historical data lasted for 67 days but the 

K -NN model was able to simulate several dry spells having a duration more than that observed in the 

historical data. The largest dry spell in the simulation 1 has a duration of 93 days, which is much more 

severe than seen in the observed record.  With the basic K-NN model (simulation 2), the most extreme 

dry spell has a duration of 82 days. 

 

Figure 11 shows the box plots of extreme wet spells in the historical and the simulated sequences. The 

most severe wet spell simulated by the modified model was of the order of 52 days, while the 

corresponding value obtained from the basic model was 48. The strength of the perturbation model 

presented here lies in the simulation of such extreme dry and wet spells that are important for the 

evaluation of effective drought and flood management policies for the basin. The results presented in 

Figures 10 and 11 clearly show that the modified model provides greater variability associated with 
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sustained periods of precipitation and dry days than is possible with the basic K -NN model. 

Comparison of results presented in Figures 9, 10 and 11 clearly indicates that the modified model was 

able to simulate more extreme events than is possible with the basic model. 

Conclusions 

The development and evaluation of a modified version of the basic K -NN weather generator has been 

presented. The modified model was shown to produce precipitation amounts different from those 

observed in the historical record thereby alleviating a common problem associated with the basic K -

NN approach. A strategy has been devised that allows perturbation of the observed data points by 

adding a random component to the values suggested by the basic approach while preserving the 

important statistical characteristics of the observed data. This approach is similar in spirit to traditional 

autoregressive models where a random component is added to the conditional expectation of the 

variable to obtain the new values. However, in the proposed approach, the random component is added 

to the individual resampled data values. The practicality of the approach was demonstrated through 

application to data from the Upper Thames River Basin. Comparison of observed and simulated data 

clearly indicated that the model performance was very good with regards to reproduction of various 

statistics of interest to a hydrologist. Important properties of precipitation spell structure and amounts 

were preserved. Cross correlation among the variables was preserved, which is particularly important 

for erosion, crop production and rainfall runoff models. An important output of the model is the 

spatially-correlated data for the basin, which is important for evaluating the response of hydrological 

models to watershed-level processes. Unlike well known models such as LARS-WG and WGEN, 

which cannot be expected to preserve the spatial dependencies of the variables, the proposed model 

adequately reproduced the spatial correlation of the observed data. 
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An encouraging aspect of the proposed model is that extreme unprecedented events, both low 

precipitation and high precipitation, can be simulated. This allows for evaluation of the response of 

rainfall-runoff models for a wide variety of simulated data, especially the extremes. The proposed 

model has the potential for providing valuable aid in developing efficient flood and drought 

management strategies for the basin because of the ability of the model to simulate extreme dry and wet 

spells. It may be concluded that the utility of flood prediction models in estimating the probability of 

extreme events may be greatly enhanced if their performance is evaluated based on synthetic sequences 

generated by the type of model proposed here. Although the K -NN algorithm was designed to model 

daily statistics, the monthly statistics are also adequately reproduced for the application presented here. 

An additional practical advantage of the model is that it does not require site-specific assumptions 

regarding the probability distribution of the variables. 
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Table 1  Station Characteristics 

Station Latitude 

(Deg N) 

Longitude 

(Deg W) 

Mean Annual 

TMX ( • C) 

Mean Annual 

TMN ( • C) 

Mean Annual 

PPT (mm) 

Blythe 3443 ′o  3281 ′o  11.3 2.2 1159 

Dorchester 043 ′o

 281 ′o

 
12.3 2.6 1034 

Embro 5143 ′o

 6580 ′o

 
11.9 2.5 984 

Exeter 1243 ′o  9281 ′o  12.0 2.8 1008 

Foldens 143 ′o

 7480 ′o

 
11.9 3.2 945 

Fullarton 3243 ′o

 7480 ′o

 
11.8 2.5 1012 

Glen Allan 1443 ′o  3480 ′o  10.9 1.7 989 

Ilderton 343 ′o

 6281 ′o

 
12.7 3.3 1008 

London 243 ′o

 981 ′o

 
12.4 2.4 980 

Stratford 2243 ′o

 081 ′o

 
11.4 2.4 1056 

St. Thomas 6442 ′o  3181 ′o  12.9 3.0 985 

Tavistock 9143 ′o

 0580 ′o

 
11.8 2.5 1048 

Waterloo 9243 ′o  1380 ′o  11.6 1.6 915 

Woodstock 843 ′o

 6480 ′o

 
 12.45  2.52  941 

Wroxeter 2543 ′o  981 ′o   11.25  2.18  995 
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Table 2 Average and Largest precipitation values at various stations 

Station Average Annual PPT (mm) Largest PPT Value(mm) 

 Observed Simulated Observed Simulated 

Blythe 1159 1161 137 153 

Dorchester 1034 1042 94 112 

Embro 984 990 107 122 

Exeter 1008 1018 159 179 

Foldens 945 952 110 126 

Fullarton 1012 1017 106 118 

Glen Allan 989 994 104 118 

Ilderton 1008 1010 99 107 

London 980 987 89 98 

Stratford 1056 1068 137 155 

St. Thomas 985 992 89 105 

Tavistock 1048 1051 94 109 

Waterloo 915 923 90 101 

Woodstock 941 954 114 127 

Wroxeter 995 998 166 187 

 



 29 

List of Figures 

Figure 1 Geographical location of different stations in the basin 

Figure 2 Box plots of monthly mean maximum temperature 

Figure 3 Box plots of total monthly precipitation 

Figure 4 Box plots of total number of wet days 

Figure 5 Box plots of correlation between TMX and PPT 

Figure 6 Lag-one autocorrelation of PPT at London 

Figure 7 Comparison of observed versus simulated interstation correlations for daily TMX values 

between all station pairs for four representative days 

Figure 8 Comparison of observed versus simulated correlations for daily PPT values between all station 

pairs for four representative days 

Figure 9 Box plots of total precipitation during extreme events in each year of the historical and 

simulated data (simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 

Figure 10 Box plots of dry days during extreme events in each year of the historical and simulated data 

(simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 

Figure 11 Box plots of extreme wet spell duration in each year of the historical and simulated data 

(simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 

 

 



 30 

St. Thomas

Dorchester

Woodstock

Tavistock

London

Stratford

Ilderton

Fullarton

Foldens

Embro Innes

Exeter

Waterloo

Wroxeter

Blythe
Glen Allan

-81.5 -81.4 -81.3 -81.2 -81.1 -81 -80.9 -80.8 -80.7 -80.6 -80.5 -80.4

42.8

42.9

43

43.1

43.2

43.3

43.4

43.5

43.6

43.7

43.8

43.9

44

-81.5 -81.4 -81.3 -81.2 -81.1 -81 -80.9 -80.8 -80.7 -80.6 -80.5 -80.4

42.8

42.9

43

43.1

43.2

43.3

43.4

43.5

43.6

43.7

43.8

43.9

44

 

 

Figure 1 Geographical location of different stations in the basin 
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Figure 2 Box plots of monthly mean maximum temperature 
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Figure 3 Box plots of total monthly precipitation 
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Figure 4 Box plots of total number of wet days 
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Figure 5 Box plots of correlation between TMX and PPT  
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Figure 6 Lag-one autocorrelation of PPT at London 
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Figure 7 Comparison of observed versus simulated interstation correlations for daily TMX values 

between all station pairs for four representative days 
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Figure 8 Comparison of observed versus simulated correlations for daily PPT values between all 

station pairs for four representative days 
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Figure 9 Box plots of total precipitation during extreme events in each year of the historical and 

simulated data (simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 
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Figure 10 Box plots of dry days during extreme events in each year of the historical and simulated data 

(simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 
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Figure 11 Box plots of extreme wet spell duration in each year of the historical and simulated data 

(simulation 1 refers to basic K-NN model, simulation 2 refers to modified model) 

 


