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Purpose: Highly constrained backprojection-local reconstruction (HYPR-LR) has made a dramatic

impact on magnetic resonance angiography (MRA) and shows promise for positron emission

tomography (PET) because of the improvements in the signal-to-noise ratio (SNR) it provides

dynamic images. For PET in particular, HYPR-LR could improve kinetic analysis methods that are

sensitive to noise. In this work, the authors closely examine the performance of HYPR-LR in the

context of kinetic analysis, they develop an implementation of the algorithm that can be tailored to

specific PET imaging tasks to minimize bias and maximize improvement in variance, and they

provide a framework for validating the use of HYPR-LR processing for a particular imaging task.

Methods: HYPR-LR can introduce errors into non sparse PET studies that might bias kinetic

parameter estimates. An implementation of HYPR-LR is proposed that uses multiple temporally

summed composite images that are formed based on the kinetics of the tracer being studied

(HYPR-LR-MC). The effects of HYPR-LR-MC and of HYPR-LR using a full composite formed

with all the frames in the study (HYPR-LR-FC) on the kinetic analysis of Pittsburgh compound-B

([11C]-PIB) are studied. HYPR-LR processing is compared to spatial smoothing. HYPR-LR proc-

essing was evaluated using both simulated and human studies. Nondisplaceable binding potential

(BPND) parametric images were generated from fifty noise realizations of the same numerical phan-

tom and eight [11C]-PIB positive human scans before and after HYPR-LR processing or smoothing

using the reference region Logan graphical method and receptor parametric mapping (RPM2). The

bias and coefficient of variation in the frontal and parietal cortex in the simulated parametric images

were calculated to evaluate the absolute performance of HYPR-LR processing. Bias in the human

data was evaluated by comparing parametric image BPND values averaged over large regions of in-

terest (ROIs) to Logan estimates of the BPND from TACs averaged over the same ROIs. Variance

was assessed qualitatively in the parametric images and semiquantitatively by studying the correla-

tion between voxel BPND estimates from Logan analysis and RPM2.

Results: Both the simulated and human data show that HYPR-LR-FC overestimates BPND values in

regions of high [11C]-PIB uptake. HYPR-LR-MC virtually eliminates this bias. Both implementations of

HYPR-LR reduce variance in the parametric images generated with both Logan analysis and RPM2, and

HYPR-LR-FC provides a greater reduction in variance. This reduction in variance nearly eliminates the

noise-dependent Logan bias. The variance reduction is greater for the Logan method, particularly for

HYPR-LR-MC, and the variance in the resulting Logan images is comparable to that in the RPM2

images. HYPR-LR processing compares favorably with spatial smoothing, particularly when the data are

analyzed with the Logan method, as it provides a reduction in variance with no loss of spatial resolution.

Conclusions: HYPR-LR processing shows significant potential for reducing variance in parametric

images, and can eliminate the noise-dependent Logan bias. HYPR-LR-FC processing provides the

greatest reduction in variance but introduces a positive bias into the BPND of high-uptake border

regions. The proposed method for forming HYPR composite images, HYPR-LR-MC, eliminates

this bias at the cost of less variance reduction. VC 2012 American Association of Physicists in

Medicine. [http://dx.doi.org/10.1118/1.4718669]
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3319 Med. Phys. 39 (6), June 2012 0094-2405/2012/39(6)/3319/13/$30.00 VC 2012 Am. Assoc. Phys. Med. 3319



I. INTRODUCTION

HighlY constrained backPRojection (HYPR) is a family of

image reconstruction and post processing algorithms that

have made a large impact on magnetic resonance angiogra-

phy (MRA), allowing for undersampling factors on the order

of several hundred fold and dramatic signal-to-noise ratio

(SNR) improvements in dynamic datasets.1–3 The central

idea of HYPR is to estimate individual frames in a dynamic

study by weighting a temporally summed composite image.

In the ideal case, individual frames will take on the noise

properties of the composite image. It is the potential improve-

ment in the SNR that makes HYPR an attractive tool for

other imaging modalities, and we have recently applied the

post-processing version, HYPR-LR (for local reconstruction),

to positron emission tomography (PET) with promising

results.4

One of the primary motivations for applying HYPR-LR

to PET data is to improve the kinetic analysis methods used

to analyze dynamic PET data, all of which are sensitive to

noise to some degree. In our previous work, we demon-

strated this with simple parameters estimated from phantom

studies (e.g., nonlinear least squares fitting to estimate radio-

nuclide decay constants).4 In these studies, we summed all

the frames of the study to form the composite image, as this

will provide the greatest enhancement in the SNR. However,

it is well understood that differences between the composite

image and the frame of interest can distort the temporal sig-

nals of neighboring regions with different temporal behav-

iors.1 In the context of quantitative kinetic analysis, the bias

caused by HYPR-LR processing may have an impact on the

analysis, which should be accounted for and controlled as

best as possible. Traditionally, bias in HYPR processing has

been minimized by using a sliding composite window, so

that composite images are more similar to their correspond-

ing frames.1 While such an approach may potentially be

effective for dynamic PET data, it is arbitrary, and the opti-

mal implementation of HYPR-LR will be dependent on the

specific imaging task. In addition, as the noise reduction pro-

vided by HYPR-LR will be dependent on the number of

counts in the composite (i.e., its temporal duration) relative

to the frame of interest,1,2 it will provide the greatest benefit

when the composites are made using as long an integration

time as possible without introducing any bias. If composite

images are shorter than this, they will provide no increased

benefit in terms of reduced bias, and if they are made larger

than this the additional noise improvements gained will

come at the cost of bias.

In this work, we aim to develop an optimized implementa-

tion of HYPR-LR that can be tailored to individual PET stud-

ies such that it will provide the greatest reduction in variance

while minimizing bias introduced by the algorithm, and to

closely evaluate the performance of HYPR-LR processing in

the context of quantitative kinetic analysis. We attempt to

fulfill these aims using a combination of simulated and real

human data of a tracer of interest to us, [11C]-Pittsburgh

compound-B (PIB). [11C]-PIB is amenable to analysis using

a number of techniques, including Logan graphical analysis,5

a data driven method with a well-known noise-dependent

bias,6–8 and simplified reference tissue model (SRTM) meth-

ods,9 which are model based and not sensitive to bias.10–12

The basis function implementation of SRTM, so called recep-

tor parametric mapping (RPM or RPM2), is regarded as more

robust than the Logan method with respect to both variance

and bias.9 We examine the effects of our proposed implemen-

tation of HYPR-LR processing on both the bias and precision

of nondisplaceable binding potential (BPND) estimates

obtained with both Logan graphical analysis and RPM2. We

do this in the context of parametric image generation, as sin-

gle voxel analysis will be the most sensitive to noise. Simu-

lated data are used to illustrate the trade-off between bias and

variance in absolute terms where the truth is known, and

human data are used to illustrate the algorithm’s properties in

the context of a real imaging task. While, we focus on two

analysis methods for [11C]-PIB data here, we also intend to

provide a framework for determining the optimal implemen-

tation of HYPR-LR for a given imaging task that can be gen-

eralized to other tracers and analysis methods.

II. THEORY

All of the formulations of HYPR make use of a tempo-

rally summed composite image in a dynamic set of images

to provide a low-noise estimate of the true image at an indi-

vidual time frame. This composite is weighted by a low reso-

lution spatial comparison of each frame and the composite

image. In the case of HYPR-LR, the spatial comparison is

achieved by convolving the frame of interest and the com-

posite image with a filtering kernel

Ht ¼ Ct � Wt ¼ Ct �
It � F

Ct � F
; (1)

where Ht is the HYPR-LR estimate of an individual frame at

time t, Ct is the composite image used for time t, Wt is the

weighting image, It is an initial reconstruction of the frame,

F is the filtering kernel, and � represents the convolution

operation. When images are sparse, as they are in angiogra-

phy, so long as two objects with different temporal behaviors

do not overlap in the filtering process, they will be perfectly

reproduced.2 Unfortunately, in non sparse images, such as

those in PET, regions with different temporal behavior will

invariably overlap in the filtering process, potentially creat-

ing a bias. This bias will manifest itself at high-frequency

boundaries since the weighting image is formed by a low-

frequency comparison.

The only way for the HYPR-LR estimate of a PET frame

to be perfectly accurate is if the contrast between objects

present in an individual frame is the same as the contrast

between those objects in the frame’s composite image. Fail-

ing this, errors at high-frequency boundaries will depend on

the difference in contrast between neighboring regions and

the size of the kernel used (Fig. 1).

Quantitatively accurate application of HYPR-LR to PET

data may still be possible because of the predictable behavior

of PET tracers. This predictable behavior can be used to form

composite images that more closely fulfill our criteria of
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having the same contrast between objects as their correspond-

ing frames, and our proposed optimized implementation of

HYPR-LR for PET data attempts to achieve this. We divide a

typical tracer’s behavior into three phases: uptake, specific

retention, and equilibrium. Immediately after a tracer’s injec-

tion, during the brief uptake phase, the activity in all regions

will be increasing at a relatively constant rate. As a tracer is

retained in regions of specific avidity, these regions begin to

distinguish themselves from the background in a predictable

manner. Finally, the tracer will reach a time of equilibrium,

known as t*, the attainment of which is required for applica-

tion of graphical analysis methods and after which the image

changes very little.6,7,13,14 Figure 2(a) illustrates these behav-

iors for [11C]-PIB for different regions of the brain. A com-

posite image could thus be formed for the uptake and

equilibrium phases by summing all the frames in these phases.

A sliding composite could be used during the retention phase

such that the change in contrast is nearly linear for the frames

used, creating a composite very similar to the individual

frame being processed.

The formation of the composite images can thus be

described as:

For t ¼ 1 to tuptake Ct ¼
Xtuptake

t0¼1

It0 � Dt0 ; (2a)

For t ¼ tuptake þ 1 to t� � 1 Ct ¼
Xtþa

t0¼t�a

It0 � Dt0 ; (2b)

For t ¼ t� to tmax Ct ¼
Xtmax

t0¼ t�

It0 � Dt0 : (2c)

Note that t denotes frame, not time. The phases of the study

are demarcated here by tuptake, the frame at which the uptake

phase ends, t*, the frame at which the steady state begins,

and tmax, the final frame of the study. The parameter a deter-

mines the number of frames to be used in the sliding compos-

ite during the specific retention phase, and Dt is the duration

of frame t. It is also important to note that data should not be

decay corrected, so that each frame is weighted based on

counts in its contribution to the composite image. Decay cor-

rection is applied after HYPR-LR processing.

The temporal parameters in Eq. (2) must be determined

from the data to be analyzed. We propose doing this on a

region of interest (ROI) level. Specifically, ROIs should be

drawn over structures in the image, and the ratios of neigh-

boring structures must be examined. More emphasis can be

put on structures of relevance. We illustrate this here with

the parietal cortex and its surrounding structures in the case

of a real [11C]-PIB dataset [Fig. 2(b)]. The parameters tuptake
and t* can be determined by identifying the end of the flat

FIG. 1. Illustration of the errors HYPR-LR can cause. The original image in this case is uniform (a), but a region of high uptake is revealed in the composite

image (b). As a result, the weighting image (c) is inappropriately blurred, creating errors in the HYPR-LR result (d).

FIG. 2. [11C]-PIB TACs for regions of the brain from a [11C]-PIB positive human study (a), and the ratio of the activities of neighboring regions at each time

point (b). The phases of the tracer’s temporal behavior can be used to form more appropriate temporally dependent composite images for HYPR-LR.

(PAR¼ parietal cortex, FRT¼ frontal cortex, TMP¼ temporal cortex, OCC¼ occipital cortex, WM¼white matter, and CER¼ cerebellum).
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uptake phase and the start of the flat equilibrium phase,

respectively. a is more arbitrary, and we propose selecting a

value such that the composite image is 10–20 min (5–7

frames) in duration for a typical PET imaging study. The

frames at the beginning and end of the retention phase will

largely determine the size of a, and a should be made as

large as possible while keeping the contrast in the composite

images for these frames as close as possible to the contrast

in the frames themselves. This process could be performed

for individual patients, or for a general population for whom

a tracer’s temporal behavior is relatively consistent.

The size of the kernel, F, used in the formation of the

weighting image is the other parameter which must be deter-

mined. The size of the kernel will determine the degree to

which regions with disparate temporal behaviors overlap and

contribute to bias, and also determine the spatial frequencies of

individual frames that effectively take on the noise properties

of their composite images. If our composite scheme is imple-

mented correctly and the contrast between objects in individual

frames and their respective composites is nearly the same,

overlap between regions should contribute little to temporal

errors. A larger kernel should thus be desirable, as it will sup-

press noise at a wide range of spatial frequencies. In this work,

the largest kernel used was a 3D Gaussian with a FWHM

approximately double the resolution of the scanner, 9mm in

this case. If the composite images do not match their respective

frames, a relatively small kernel should be used to limit bias.

The smallest kernel use in this work was a 3D Gaussian with a

FWHM of 3mm, close to the thickness of the cortex, the pri-

mary object of interest for [11C]-PIB. We evaluate the effects

of different kernel sizes as outlined in our methods.

Our proposed method of forming multiple composite

images will itself be limited in a number of respects. For

one, it will likely not be possible to perfectly fulfill our crite-

rion of forming composite images having the same contrast

between objects as in their respective frames. However, so

long as there is not substantial bias introduced into multiple

frames, having a few frames slightly biased by imperfect

composite images should not affect kinetic analysis a great

deal. Second, not all dynamic PET studies will be amenable

to our particular method of forming composites described in

Eq. (2), for example tracers with a washout phase. Finally,

using shorter composite images will increase the variance in

individual frames and parametric images. Nevertheless, the

ratio of the activities of neighboring regions should at least

be examined to provide insight into what time-series data

will produce composite images those objects in the respec-

tive frames. We believe this will allow for the maximum

benefit in terms of variance reduction while minimizing bias

for a given PET tracer and imaging task.

III. METHODS

III.A. Creation of numerical phantoms

As HYPR-LR uses data in both space and time to provide

an estimate of each voxel value in time-series PET data, a

realistic spatial distribution of time activity curves (TACs)

must be used for simulated data. The spatial and temporal

distribution of added noise must also reasonably represent

what would be expected in a PET acquisition. We created

spatial distributions of TACs using the Zubal brain phan-

tom,15 and TACs from a human [11C]-PIB acquisition. The

[11C]-PIB TACs used were taken from a [11C]-PIB positive

human scan acquired at our center over 70 min with 5� 2

and 12� 5 min frames. ROIs were drawn over the frontal

cortex, parietal cortex, occipital cortex, temporal cortex,

white matter, and cerebellum on a temporally summed

image (Fig. 2). The resulting temporal patterns were used to

create a noise-free dynamic image set by impressing the

TAC values into their corresponding regions in the Zubal

phantom image.

A PET acquisition on an ECAT HRþ scanner was then

approximated using published performance information

about the scanner model.16,17 Data were first resampled to

voxel sizes of 2.2� 2.2� 2.45mm, and then smoothed

with a 4.39� 4.39� 5.10mm3 full-width-at-half-maximum

(FWHM) Gaussian to approximate the resolution of the

scanner. The activity distributions in the smoothed noise-

free phantoms were converted into expected counts by multi-

plying by factors for decay correction, frame duration, and

voxel volume. Data in each slice were then forward pro-

jected at 160 angles spaced at 1.125� using MATLAB’s (The

MathWorks
VR
) two-dimensional radon transform function

(i.e., a two-dimensional acquisition). An attenuation map for

each slice was created by assigning all voxels identified as

bone in the Zubal brain phantom an attenuation coefficient

of bone, and all voxels identified as other tissues an attenua-

tion coefficient of water at 511 keV. The attenuation map

was then resampled to the same matrix size as the PET

images, thus creating some voxels with intermediate attenua-

tion coefficients, and forward projected at the same angles as

the emission data. Each simulated emission sinogram was

multiplied by its corresponding attenuation sinogram and the

published sensitivity of the scanner. Scatter was not mod-

eled, but the sinograms were multiplied by the expected scat-

ter fraction for the amount of activity used in the simulation.

While this does not accurately model scatter, it will reduce

the counts in the simulated sinograms to a similar degree as

a true scatter correction algorithm so that the added count-

dependent Poisson noise is appropriately scaled. A noisy

data value was then given to each position in the resulting

sinograms by generating a random number from a Poisson

distribution with a mean equal the value of that position in

the noise-free sinograms. The resulting noisy sinograms

were reconstructed with filtered backprojection (FBP) using

a ramp filter with a cut-off at 0.75 the Nyquist frequency af-

ter correcting for attenuation, and values in the resulting

images were converted back to activity units (Bq=ml). Fifty

noisy realizations of the same simulated [11C]-PIB dataset

were produced in this way. The noise-free sinograms were

also reconstructed with FBP to generate a standard to com-

pare the HYPR-LR processed data to. FBP reconstruction

was used as it is an analytical method that does not introduce

any bias of its own, unlike iterative reconstructions like

expectation-maximization (EM) and maximum a posteriori

(MAP). This will allow for a more thorough evaluation of
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the bias and variance properties of HYPR-LR that is not con-

founded by the tradeoff between bias and variance in the

reconstruction itself.

III.B. Acquisition of real data

Eight human [11C]-PIB datasets were evaluated to illus-

trate the potential of HYPR-LR to improve the kinetic analy-

sis of real data. These datasets were selected as a

representation of [11C]-PIB positive scans from approxi-

mately 150 human studies performed at our institution to

date. All data were obtained in accordance with our human

subjects’ research protocol approved by our institutional

review board. Briefly, the PET data were acquired using a

Siemens HRþ scanner in 3D mode (septa retracted). A 5

min transmission scan was first acquired for attenuation cor-

rection, followed by a 70 min dynamic emission scan initi-

ated with a 30 s bolus infusion of radiotracer (518–585

MBq). The data were divided into 5� 2 min frames and

12� 5 min frames and reconstructed using a filtered back-

projection algorithm using a ramp filter to a voxel size of

2.0� 2.0� 4.25mm3 and corrected for random events,

attenuation of annihilation radiation, dead-time, scanner nor-

malization, and scatter radiation.

III.C. HYPR-LR processing and smoothing

Both the real data and the simulated data were processed

with HYPR-LR using either a full composite formed from

all the data in the study (HYPR-LR-FC), or our proposed

method of forming multiple composites (HYPR-LR-MC).

The relevant temporal parameters for Eq. (2) were deter-

mined in the same manner demonstrated in Fig. 2. After

examining the ratios of the activities of neighboring regions

in both the simulated data and all the human datasets, we

determined that the same temporal parameters could be used

for all the data. Namely, tuptake was set at frame 3 (6 min), a

was set to 2 frames (5 frames total in the sliding window),

and t* was set at frame 12 (40 min). To study the impact of

kernel size, we used three-dimensional Gaussian filtering

kernels with a FWHM in each spatial dimension of three dif-

ferent sizes: 3, 6, and 9mm. The 9� 9� 9mm3 FWHM ker-

nel was used to process all of the human data to examine

both the maximum improvement in variance and the maxi-

mum bias to be expected from HYPR-LR processing. It is

important to note that some protection against small numbers

in the denominator of Eq. (1) must be implemented. We do

this by setting all voxels in the blurred composite image

whose values fall below 1% of the maximum of the

unblurred composite image to zero. All voxels in the weight-

ing image whose value includes a division by zero are also

set to zero. Table I summarizes HYPR-LR terminology used

frequently in this work.

Simulated and real data were also smoothed (after recon-

struction) to provide a simple denoising method to compare

HYPR-LR processing to. Both real and simulated data were

smoothed with 3� 3� 3 and 6� 6� 6mm3 FWHM Gaus-

sian kernels. Although not as sophisticated as other denois-

ing techniques, smoothing either within or after the

reconstruction process is still one of the most widely used

denoising methods. And while the improvement in noise

obtained with HYPR-LR processing comes from the com-

posite image,2 we refrain from comparing HYPR-LR to sim-

ple filtering in the time domain as this will distort TACs by

introducing temporal correlations. HYPR-LR processing

does have the potential to distort TACs, but one of the ex-

plicitly stated aims of this work is to determine how to mini-

mize such distortions.

III.D. Kinetic analysis

Parametric images of both the simulated and human data

were created using the data driven reference region Logan

graphical method and the model based RPM2 method.

Logan graphical analysis is relatively easy to implement,

assumes no particular model, and can provide reliable and

robust BPND estimates when data are noise-free.7 However,

when the data are noisy, as they are when single voxel analy-

sis is performed, Logan estimates of BPND are beset by bias

and variance.8 RPM2 is regarded as having more favorable

properties than the Logan method with regards to both bias

and variance,11,12 and although it assumes a single tissue

compartment model, it has proven to be an effective method

for generating parametric images of [11C]-PIB studies.9 We

focus on parametric images as single voxel analysis will be

very sensitive to noise and loss of resolution. HYPR-LR

processing could thus be of great benefit to parametric imag-

ing as it improves noise without sacrificing spatial resolu-

tion. HYPR-LR denoising could also improve ROI analysis,

but the benefits of the algorithm will diminish as ROI size

increases and the effects of noise decrease.

III.D.1. Logan graphical analysis

Simulated and human data were evaluated with the refer-

ence tissue Logan graphical method,7 using the cerebellum

TABLE I. A summary of HYPR-LR terminology.

Term Definition

HYPR-LR HighlY constrained backPRojection-Local Reconstruction

Composite image Temporally summed (i.e., time-averaged) image used in the estimation of individual frames in HYPR-LR processing

Weighting image Spatial comparison of an individual frame with its composite image used to weight the composite image

F, Filtering kernel The smoothing kernel used to make the spatial comparison between an individual frame and its composite image

HYPR-LR-MC HYPR-LR with multiple composite images

HYPR-LR-FC HYPR-LR with a full composite image (summed over all frames)
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as a reference region. For all [11C]-PIB data, a reference tis-

sue efflux constant, k2REF, of 0.144 min�1 was used,5,18 and

the equilibrium time, t*, was determined from the data and

set at 40 min. The distribution volume ratios (DVRs) gener-

ated at each voxel were converted to BPND values

(BPND¼DVR� 1) to give a parametric image of the non-

displaceable binding potential. For the simulated data, the

parametric image generated from the noise-free FBP recon-

struction was used as a standard parametric image to which

all parametric images generated from the noisy simulated

data were compared. The reference region Logan method is

data driven and assumes no model, and therefore should be

the least biased of any reference tissue method when there

is no noise in the data.

III.D.2. Receptor parametric mapping (RPM2)

Parametric images of the simulated and real datasets were

also generated using the basis function implementation of

SRTM using a fixed k2REF (RPM2).11,12 This method

assumes that all TACs in the data can be fit to the simplified

reference tissue model using following equation:

CTACðtÞ ¼R1CREFðtÞ þ R1ðk2REF � k2Þ

� CREFðtÞ � expð�k2tÞ (3a)

R1 ¼
K1

K0
1

(3b)

BPND ¼ R1

k2REF

k2
� 1 (3c)

where CTAC(t) is the TAC, CREF(t) is the reference tissue

TAC, K1 and K0
1 are the influx rate constants for the TAC

and the reference tissue, respectively, and k2 and k2REF are

the efflux rate constants for the TAC and the reference tis-

sue, respectively. RPM2 creates a set of exponential basis

functions over a range of k2 values to simplify the fitting pro-

cess. For the [11C]-PIB data, we used a k2min of 0.02 min�1

and a k2max of 0.1 min�1, with 50 basis functions. These

minimum and maximum values for k2 were derived from

nonlinear least squares fits to Eq. (3) of several ROI TACs

from both real and simulated data. Our minimum k2 value

falls slightly above the value obtained from non-linear least

squares fits to some of the data, but gives results that are

most consistent when compared with the Logan results.

After an initial fitting of each voxel in the image using Eq.

(3), k2REF is fixed to the median k2REF value of all voxels

with a BPND> 0 and a second fitting is performed. We con-

cerned ourselves only with the BPND parametric images gen-

erated by RPM2.

RPM2 requires that each frame be weighted by its dura-

tion and the total number of counts in the frame (without

decay correction):11

FrameWeight ¼
ðFrame durationÞ2

Total counts in frame
(4)

The unprocessed data were weighted in this fashion, but a

different weighting scheme is required for the HYPR-LR

processed data, as the variance in each frame will no longer

be determined by the number of counts in the frame, but by

the number of counts in the composite image. The frames in

the HYPR-LR processed data were therefore weighted as

(again, without decay correction):

HYPR-LR Frame Weight ¼
ðComposite durationÞ2

Total counts in composite

(5)

Fits to the HYPR-LR-FC data will thus be uniformly

weighted as the same composite is used for each frame.

III.E. Data evaluation

III.E.1. Bias and variance in the simulated data

We studied the impact of HYPR-LR processing on kinetic

analysis methods in absolute terms by evaluating the bias

and variance of the parametric images generated from the

simulated data. The bias at each voxel in the parametric

images was taken as the percentage difference between the

mean voxel values over the 50 noise realizations and the

voxel values in the reference Logan parametric image gener-

ated from the noise-free FBP reconstruction. Bias in the

parametric image voxels can be described as:

bias ð%Þ ¼
lx � x

x
� 100 (6)

where lx is the mean voxel value over all noise realizations

and x is the true voxel value.

The variance in the data were evaluated using the coeffi-

cient of variation (COV) at each voxel:

cov ¼
rx

lx

(7)

where rx is the standard deviation of a voxel over all noise

realizations. The mean bias and COV of all voxels in the pa-

rietal and frontal cortices is reported (11 794 voxels).

III.E.2. Evaluation of human data

A ROI based kinetic analysis was used to evaluate bias in

the parametric images of the human data. For each dataset,

ROIs were drawn over the frontal and parietal cortex (regions

of particular interest in [11C]-PIB scans) on temporally

summed images. ROIs contained 2648 voxels on average

(range 1150–4385 voxels). The TACs from these ROIs were

analyzed with the reference Logan graphical method with the

same parameters described above to generate an average

BPND value for the entire corresponding region. Over such a

large region, the Logan estimates of the BPND should be rela-

tively unbiased as there is little noise in the TAC and a single

tissue compartment model is not assumed. These BPND val-

ues were thus used as a standard and compared with the

BPND values from the same regions in the parametric images.

In the ideal case, the BPND values taken from the parametric
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images will match the ROI Logan estimates exactly. A bias

will appear as a deviation from unity in the slope of a linear

fit to the data, or a deviation from zero in the y-intercept.

The values of individual voxels in the parietal and frontal

cortex of the parametric images generated with the reference

Logan method and RPM2 were also compared before and af-

ter processing to give an indication of variance in the

images. For each human [11C]-PIB dataset, the voxel values

obtained with each method were plotted against each other

and fit to a straight line. The Pearson correlation coefficient

(r) of the resulting fits should provide an indication of the

variance in the parametric images. The use of correlation

between the results of two analysis methods to indicate var-

iance assumes that the effect of noise in the time-series data

on the BPND estimates is independent for Logan analysis and

RPM2. This approach therefore only gives a semiquantita-

tive estimate of the variance in the parametric images. The

correlation coefficients obtained from each dataset were

compared between the original data, smoothing with a

3� 3� 3mm3 FWHM Gaussian, HYPR-LR-MC, and

HYPR-LR-FC using paired t-tests.

IV. RESULTS

IV.A. Evaluation bias and variance in the simulated
data

The simulated data were used as a means for illustrating

the potential bias that HYPR-LR can introduce, and to pre-

cisely define the tradeoff between bias and variance when

using the HYPR-LR algorithm in the context of quantitative

kinetic analysis for parametric image generation. The noise-

free simulated data give insight into the bias that can be

introduced into TACs, and hence quantitative kinetic param-

eters, by HYPR-LR processing. In the case of the simulated

[11C]-PIB data studied here, HYPR-LR-FC processing

increases the BPND in regions of high uptake and decreases

BPND in neighboring voxels with lower uptake, whereas the

proposed method of multiple composite images (HYPR-LR-

MC) introduces no obvious bias. This is seen in parametric

images generated from the noise-free data with both the ref-

erence region Logan method and RPM2 [Figs. 3(a)–3(f)].

The bias caused by HYPR-LR-FC is due to distortions in the

TACs, which are eliminated with HYPR-LR-MC [Fig. 3(g)].

It is also interesting to note that RPM2 globally increases

BPND values, particularly in the white matter. This may be

due to the inappropriateness of the simplified reference tis-

sue model for the white matter.

Both HYPR-LR-MC and HYPR-LR-FC substantially

improve the bias and variance of the Logan parametric

images generated from the noisy simulated data. Greater

reduction in both the noise-dependent Logan bias and the

coefficient of variation of the binding potentials is achieved

with larger filtering kernels [Fig. 4(a)]. For example, HYPR-

LR-MC with a 9� 9� 9mm3 FWHM Gaussian kernel

reduces the mean bias in the frontal and parietal cortex from

�37.1% to �0.21% and the average COV from 33.1% to

11.0%. HYPR-LR-FC with the same kernel further reduces

the COV to 6.37% and introduces a slight positive bias of

2.45%. This positive bias is consistent with what is observed

in Fig. 3. The parametric Logan images generated from the

FIG. 3. Parametric images generated from the noise-free simulated data with either the reference region Logan graphical method (a)–(c) or RPM2 (d)–(f).

RPM2 tends to overestimate BPND values in some regions, particularly the white matter. The parametric images generated from the data processed with the

proposed method of forming composite images, HYPR-LR-MC (b) and (e), differ little from the parametric images generated from the unprocessed data (a)

and (d). The parametric images generated from the data processed using HYPR-LR-FC (c) and (f) show greater contrast between the high uptake regions of

cortex and the surrounding white matter. The biased BPND values seen with HYPR-LR-FC are due to changes in the TACs, demonstrated here for a small ROI

(g). HYPR-LR-MC eliminates the bias in the TACs.
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HYPR-LR processed data compare very favorably with the

images generated from the data that were smoothed with

Gaussian filtering kernels. The 3� 3� 3mm3 FWHM Gaus-

sian smoothing reduces the average bias to �22.7% and the

average COV to 29.5%, and the 6� 6� 6mm3 FWHM

Gaussian smoothing reduces the average bias to �24.6%, and

the average COV to 10.0%. The bias in the data smoothed

with the 6� 6� 6mm3 kernel is due mostly to the substantial

blurring of the data.

HYPR-LR-MC and HYPR-LR-FC processing also reduce

the variance in the parametric images generated with RPM2.

The variance reduction provided by HYPR-LR-MC process-

ing is not as great as in the Logan images, but it does provide

an improvement while introducing little bias. Variance reduc-

tion increases as larger kernels are used and little additional

bias is introduced [Fig. 4(b)]. For example, the average COV

is reduced from 16.6% to 14% following HYPR-LR-MC

processing with the largest kernel used, while the average

bias rises from 1.2% to 3.73%. HYPR-LR-FC processing

reduces noise more dramatically, but at the cost of introduced

bias [Fig. 4(b)]. The tradeoff between bias and noise is

closely related to kernel size for HYPR-LR-FC. When a

3� 3� 3mm3 kernel is used, the average COV is reduced to

8.7% and average bias increases to 5.39%, and when a

9� 9� 9mm3 kernel is used, average COV drops to 5.37%

and average bias increases to 11.4%. Simple smoothing does

reduce the variance in the parametric images generated with

RPM2 relatively well. Smoothing with the 3� 3� 3mm3

FWHM Gaussian reduces the average COV to 10.5% and

creates a negative bias of �2.92% relative to the baseline of

1.2%.

HYPR-LR can be used alongside simple smoothing to

provide even greater noise reduction without any additional

loss of spatial resolution. For example, smoothing with a

3� 3� 3mm3 FWHM Gaussian followed by HYPR-LR-MC

processing using a 9� 9� 9mm3 Gaussian kernel reduces

the average COV in the Logan parametric images to 7.19%,

albeit while increasing bias to �6.98%, and reduces the var-

iance in the RPM2 parametric images to 8.55% with a bias of

�1.03%.

IV.B. Evaluation of human [11C]-PIB data

An illustrative example of parametric images generated

from a human PIB dataset with both the reference region

Logan method (Fig. 5 top row) and RPM2 (Fig. 5 bottom

row) qualitatively demonstrates the relative tradeoff between

noise and (in the case of the Logan method) bias reduction,

and introduced bias from HYPR-LR processing or simple

spatial smoothing. These images are consistent with the data

presented from the numerical simulations. HYPR-LR-MC

reduces the variance in both the Logan and RPM2 parametric

images, though the variance reduction is notably greater for

the Logan images. HYPR-LR-MC processing also globally

increases the BPND values in the Logan images, indicating a

reduction of the noise-dependent bias. HYPR-LR-FC pro-

vides the greatest reduction in variance for both the reference

Logan method and RPM2 in exchange for a slight inappropri-

ate enhancement of the contrast between white matter and

the cortex. HYPR-LR-FC likewise reduces the noise-

dependent Logan bias. Smoothing with a 3� 3� 3mm3

FWHM Gaussian results in some improvement of the var-

iance and bias of the Logan image, and qualitatively

improves the variance in the RPM2 image to a similar degree

as HYPR-LR-MC processing at the cost of some blurring.

HYPR-LR processing can be done in addition to simple

FIG. 4. The relationship between bias and variance for the BPND parametric images generated from the noisy simulated data with the reference region Logan

graphical method (a) and RPM2 (b). The mean bias and coefficient of variation of voxels in the frontal and parietal cortices are shown for the parametric

images generated from the original data, the data smoothed spatially with 3� 3� 3 and 6� 6� 6 mm3 FWHM Gaussians, and for the data processed with

HYPR-LR-MC and HYPR-LR-FC using smoothing kernels with either a 3 mm FWHM (open shapes), a 6 mm FWHM (half-open shapes), or a 9 mm FWHM

Gaussian (solid shapes). The mean bias and coefficient of variation following both spatial smoothing with a 3 mm FWHM Gaussian and HYPR-LR-MC and

HYPR-LR-FC processing with a 9 mm FWHM Gaussian kernel are also shown.
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smoothing to further reduce variance. This is demonstrated in

Fig. 5 with HYPR-LR-MC.

To evaluate bias in the real data, the average BPND values

of voxels in ROIs drawn on the frontal and parietal cortices

of eight parametric images were compared with the standard

BPND values of TACs obtained from the same ROIs using

the reference Logan method. The results from the reference

Logan parametric images show that HYPR-LR-FC and

HYPR-LR-MC reduce both the bias and variance of the

parametric image derived BPND values as the slopes of the

linear fits approach unity and all the data points fall closely

around their respective fits (Fig. 6). Simple smoothing also

reduces some of the noise-dependent Logan bias, but much

less than the HYPR-LR processing methods. The results

from the RPM2 parametric images largely reflect what is

seen in the simulated data. There appears to be little bias in

the RPM2 images of the original data and the HYPR-LR-

MC processed data. HYPR-LR-FC does introduce a positive

bias, seen in the increased BPND values and the increase of

the slope of the fit from 0.97 to 1.1. Smoothing does not bias

the slope of the fit, but it does reduce the y-intercept of the

fit from 0.063 to 0.028, and all of the smoothed BPND values

fall slightly below the original values.

Finally, we attempted to further study variance in the

real data by plotting voxel values from Logan and RPM2

parametric images against each other. Assuming that noise

in time-series data generates variance in the parametric

images that does not perfectly co-vary between the Logan

and RPM2 methods, the correlation between the BPND val-

ues obtained with the two methods should provide an

indication of variance. We do this here using the Pearson

correlation coefficient. An illustrative example of voxels in

the parietal and frontal cortex of the same data set shown in

Fig. 5 indicates that HYPR-LR does provide a substantial

increase in the correlation between BPND values derived

from the different analysis methods (Fig. 7). When the cor-

relation coefficients of all the [11C]-PIB datasets are com-

pared following smoothing and HYPR-LR processing

using paired t-tests, all of the denoising methods signifi-

cantly increase the correlation between BPND values

obtained with Logan analysis and RPM2 (p< 0.01) (Table

II). There is not a significant difference in the correlation

coefficients between HYPR-LR-MC and HYPR-LR-FC

(p> 0.05), but HYPR-LR-MC and HYPR-LR-FC both

significantly increase the correlation over smoothing with a

3� 3� 3mm3 Gaussian. Examination of the parametric

images (Fig. 5) indicates that the lower correlation coeffi-

cients of the smoothed data are due mostly to the higher

noise in the Logan parametric images.

V. DISCUSSION

HYPR-LR is a promising denoising technique for PET,

and here we have attempted to illustrate its ability to

improve the variance and bias of parametric images derived

from kinetic analysis techniques. In order to maximize the

improvement in variance and bias while minimizing the

error introduced by HYPR-LR processing, we have proposed

a method of forming multiple, time dependent, composite

images (HYPR-LR-MC) that minimizes the difference of the

FIG. 5. An illustrative example of the effects of HYPR-LR processing on parametric images generated from a human [11C]-PIB data set. The unprocessed data

are predictably noisy and the Logan image (a) appears biased compared to the RPM2 image (f). HYPR-LR processing with a 9 mm FWHM Gaussian kernel

improves the variance of both Logan and RPM2 parametric images (b), (c), (g), and (h). HYPR-LR-MC processing results in parametric images that have

more variance, (b) and (g), than when all the frames of the study are used to form the composite, (c) and (h), but they are also likely less biased. Spatial

smoothing with a 3� 3� 3 mm3 Gaussian results in improved variance with a corresponding loss of spatial resolution, (d) and (i). HYPR-LR processing can

also be done following smoothing to provide a further improvement in variance without any additional loss of spatial resolution, demonstrated here with

HYPR-LR-MC, (e) and (j).
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contrast between objects in each frame of the study and the

frame’s respective composite image. Such an approach will

provide less of an improvement in noise and introduce less

bias than using all the frames in the study to form the com-

posite image. It is also less arbitrary than the traditional

approach of using a sliding composite window.1

Bias introduced by HYPR-LR processing will be depend-

ent on differences in contrast that do exist between frames of

interest and their respective composites. In the case of the

simulated and human [11C]-PIB presented here, HYPR-LR-

FC processing distorts TACs [Fig. 3(g)] and thus inappropri-

ately increases the BPND values obtained with both Logan

graphical analysis and RPM2 in regions of high uptake

where they border regions of lower uptake, and decreases

the BPND values of the surrounding voxels (Fig. 3). This bias

can also be seen in the overestimated BPND values of

the frontal and parietal cortices in the parametric images

generated from the noisy simulated data processed with

HYPR-LR-FC (Fig. 4), and in the BPND values of these

same regions in the parametric images of the human datasets

(Fig. 6). HYPR-LR-MC processing virtually eliminates the

bias caused by HYPR-LR (Fig. 3), as it almost completely

removes the noise-dependent Logan bias without overesti-

mating BPND values, and introduces little bias into parame-

ters obtained with RPM2 (Figs. 4 and 6). Bias can also be

limited with HYPR-LR-FC if a smaller kernel size is used.

In this work, the smallest kernel used was a Gaussian with a

FWHM of 3� 3� 3mm3, only slightly larger than the thick-

ness of the cerebral cortex, our primary object of interest.

For the simulated data studied here, HYPR-LR-FC with this

size kernel performed particularly well when the data were

analyzed with RPM2, only introducing slightly more bias

than HYPR-LR-MC with a large 9mm FWHM filtering ker-

nel (5.39% versus 3.73%). HYPR-LR-FC with the smaller

FIG. 7. Voxel BPND values obtained with the Logan graphical method and RPM2 plotted against each other from a representative [11C]-PIB study. The para-

metric images generated from the original data (a) are compared with those generated from the data smoothed with a 3� 3� 3 mm3 FWHM Gaussian (b),

HYPR-LR-MC (c), and HYPR-LR-FC (d). The correlation between the two analysis methods, measured here with the Pearson correlation coefficient (r), gives

an indication of the variance present in the parametric images.

FIG. 6. BPND values obtained from ROIs drawn on the parametric Logan (a) and RPM2 (b) images compared with the BPND values obtained from the TACs

of the same ROIs with the reference region Logan graphical method. Each point on the graphs represents the BPND from either the frontal or parietal cortex of

one of the eight [11C]-PIB positive scans studied. Linear fits to the BPND values obtained using different types of processing are also shown with their corre-

sponding equations ( – � –¼ original data, - - -¼ smoothed, ����� ¼HYPR-LR-MC, —-¼HYPR-LR-FC). A deviation of the slope from unity or a y intercept

other than zero indicates the presence of a bias.
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kernel size did not provide as much of a benefit to the data

analyzed with the Logan graphical method, as BPND values

are still relatively biased (Fig. 4).

Both methods of implementing HYPR-LR demonstrate

an ability to reduce variance in the parametric images pre-

sented here. HYPR-LR-FC processing with a larger filtering

kernel in particular substantially reduces the variance in

parametric images generated with both the Logan graphical

method and RPM2 (Figs. 4, 5, and 7). This is not surprising,

as each individual frame in a study is given the noise proper-

ties of the fully summed composite image. Processing with

our proposed HYPR-LR-MC method reduces variance more

substantially in parametric images generated with the Logan

graphical method (Figs. 4, 5, and 7). HYPR-LR-MC also

reduces variance in the parametric images created with

RPM2, but more moderately, particularly in the simulated

data (Fig. 4). The results from the real data are more promis-

ing and show that HYPR-LR-MC processing visually

reduces the variance seen in the example parametric image

(Fig. 5), and increases the correlation between BPND values

obtained with the reference Logan method and RPM2 (Fig. 7

and Table II). As expected, a larger kernel size results in bet-

ter variance reduction with the HYPR-LR-MC algorithm

while introducing little or no additional bias. A larger kernel

likewise improves the variance reduction with the HYPR-

LR-FC algorithm, but more bias is introduced as a result

(Fig. 4). Using HYPR-LR-FC with a small filtering kernel

may therefore be desirable in some applications. For exam-

ple, when the simulated data are analyzed with RPM2,

HYPR-LR-FC with a smaller kernel still achieves good var-

iance reduction (from 16.6% to 8.7%) while introducing lit-

tle bias, as discussed above.

In this work, we have compared HYPR-LR processing to

simple spatial smoothing. While many other denoising meth-

ods have been developed, spatial smoothing, either within

image reconstruction or afterward, remains one of the most

common ways to control noise in PET data. In addition, the

processing time required for HYPR-LR will not be substan-

tially longer than the time required to spatially smooth each

frame, as processing time will largely be determined by the

number of convolution operations that must be performed.

In this work, the number of convolutions required for

HYPR-LR-MC processing is 1.6 times greater than spatially

smoothing each frame. HYPR-LR processing compares very

favorably to smoothing when the data are analyzed with the

reference Logan graphical method. HYPR-LR-MC and

HYPR-LR-FC control both bias and variance very well,

whereas smoothing with the 3� 3� 3mm3 FWHM Gaus-

sian only slightly improves the bias and variance, and

smoothing with the 6� 6� 6mm3 Gaussian controls var-

iance very well but introduces a substantial bias of its own

because of excessive blurring (Figs. 4–6). The improvements

offered by HYPR-LR are less dramatic compared to simple

smoothing when parametric images are created with RPM2.

In the simulated data, smoothing with a 3� 3� 3mm3

FWHM Gaussian improves variance more than HYPR-LR-

MC (10.5% versus 14.0%), though the smoothed BPND val-

ues are more biased relative to the unprocessed data as there

is a loss of spatial resolution (Fig. 4). HYPR-LR-FC using a

3� 3� 3mm3 Gaussian kernel does provide more variance

reduction than simply smoothing with a 3� 3� 3mm3

Gaussian (8.7% versus 10.5%) for a comparable amount of

bias relative to the original data (Fig. 4), although the bias

caused by HYPR-LR-FC is not due to any loss of spatial re-

solution. The human data are consistent with this, demon-

strating that simple smoothing with a 3� 3� 3mm3 FWHM

Gaussian reduces the variance in the RPM2 images to a

greater degree than HYPR-LR-MC while only modestly

blurring the data (Figs. 5 and 6). The lower correlation

between the RPM2 and Logan BPND values following

smoothing with the 3� 3� 3mm3 FWHM Gaussian is due

to the high variance in the Logan images (Fig. 7). HYPR-LR

processing can also be done in addition to simple smoothing

to provide further reductions in variance in the parametric

images without introducing any additional loss of spatial re-

solution (Figs. 4 and 5).

In the future, HYPR-LR denoising must be considered

more fully in the context of other denoising methods, for

example wavelet denoising and iterative image recons-

truction algorithms, including the numerous proposed

approaches to four-dimensional PET reconstruction, which

have previously been explored as a means of improving ki-

netic analysis and parametric image generation.19–25 As

HYPR-LR uses temporally integrated data to reduce noise,

comparing it to denoising methods that likewise utilize the

time domain, such 4D reconstructions, will be particularly

important. Iterative reconstructions, wavelet denoising, and

HYPR-LR have all demonstrated an ability to substantially

reduce noise, but each also has drawbacks. A full compari-

son between HYPR-LR and these other denoising processes,

explicitly examining the pros and cons of each, is beyond

the scope of the current study and will likely depend on the

specific imaging task. Furthermore, as demonstrated here

with spatial smoothing, as a post processing technique that is

fast and relatively simple to implement, HYPR-LR could

easily complement these other denoising techniques. This is

particularly relevant for performing HYPR-LR on OSEM

reconstructions, which are now routinely done on both

TABLE II. The mean and range of Pearson correlation coefficients obtained from a linear fit to the voxel-by-voxel comparisons of the reference region Logan

method and RPM2 for each of the eight human [11C]-PIB datasets studied. The mean correlation coefficient was significantly improved with each of the

denoising methods over the original data (*p<0.01). There was no difference between the two implementations of HYPR-LR (p>0.05), but they both

increased the mean correlation coefficient more than simple smoothing (þp<0.01).

Original data Smoothed HYPR-LR-MC HYPR-LR-FC

Mean Pearson-r (range) 0.62 (0.42–0.88) 0.71* (0.51–0.82) 0.94*þ (0.91–0.98) 0.93*þ (0.89–0.98)
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clinical and research scanners and provide some noise con-

trol themselves.

In this work, we have shown that following HYPR-LR

processing, Logan and RPM2 analysis perform quite

comparably. After denoising the simulated data with

HYPR-LR-MC and HYPR-LR-FC processing with larger fil-

tering kernels, both the coefficient of variation and the bias

are similar between the Logan method and RPM2 (Fig. 4). If

anything, after HYPR-LR processing the greater bias is seen

with RPM2 with little additional benefit in variance reduc-

tion. The human data confirm this, showing little bias in the

BPND values obtained with either Logan analysis or RPM2

after HYPR-LR-MC processing, and greater bias in the

RPM2 data following HYPR-LR-FC processing (Fig. 6).

The level of variance in the parametric images generated

from the human data with the two analysis methods is also

comparable following HYPR-LR processing (Figs. 5 and 7).

In addition, we found the performance of RPM2 to be

more variable and sensitive to user selected parameters. In

particular, we selected a minimum k2 slightly greater than

that predicted by some of the non-linear SRTM fits to the

ROI TACs, and greater than the value previously reported

for [11C]-PIB analysis.9 We also see a slight positive bias in

the BPND values obtained with RPM2 in the simulations

(Fig. 4). This might be because the assumption of a simpli-

fied reference tissue model does not adequately describe the

kinetics of [11C]-PIB in this case.5

While our objective here is not to determine the best way

to analyze [11C]-PIB data, the increased reliability and greater

robustness seen with Logan analysis following HYPR-LR

processing may prove valuable. The Logan method is easy to

implement, does not assume any particular model, and does

not require imposing limits on the data, for example the range

of k2 in RPM2. HYPR-LR processing does also improve the

parametric images created with RPM2, albeit not as dramati-

cally relative to simple smoothing.

Presumably, HYPR-LR processing should also improve

other data driven methods, such as the multi-linear regres-

sion methods that are not susceptible to a noise-sensitive

bias but do exhibit greater variance than the Logan graphical

method.26,27 Likewise, it should improve other model based

methods like compartmental analysis.

The results presented here demonstrate that both the pro-

posed method for forming multiple time dependent compo-

sites and simply using all the frames in the composite

formation may have value in different contexts. HYPR-LR-

MC introduces minimal bias but the bias introduced by

HYPR-LR-FC is not that great in the data studied here, par-

ticularly when a smaller filtering kernel is used. And while

HYPR-LR-MC certainly reduces variance, HYPR-LR-FC

does so to a greater degree. When the focus is on relatively

large regions of high uptake in [11C]-PIB data, HYPR-LR-

FC appears to perform relatively well. However, we still

urge caution in using all frames of the study for forming the

composite image. In the case of [11C]-PIB, it appears as if

the bias caused by HYPR-LR-FC results in greater contrast

between structures in the brain. While such an image may be

appealing to look at, it may be a misleading result. Bias

caused by HYPR-LR will also likely be greater in studies

that have greater contrast between areas of interest and their

surrounding background, for example [11C]-raclopride or

any of a number of tracers used to study tumor biology. It is

clear that using HYPR-LR with composite images that have

been formed in a way that accounts for the kinetic behavior

of the tracer being studied can certainly provide an improve-

ment in the variance of kinetic parameters while introducing

very little bias.

While we have focused on the application of HYPR-LR

processing to [11C]-PIB data, a tracer of interest in the neuro-

science community, the approach that we have presented here

should be generalizable to other tracers and other applications

outside the brain. Indeed, the fairly detailed structure of the

brain, and of the cortex in particular, provides a good means

of testing HYPR-LR processing. HYPR-LR processing may

prove particularly valuable for providing more detailed physi-

ologic information on a smaller anatomical scale for cardiac

and oncology applications of dynamic PET imaging. Not all

tracers will follow the exact uptake pattern we have described,

and the optimal composite scheme, including simply using a

fully summed composite, will depend on the application.

Nevertheless, examining the ratio of the activities of neigh-

boring regions over time will still provide valuable insight as

to how HYPR-LR can be applied to maximize variance reduc-

tion while minimizing introduced bias.

VI. CONCLUSION

HYPR-LR is a promising denoising technique for a num-

ber of medical imaging modalities, and we have previously

demonstrated its potential for denoising dynamic PET data.

In this work, we have shown that HYPR-LR processing can

improve kinetic analysis techniques used for processing

dynamic PET data, and we have introduced a method for

forming multiple time-dependent composite images that

minimizes the bias the HYPR-LR algorithm causes while

maximizing the improvement in variance it provides. This

implementation of HYPR-LR could thus improve the kinetic

analysis of dynamic PET data without sacrificing accuracy.

In addition, our comparison between Logan graphical analy-

sis and RPM2 before and after HYPR-LR processing pro-

vides a framework for testing the validity of HYPR-LR

processing in the context of a given tracer and two methods

of analysis. We envision HYPR-LR being particularly valua-

ble in PET applications that suffer from high noise, such as

PET scans requiring high spatial or temporal resolution, vul-

nerable patient populations who require less radiation dose,

tracers used to screen large populations, and tracers utilizing

unique but dosimetry limited radionuclides such as 124I and
64Cu. HYPR-LR is a simple denoising tool, and our pro-

posed method for its quantitatively accurate implementation

could easily be implemented for different tracer behaviors,

or for individual studies.
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